This file is indexed.

/usr/share/gap/lib/zmodnz.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#############################################################################
##
#W  zmodnz.gd                   GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the design of the rings $Z / n Z$ and their elements.
##
##  The ordering of elements for nonprime $n$ is defined by the ordering of
##  the representatives.
##  For primes smaller than `MAXSIZE_GF_INTERNAL', the ordering of the
##  internal finite field elements must be respected, for larger primes
##  again the ordering of representatives is chosen.
##


#############################################################################
##
#C  IsZmodnZObj( <obj> )
#C  IsZmodnZObjNonprime( <obj> )
#C  IsZmodpZObj( <obj> )
#C  IsZmodpZObjSmall( <obj> )
#C  IsZmodpZObjLarge( <obj> )
##
##  <#GAPDoc Label="IsZmodnZObj">
##  <ManSection>
##  <Filt Name="IsZmodnZObj" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodnZObjNonprime" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodpZObj" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodpZObjSmall" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodpZObjLarge" Arg='obj' Type='Category'/>
##
##  <Description>
##  The elements in the rings <M>Z / n Z</M> are in the category
##  <Ref Filt="IsZmodnZObj"/>.
##  If <M>n</M> is a prime then the elements are of course also in the
##  category <Ref Func="IsFFE"/>,
##  otherwise they are in <Ref Filt="IsZmodnZObjNonprime"/>.
##  <Ref Filt="IsZmodpZObj"/> is an abbreviation of
##  <C>IsZmodnZObj and IsFFE</C>.
##  This category is the disjoint union of <Ref Filt="IsZmodpZObjSmall"/> and
##  <Ref Filt="IsZmodpZObjLarge"/>, the former containing all elements with
##  <M>n</M> at most <C>MAXSIZE_GF_INTERNAL</C>.
##  <P/>
##  The reasons to distinguish the prime case from the nonprime case are
##  <List>
##  <Item>
##    that objects in <Ref Filt="IsZmodnZObjNonprime"/> have an external
##    representation (namely the residue in the range
##    <M>[ 0, 1, \ldots, n-1 ]</M>),
##  </Item>
##  <Item>
##    that the comparison of elements can be defined as comparison of the
##    residues, and
##  </Item>
##  <Item>
##    that the elements lie in a family of type
##    <C>IsZmodnZObjNonprimeFamily</C>
##    (note that for prime <M>n</M>, the family must be an
##    <C>IsFFEFamily</C>).
##  </Item>
##  </List>
##  <P/>
##  The reasons to distinguish the small and the large case are
##  that for small <M>n</M> the elements must be compatible with the internal
##  representation of finite field elements, whereas we are free to define
##  comparison as comparison of residues for large <M>n</M>.
##  <P/>
##  Note that we <E>cannot</E> claim that every finite field element of
##  degree 1 is in <Ref Filt="IsZmodnZObj"/>, since finite field elements in
##  internal representation may not know that they lie in the prime field.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsZmodnZObj", IsScalar and IsAssociativeElement 
    and IsCommutativeElement and IsAdditivelyCommutativeElement );
DeclareCategory( "IsZmodnZObjNonprime", IsZmodnZObj );
DeclareSynonym( "IsZmodpZObj", IsZmodnZObj and IsFFE );
DeclareSynonym( "IsZmodpZObjSmall", IsZmodpZObj and IsLogOrderedFFE );
DeclareSynonym( "IsZmodpZObjLarge", IsZmodpZObj and IsLexOrderedFFE );


#############################################################################
##
#C  IsZmodnZObjNonprimeFamily( <obj> )
##
##  <ManSection>
##  <Filt Name="IsZmodnZObjNonprimeFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryFamily( "IsZmodnZObjNonprime" );


#############################################################################
##
#C  IsZmodnZObjNonprimeCollection( <obj> )
#C  IsZmodnZObjNonprimeCollColl( <obj> )
#C  IsZmodnZObjNonprimeCollCollColl( <obj> )
##
##  <ManSection>
##  <Filt Name="IsZmodnZObjNonprimeCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodnZObjNonprimeCollColl" Arg='obj' Type='Category'/>
##  <Filt Name="IsZmodnZObjNonprimeCollCollColl" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsZmodnZObjNonprime" );
DeclareCategoryCollections( "IsZmodnZObjNonprimeCollection" );
DeclareCategoryCollections( "IsZmodnZObjNonprimeCollColl" );


#############################################################################
##
#M  IsFinite( <R> ) . . . . . . . . . . . . . . . . method for full ring Z/nZ
##
InstallTrueMethod( IsFinite,
    IsZmodnZObjNonprimeCollection and IsDuplicateFree );


#############################################################################
##
#V  Z_MOD_NZ
##
##  <ManSection>
##  <Var Name="Z_MOD_NZ"/>
##
##  <Description>
##  is a list of length 2, the first containing at position <A>i</A> the
##  <A>i</A>-th value <A>n</A> for that <C>ZmodnZ( <A>n</A> )</C> is stored,
##  and the second containing this ring at position <A>i</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "Z_MOD_NZ",
    "list of lists, at position [1][i] is n s.t. [2][i] is ZmodnZ(n)" );
InstallFlushableValue( Z_MOD_NZ, [ [], [] ] );


#############################################################################
##
#F  ZmodnZ( <n> )
#F  ZmodpZ( <p> )
#F  ZmodpZNC( <p> )
##
##  <#GAPDoc Label="ZmodnZ">
##  <ManSection>
##  <Func Name="ZmodnZ" Arg='n'/>
##  <Func Name="ZmodpZ" Arg='p'/>
##  <Func Name="ZmodpZNC" Arg='p'/>
##
##  <Description>
##  <Ref Func="ZmodnZ"/> returns a ring <M>R</M> isomorphic to the residue
##  class ring of the integers modulo the positive integer <A>n</A>.
##  The element corresponding to the residue class of the integer <M>i</M>
##  in this ring can be obtained by <C>i * One( R )</C>,
##  and a representative of the residue class corresponding to the element
##  <M>x \in R</M> can be computed by <C>Int</C><M>( x )</M>.
##  <P/>
##  <Index Subkey="Integers">mod</Index>
##  <C>ZmodnZ( <A>n</A> )</C> is equal to <C>Integers mod <A>n</A></C>.
##  <P/>
##  <Ref Func="ZmodpZ"/> does the same if the argument <A>p</A> is a prime
##  integer, additionally the result is a field.
##  <Ref Func="ZmodpZNC"/> omits the check whether <A>p</A> is a prime.
##  <P/>
##  Each ring returned by these functions contains the whole family of its
##  elements
##  if <A>n</A> is not a prime, and is embedded into the family of finite
##  field elements of characteristic <A>n</A> if <A>n</A> is a prime.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ZmodnZ" );
DeclareGlobalFunction( "ZmodpZ" );
DeclareGlobalFunction( "ZmodpZNC" );


#############################################################################
##
#O  ZmodnZObj( <Fam>, <r> )
#O  ZmodnZObj( <r>, <n> )
##
##  <#GAPDoc Label="ZmodnZObj">
##  <ManSection>
##  <Oper Name="ZmodnZObj"
##   Arg='Fam, r' Label="for a residue class family and integer"/>
##  <Oper Name="ZmodnZObj" Arg='r, n' Label="for two integers"/>
##
##  <Description>
##  If the first argument is a residue class family <A>Fam</A> then
##  <Ref Oper="ZmodnZObj" Label="for a residue class family and integer"/>
##  returns the element in <A>Fam</A> whose coset is represented by the
##  integer <A>r</A>.
##  <P/>
##  If the two arguments are an integer <A>r</A> and a positive integer
##  <A>n</A> then <Ref Oper="ZmodnZObj" Label="for two integers"/>
##  returns the element in <C>ZmodnZ( <A>n</A> )</C>
##  (see&nbsp;<Ref Func="ZmodnZ"/>) whose coset is represented by the integer
##  <A>r</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> r:= ZmodnZ(15);
##  (Integers mod 15)
##  gap> fam:=ElementsFamily(FamilyObj(r));;
##  gap> a:= ZmodnZObj(fam,9);
##  ZmodnZObj( 9, 15 )
##  gap> a+a;
##  ZmodnZObj( 3, 15 )
##  gap> Int(a+a);
##  3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ZmodnZObj", [ IsZmodnZObjNonprimeFamily, IsInt ] );
DeclareOperation( "ZmodnZObj", [ IsInt, IsPosInt ] );
DeclareSynonym( "ZmodpZObj", ZmodnZObj );


#############################################################################
##
#A  ModulusOfZmodnZObj( <obj> )
##
##  <ManSection>
##  <Attr Name="ModulusOfZmodnZObj" Arg='obj'/>
##
##  <Description>
##  For an element <A>obj</A> in a residue class ring of integers modulo
##  <M>n</M> (see&nbsp;<Ref Func="IsZmodnZObj"/>),
##  <Ref Attr="ModulusOfZmodnZObj"/> returns the positive integer <M>n</M>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "ModulusOfZmodnZObj", IsZmodnZObj );


#############################################################################
##
#F  EnumeratorOfZmodnZ( <R> ). . . . . . . . . . . . . enumerator for Z / n Z
##
##  <ManSection>
##  <Func Name="EnumeratorOfZmodnZ" Arg='R'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "EnumeratorOfZmodnZ" );


#############################################################################
##
#M  IsFinite( <zmodnz-mat-grp> )
##
##  *NOTE*:  The following implication only  holds if there are no infinite
##  dimensional matrices.
##
InstallTrueMethod( IsFinite,
    IsZmodnZObjNonprimeCollCollColl and IsRingElementCollCollColl
                                    and IsGroup
                                    and IsFinitelyGeneratedGroup );


#############################################################################
##
#E