/usr/share/gap/lib/zlattice.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | #############################################################################
##
#W zlattice.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of functions and operations dealing
## with lattices.
##
#############################################################################
##
#V InfoZLattice
##
## <ManSection>
## <InfoClass Name="InfoZLattice"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareInfoClass( "InfoZLattice" );
#############################################################################
##
#O ScalarProduct( [<L>, ]<v>, <w> )
##
## <ManSection>
## <Oper Name="ScalarProduct" Arg='[L, ]v, w'/>
##
## <Description>
## Called with two row vectors <A>v</A>, <A>w</A> of the same length,
## <Ref Func="ScalarProduct"/> returns the standard scalar product of these
## vectors; this can also be computed as <C><A>v</A> * <A>w</A></C>.
## <P/>
## Called with a lattice <A>L</A> and two elements <A>v</A>, <A>w</A> of
## <A>L</A>,
## <Ref Func="ScalarProduct"/> returns the scalar product of these elements
## w.r.t. the scalar product associated to <A>L</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "ScalarProduct", [ IsVector, IsVector ] );
DeclareOperation( "ScalarProduct",
[ IsFreeLeftModule, IsVector, IsVector ] );
#############################################################################
##
#F StandardScalarProduct( <L>, <x>, <y> )
##
## <ManSection>
## <Func Name="StandardScalarProduct" Arg='L, x, y'/>
##
## <Description>
## returns <C><A>x</A> * <A>y</A></C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "StandardScalarProduct" );
#############################################################################
##
## Decompositions
##
## <#GAPDoc Label="[1]{zlattice}">
## <Index>decomposition matrix</Index>
## <Index>DEC</Index>
## For computing the decomposition of a vector of integers into the rows of
## a matrix of integers, with integral coefficients,
## one can use <M>p</M>-adic approximations, as follows.
## <P/>
## Let <M>A</M> be a square integral matrix, and <M>p</M> an odd prime.
## The reduction of <M>A</M> modulo <M>p</M> is <M>\overline{A}</M>,
## its entries are chosen in the interval
## <M>[ -(p-1)/2, (p-1)/2 ]</M>.
## If <M>\overline{A}</M> is regular over the field with <M>p</M> elements,
## we can form <M>A' = \overline{A}^{{-1}}</M>.
## Now we consider the integral linear equation system <M>x A = b</M>,
## i.e., we look for an integral solution <M>x</M>.
## Define <M>b_0 = b</M>, and then iteratively compute
## <Display Mode="M">
## x_i = (b_i A') \bmod p, b_{{i+1}} = (b_i - x_i A) / p,
## i = 0, 1, 2, \ldots .
## </Display>
## By induction, we get
## <Display Mode="M">
## p^{{i+1}} b_{{i+1}} + \left( \sum_{{j = 0}}^i p^j x_j \right) A = b.
## </Display>
## If there is an integral solution <M>x</M> then it is unique,
## and there is an index <M>l</M> such that <M>b_{{l+1}}</M> is zero
## and <M>x = \sum_{{j = 0}}^l p^j x_j</M>.
## <P/>
## There are two useful generalizations of this idea.
## First, <M>A</M> need not be square; it is only necessary that there is
## a square regular matrix formed by a subset of columns of <M>A</M>.
## Second, <M>A</M> does not need to be integral;
## the entries may be cyclotomic integers as well,
## in this case one can replace each column of <M>A</M> by the columns
## formed by the coefficients w.r.t. an integral basis (which are
## integers).
## Note that this preprocessing must be performed compatibly for
## <M>A</M> and <M>b</M>.
## <P/>
## &GAP; provides the following functions for this purpose
## (see also <Ref Func="InverseMatMod"/>).
## <#/GAPDoc>
##
#############################################################################
##
#F Decomposition( <A>, <B>, <depth> ) . . . . . . . . . . integral solutions
##
## <#GAPDoc Label="Decomposition">
## <ManSection>
## <Func Name="Decomposition" Arg='A, B, depth'/>
##
## <Description>
## For a <M>m \times n</M> matrix <A>A</A> of cyclotomics that has rank
## <M>m \leq n</M>, and a list <A>B</A> of cyclotomic vectors,
## each of length <M>n</M>,
## <Ref Func="Decomposition"/> tries to find integral solutions
## of the linear equation systems <C><A>x</A> * <A>A</A> = <A>B</A>[i]</C>,
## by computing the <M>p</M>-adic series of hypothetical solutions.
## <P/>
## <C>Decomposition( <A>A</A>, <A>B</A>, <A>depth</A> )</C>,
## where <A>depth</A> is a nonnegative integer, computes for each vector
## <C><A>B</A>[i]</C> the initial part
## <M>\sum_{{k = 0}}^{<A>depth</A>} x_k p^k</M>,
## with all <M>x_k</M> vectors of integers with entries bounded by
## <M>\pm (p-1)/2</M>.
## The prime <M>p</M> is set to 83 first; if the reduction of <A>A</A>
## modulo <M>p</M> is singular, the next prime is chosen automatically.
## <P/>
## A list <A>X</A> is returned.
## If the computed initial part for <C><A>x</A> * <A>A</A> = <A>B</A>[i]</C>
## <E>is</E> a solution,
## we have <C><A>X</A>[i] = <A>x</A></C>,
## otherwise <C><A>X</A>[i] = fail</C>.
## <P/>
## If <A>depth</A> is not an integer then it must be the string
## <C>"nonnegative"</C>.
## <C>Decomposition( <A>A</A>, <A>B</A>, "nonnegative" )</C> assumes that
## the solutions have only nonnegative entries,
## and that the first column of <A>A</A> consists of positive integers.
## This is satisfied, e.g., for the decomposition of ordinary characters
## into Brauer characters.
## In this case the necessary number <A>depth</A> of iterations can be
## computed; the <C>i</C>-th entry of the returned list is <K>fail</K> if
## there <E>exists</E> no nonnegative integral solution of the system
## <C><A>x</A> * <A>A</A> = <A>B</A>[i]</C>, and it is the solution
## otherwise.
## <P/>
## <E>Note</E> that the result is a list of <K>fail</K> if <A>A</A> has not
## full rank,
## even if there might be a unique integral solution for some equation
## system.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Decomposition", [ IsMatrix, IsList, IsObject ] );
#############################################################################
##
#F LinearIndependentColumns( <mat> )
##
## <#GAPDoc Label="LinearIndependentColumns">
## <ManSection>
## <Func Name="LinearIndependentColumns" Arg='mat'/>
##
## <Description>
## Called with a matrix <A>mat</A>, <C>LinearIndependentColumns</C> returns a maximal
## list of column positions such that the restriction of <A>mat</A> to these
## columns has the same rank as <A>mat</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LinearIndependentColumns" );
#############################################################################
##
#F PadicCoefficients( <A>, <Amodpinv>, <b>, <prime>, <depth> )
##
## <#GAPDoc Label="PadicCoefficients">
## <ManSection>
## <Func Name="PadicCoefficients" Arg='A, Amodpinv, b, prime, depth'/>
##
## <Description>
## Let <A>A</A> be an integral matrix,
## <A>prime</A> a prime integer,
## <A>Amodpinv</A> an inverse of <A>A</A> modulo <A>prime</A>,
## <A>b</A> an integral vector,
## and <A>depth</A> a nonnegative integer.
## <Ref Func="PadicCoefficients"/> returns the list
## <M>[ x_0, x_1, \ldots, x_l, b_{{l+1}} ]</M>
## describing the <A>prime</A>-adic approximation of <A>b</A> (see above),
## where <M>l = <A>depth</A></M>
## or <M>l</M> is minimal with the property that <M>b_{{l+1}} = 0</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PadicCoefficients" );
#############################################################################
##
#F IntegralizedMat( <A>[, <inforec>] )
##
## <#GAPDoc Label="IntegralizedMat">
## <ManSection>
## <Func Name="IntegralizedMat" Arg='A[, inforec]'/>
##
## <Description>
## <Ref Func="IntegralizedMat"/> returns, for a matrix <A>A</A> of
## cyclotomics, a record <C>intmat</C> with components <C>mat</C> and
## <C>inforec</C>.
## Each family of algebraic conjugate columns of <A>A</A> is encoded in a
## set of columns of the rational matrix <C>intmat.mat</C> by replacing
## cyclotomics in <A>A</A> by their coefficients w.r.t. an integral
## basis.
## <C>intmat.inforec</C> is a record containing the information how to
## encode the columns.
## <P/>
## If the only argument is <A>A</A>, the value of the component
## <C>inforec</C> is computed that can be entered as second argument
## <A>inforec</A> in a later call of <Ref Func="IntegralizedMat"/> with a
## matrix <A>B</A> that shall be encoded compatibly with <A>A</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IntegralizedMat" );
#############################################################################
##
#F DecompositionInt( <A>, <B>, <depth> ) . . . . . . . . integral solutions
##
## <#GAPDoc Label="DecompositionInt">
## <ManSection>
## <Func Name="DecompositionInt" Arg='A, B, depth'/>
##
## <Description>
## <Ref Func="DecompositionInt"/> does the same as
## <Ref Func="Decomposition"/>,
## except that <A>A</A> and <A>B</A> must be integral matrices,
## and <A>depth</A> must be a nonnegative integer.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DecompositionInt" );
#############################################################################
##
#F LLLReducedBasis( [<L>, ]<vectors>[, <y>][, "linearcomb"][, <lllout>] )
##
## <#GAPDoc Label="LLLReducedBasis">
## <ManSection>
## <Func Name="LLLReducedBasis"
## Arg='[L, ]vectors[, y][, "linearcomb"][, lllout]'/>
##
## <Description>
## <Index Subkey="for vectors">LLL algorithm</Index>
## <Index>short vectors spanning a lattice</Index>
## <Index>lattice base reduction</Index>
## provides an implementation of the <E>LLL algorithm</E> by
## Lenstra, Lenstra and Lovász (see <Cite Key="LLL82"/>,
## <Cite Key="Poh87"/>).
## The implementation follows the description
## in <Cite Key="Coh93" Where="p. 94f."/>.
## <P/>
## <Ref Func="LLLReducedBasis"/> returns a record whose component
## <C>basis</C> is a list of LLL reduced linearly independent vectors
## spanning the same lattice as the list <A>vectors</A>.
## <A>L</A> must be a lattice, with scalar product of the vectors <A>v</A>
## and <A>w</A> given by
## <C>ScalarProduct( <A>L</A>, <A>v</A>, <A>w</A> )</C>.
## If no lattice is specified then the scalar product of vectors given by
## <C>ScalarProduct( <A>v</A>, <A>w</A> )</C> is used.
## <P/>
## In the case of the option <C>"linearcomb"</C>, the result record contains
## also the components <C>relations</C> and <C>transformation</C>,
## with the following meaning.
## <C>relations</C> is a basis of the relation space of <A>vectors</A>,
## i.e., of vectors <A>x</A> such that <C><A>x</A> * <A>vectors</A></C> is
## zero.
## <C>transformation</C> gives the expression of the new lattice basis in
## terms of the old, i.e.,
## <C>transformation * <A>vectors</A></C> equals the <C>basis</C> component
## of the result.
## <P/>
## Another optional argument is <A>y</A>, the <Q>sensitivity</Q> of the
## algorithm, a rational number between <M>1/4</M> and <M>1</M>
## (the default value is <M>3/4</M>).
## <P/>
## The optional argument <A>lllout</A> is a record with the components
## <C>mue</C> and <C>B</C>, both lists of length <M>k</M>,
## with the meaning that if <A>lllout</A> is present then the first <M>k</M>
## vectors in <A>vectors</A> form an LLL reduced basis of the lattice they
## generate,
## and <C><A>lllout</A>.mue</C> and <C><A>lllout</A>.B</C> contain their
## scalar products and norms used internally in the algorithm,
## which are also present in the output of <Ref Func="LLLReducedBasis"/>.
## So <A>lllout</A> can be used for <Q>incremental</Q> calls of
## <Ref Func="LLLReducedBasis"/>.
## <P/>
## The function <Ref Func="LLLReducedGramMat"/>
## computes an LLL reduced Gram matrix.
## <P/>
## <Example><![CDATA[
## gap> vectors:= [ [ 9, 1, 0, -1, -1 ], [ 15, -1, 0, 0, 0 ],
## > [ 16, 0, 1, 1, 1 ], [ 20, 0, -1, 0, 0 ],
## > [ 25, 1, 1, 0, 0 ] ];;
## gap> LLLReducedBasis( vectors, "linearcomb" );
## rec( B := [ 5, 36/5, 12, 50/3 ],
## basis := [ [ 1, 1, 1, 1, 1 ], [ 1, 1, -2, 1, 1 ],
## [ -1, 3, -1, -1, -1 ], [ -3, 1, 0, 2, 2 ] ],
## mue := [ [ ], [ 2/5 ], [ -1/5, 1/3 ], [ 2/5, 1/6, 1/6 ] ],
## relations := [ [ -1, 0, -1, 0, 1 ] ],
## transformation := [ [ 0, -1, 1, 0, 0 ], [ -1, -2, 0, 2, 0 ],
## [ 1, -2, 0, 1, 0 ], [ -1, -2, 1, 1, 0 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LLLReducedBasis" );
#############################################################################
##
#F LLLReducedGramMat( <G>[, <y>] ) . . . . . . . . LLL reduced Gram matrix
##
## <#GAPDoc Label="LLLReducedGramMat">
## <ManSection>
## <Func Name="LLLReducedGramMat" Arg='G[, y]'/>
##
## <Description>
## <Index Subkey="for Gram matrices">LLL algorithm</Index>
## <Index>lattice base reduction</Index>
## <Ref Func="LLLReducedGramMat"/> provides an implementation of the
## <E>LLL algorithm</E> by Lenstra, Lenstra and Lovász
## (see <Cite Key="LLL82"/>, <Cite Key="Poh87"/>).
## The implementation follows the description in
## <Cite Key="Coh93" Where="p. 94f."/>.
## <P/>
## Let <A>G</A> the Gram matrix of the vectors
## <M>(b_1, b_2, \ldots, b_n)</M>;
## this means <A>G</A> is either a square symmetric matrix or lower
## triangular matrix (only the entries in the lower triangular half are used
## by the program).
## <P/>
## <Ref Func="LLLReducedGramMat"/> returns a record whose component
## <C>remainder</C> is the Gram matrix of the LLL reduced basis
## corresponding to <M>(b_1, b_2, \ldots, b_n)</M>.
## If <A>G</A> is a lower triangular matrix then also the <C>remainder</C>
## component of the result record is a lower triangular matrix.
## <P/>
## The result record contains also the components <C>relations</C> and
## <C>transformation</C>, which have the following meaning.
## <P/>
## <C>relations</C> is a basis of the space of vectors
## <M>(x_1, x_2, \ldots, x_n)</M>
## such that <M>\sum_{{i = 1}}^n x_i b_i</M> is zero,
## and <C>transformation</C> gives the expression of the new lattice basis
## in terms of the old, i.e., <C>transformation</C> is the matrix <M>T</M>
## such that <M>T \cdot <A>G</A> \cdot T^{tr}</M> is the <C>remainder</C>
## component of the result.
## <P/>
## The optional argument <A>y</A> denotes the <Q>sensitivity</Q> of the
## algorithm, it must be a rational number between <M>1/4</M> and <M>1</M>;
## the default value is <M><A>y</A> = 3/4</M>.
## <P/>
## The function <Ref Func="LLLReducedBasis"/> computes an LLL reduced basis.
## <P/>
## <Example><![CDATA[
## gap> g:= [ [ 4, 6, 5, 2, 2 ], [ 6, 13, 7, 4, 4 ],
## > [ 5, 7, 11, 2, 0 ], [ 2, 4, 2, 8, 4 ], [ 2, 4, 0, 4, 8 ] ];;
## gap> LLLReducedGramMat( g );
## rec( B := [ 4, 4, 75/16, 168/25, 32/7 ],
## mue := [ [ ], [ 1/2 ], [ 1/4, -1/8 ], [ 1/2, 1/4, -2/25 ],
## [ -1/4, 1/8, 37/75, 8/21 ] ], relations := [ ],
## remainder := [ [ 4, 2, 1, 2, -1 ], [ 2, 5, 0, 2, 0 ],
## [ 1, 0, 5, 0, 2 ], [ 2, 2, 0, 8, 2 ], [ -1, 0, 2, 2, 7 ] ],
## transformation := [ [ 1, 0, 0, 0, 0 ], [ -1, 1, 0, 0, 0 ],
## [ -1, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ -2, 0, 1, 0, 1 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LLLReducedGramMat" );
#############################################################################
##
#F ShortestVectors( <G>, <m>[, "positive"] )
##
## <#GAPDoc Label="ShortestVectors">
## <ManSection>
## <Func Name="ShortestVectors" Arg='G, m[, "positive"]'/>
##
## <Description>
## Let <A>G</A> be a regular matrix of a symmetric bilinear form,
## and <A>m</A> a nonnegative integer.
## <Ref Func="ShortestVectors"/> computes the vectors <M>x</M> that satisfy
## <M>x \cdot <A>G</A> \cdot x^{tr} \leq <A>m</A></M>,
## and returns a record describing these vectors.
## The result record has the components
## <List>
## <Mark><C>vectors</C></Mark>
## <Item>
## list of the nonzero vectors <M>x</M>, but only one of each pair
## <M>(x,-x)</M>,
## </Item>
## <Mark><C>norms</C></Mark>
## <Item>
## list of norms of the vectors according to the Gram matrix <A>G</A>.
## </Item>
## </List>
## If the optional argument <C>"positive"</C> is entered,
## only those vectors <M>x</M> with nonnegative entries are computed.
## <Example><![CDATA[
## gap> g:= [ [ 2, 1, 1 ], [ 1, 2, 1 ], [ 1, 1, 2 ] ];;
## gap> ShortestVectors(g,4);
## rec( norms := [ 4, 2, 2, 4, 2, 4, 2, 2, 2 ],
## vectors := [ [ -1, 1, 1 ], [ 0, 0, 1 ], [ -1, 0, 1 ], [ 1, -1, 1 ],
## [ 0, -1, 1 ], [ -1, -1, 1 ], [ 0, 1, 0 ], [ -1, 1, 0 ],
## [ 1, 0, 0 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ShortestVectors" );
#############################################################################
##
#F OrthogonalEmbeddings( <gram>[, "positive"][, <maxdim>] )
##
## <#GAPDoc Label="OrthogonalEmbeddings">
## <ManSection>
## <Func Name="OrthogonalEmbeddings" Arg='gram[, "positive"][, maxdim]'/>
##
## <Description>
## computes all possible orthogonal embeddings of a lattice given by its
## Gram matrix <A>gram</A>, which must be a regular symmetric matrix of
## integers.
## In other words, all integral solutions <M>X</M> of the equation
## <M>X^{tr} \cdot X = </M><A>gram</A>
## are calculated.
## The implementation follows the description in <Cite Key="Ple90"/>.
## <P/>
## Usually there are many solutions <M>X</M>
## but all their rows belong to a small set of vectors,
## so <Ref Func="OrthogonalEmbeddings"/> returns the solutions
## encoded by a record with the following components.
## <P/>
## <List>
## <Mark><C>vectors</C></Mark>
## <Item>
## the list <M>L = [ x_1, x_2, \ldots, x_n ]</M> of vectors
## that may be rows of a solution, up to sign;
## these are exactly the vectors with the property
## <M>x_i \cdot </M><A>gram</A><M>^{{-1}} \cdot x_i^{tr} \leq 1</M>,
## see <Ref Func="ShortestVectors"/>,
## </Item>
## <Mark><C>norms</C></Mark>
## <Item>
## the list of values
## <M>x_i \cdot </M><A>gram</A><M>^{{-1}} \cdot x_i^{tr}</M>,
## and
## </Item>
## <Mark><C>solutions</C></Mark>
## <Item>
## a list <M>S</M> of index lists; the <M>i</M>-th solution matrix is
## <M>L</M><C>{ </C><M>S[i]</M><C> }</C>,
## so the dimension of the <A>i</A>-th solution is the length of
## <M>S[i]</M>, and we have
## <A>gram</A><M> = \sum_{{j \in S[i]}} x_j^{tr} \cdot x_j</M>,
## </Item>
## </List>
## <P/>
## The optional argument <C>"positive"</C> will cause
## <Ref Func="OrthogonalEmbeddings"/>
## to compute only vectors <M>x_i</M> with nonnegative entries.
## In the context of characters this is allowed (and useful)
## if <A>gram</A> is the matrix of scalar products of ordinary characters.
## <P/>
## When <Ref Func="OrthogonalEmbeddings"/> is called with the optional
## argument <A>maxdim</A> (a positive integer),
## only solutions up to dimension <A>maxdim</A> are computed;
## this may accelerate the algorithm.
## <P/>
## <Example><![CDATA[
## gap> b:= [ [ 3, -1, -1 ], [ -1, 3, -1 ], [ -1, -1, 3 ] ];;
## gap> c:=OrthogonalEmbeddings( b );
## rec( norms := [ 1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2 ],
## solutions := [ [ 1, 2, 3 ], [ 1, 6, 6, 7, 7 ], [ 2, 5, 5, 8, 8 ],
## [ 3, 4, 4, 9, 9 ], [ 4, 5, 6, 7, 8, 9 ] ],
## vectors := [ [ -1, 1, 1 ], [ 1, -1, 1 ], [ -1, -1, 1 ],
## [ -1, 1, 0 ], [ -1, 0, 1 ], [ 1, 0, 0 ], [ 0, -1, 1 ],
## [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
## gap> c.vectors{ c.solutions[1] };
## [ [ -1, 1, 1 ], [ 1, -1, 1 ], [ -1, -1, 1 ] ]
## ]]></Example>
## <P/>
## <A>gram</A> may be the matrix of scalar products of some virtual
## characters.
## From the characters and the embedding given by the matrix <M>X</M>,
## <Ref Func="Decreased"/> may be able to compute irreducibles.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareGlobalFunction( "OrthogonalEmbeddings" );
#############################################################################
##
#F LLLint( <lat> ) . . . . . . . . . . . . . . . . . . . . integer only LLL
##
## <ManSection>
## <Func Name="LLLint" Arg='lat'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "LLLint" );
#T The code was converted from Maple to GAP by Alexander.
#############################################################################
##
#E
|