/usr/share/gap/doc/ref/chap17.txt is in gap-online-help 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
[1X17 [33X[0;0YRational Numbers[133X[101X
[33X[0;0YThe [13Xrationals[113X form a very important field. On the one hand it is the
quotient field of the integers (see chapter [14X14[114X). On the other hand it is the
prime field of the fields of characteristic zero (see chapter [14X60[114X).[133X
[33X[0;0YThe former comment suggests the representation actually used. A rational is
represented as a pair of integers, called [13Xnumerator[113X and [13Xdenominator[113X.
Numerator and denominator are [13Xreduced[113X, i.e., their greatest common divisor
is 1. If the denominator is 1, the rational is in fact an integer and is
represented as such. The numerator holds the sign of the rational, thus the
denominator is always positive.[133X
[33X[0;0YBecause the underlying integer arithmetic can compute with arbitrary size
integers, the rational arithmetic is always exact, even for rationals whose
numerators and denominators have thousands of digits.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27X2/3;[127X[104X
[4X[28X2/3[128X[104X
[4X[25Xgap>[125X [27X66/123; # numerator and denominator are made relatively prime[127X[104X
[4X[28X22/41[128X[104X
[4X[25Xgap>[125X [27X17/-13; # the numerator carries the sign;[127X[104X
[4X[28X-17/13[128X[104X
[4X[25Xgap>[125X [27X121/11; # rationals with denominator 1 (when canceled) are integers[127X[104X
[4X[28X11[128X[104X
[4X[32X[104X
[1X17.1 [33X[0;0YRationals: Global Variables[133X[101X
[1X17.1-1 Rationals[101X
[29X[2XRationals[102X[32X global variable
[29X[2XIsRationals[102X( [3Xobj[103X ) [32X property
[33X[0;0Y[2XRationals[102X is the field [22Xâ„š[122X of rational integers, as a set of cyclotomic
numbers, see Chapter [14X18[114X for basic operations, Functions for the field
[2XRationals[102X can be found in the chapters [14X58[114X and [14X60[114X.[133X
[33X[0;0Y[2XIsRationals[102X returns [9Xtrue[109X for a prime field that consists of cyclotomic
numbers –for example the [5XGAP[105X object [2XRationals[102X– and [9Xfalse[109X for all other [5XGAP[105X
objects.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XSize( Rationals ); 2/3 in Rationals;[127X[104X
[4X[28Xinfinity[128X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X17.2 [33X[0;0YElementary Operations for Rationals[133X[101X
[1X17.2-1 IsRat[101X
[29X[2XIsRat[102X( [3Xobj[103X ) [32X Category
[33X[0;0YEvery rational number lies in the category [2XIsRat[102X, which is a subcategory of
[2XIsCyc[102X ([14X18.1-3[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIsRat( 2/3 );[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsRat( 17/-13 );[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsRat( 11 );[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsRat( IsRat ); # `IsRat' is a function, not a rational[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X17.2-2 IsPosRat[101X
[29X[2XIsPosRat[102X( [3Xobj[103X ) [32X Category
[33X[0;0YEvery positive rational number lies in the category [2XIsPosRat[102X.[133X
[1X17.2-3 IsNegRat[101X
[29X[2XIsNegRat[102X( [3Xobj[103X ) [32X Category
[33X[0;0YEvery negative rational number lies in the category [2XIsNegRat[102X.[133X
[1X17.2-4 NumeratorRat[101X
[29X[2XNumeratorRat[102X( [3Xrat[103X ) [32X function
[33X[0;0Y[2XNumeratorRat[102X returns the numerator of the rational [3Xrat[103X. Because the
numerator holds the sign of the rational it may be any integer. Integers are
rationals with denominator [22X1[122X, thus [2XNumeratorRat[102X is the identity function for
integers.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XNumeratorRat( 2/3 );[127X[104X
[4X[28X2[128X[104X
[4X[25Xgap>[125X [27X# numerator and denominator are made relatively prime:[127X[104X
[4X[25Xgap>[125X [27XNumeratorRat( 66/123 );[127X[104X
[4X[28X22[128X[104X
[4X[25Xgap>[125X [27XNumeratorRat( 17/-13 ); # numerator holds the sign of the rational[127X[104X
[4X[28X-17[128X[104X
[4X[25Xgap>[125X [27XNumeratorRat( 11 ); # integers are rationals with denominator 1[127X[104X
[4X[28X11[128X[104X
[4X[32X[104X
[1X17.2-5 DenominatorRat[101X
[29X[2XDenominatorRat[102X( [3Xrat[103X ) [32X function
[33X[0;0Y[2XDenominatorRat[102X returns the denominator of the rational [3Xrat[103X. Because the
numerator holds the sign of the rational the denominator is always a
positive integer. Integers are rationals with the denominator 1, thus
[2XDenominatorRat[102X returns 1 for integers.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XDenominatorRat( 2/3 );[127X[104X
[4X[28X3[128X[104X
[4X[25Xgap>[125X [27X# numerator and denominator are made relatively prime:[127X[104X
[4X[25Xgap>[125X [27XDenominatorRat( 66/123 );[127X[104X
[4X[28X41[128X[104X
[4X[25Xgap>[125X [27X# the denominator holds the sign of the rational:[127X[104X
[4X[25Xgap>[125X [27XDenominatorRat( 17/-13 );[127X[104X
[4X[28X13[128X[104X
[4X[25Xgap>[125X [27XDenominatorRat( 11 ); # integers are rationals with denominator 1[127X[104X
[4X[28X1[128X[104X
[4X[32X[104X
[1X17.2-6 Rat[101X
[29X[2XRat[102X( [3Xelm[103X ) [32X attribute
[33X[0;0Y[2XRat[102X returns a rational number [3Xrat[103X whose meaning depends on the type of [3Xelm[103X.[133X
[33X[0;0YIf [3Xelm[103X is a string consisting of digits [10X'0'[110X, [10X'1'[110X, [22X...[122X, [10X'9'[110X and [10X'-'[110X (at the
first position), [10X'/'[110X and the decimal dot [10X'.'[110X then [3Xrat[103X is the rational
described by this string. The operation [2XString[102X ([14X27.6-6[114X) can be used to
compute a string for rational numbers, in fact for all cyclotomics.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XRat( "1/2" ); Rat( "35/14" ); Rat( "35/-27" ); Rat( "3.14159" );[127X[104X
[4X[28X1/2[128X[104X
[4X[28X5/2[128X[104X
[4X[28X-35/27[128X[104X
[4X[28X314159/100000[128X[104X
[4X[32X[104X
[1X17.2-7 Random[101X
[29X[2XRandom[102X( [3XRationals[103X ) [32X operation
[33X[0;0Y[2XRandom[102X for rationals returns pseudo random rationals which are the quotient
of two random integers. See the description of [2XRandom[102X ([14X14.2-12[114X) for details.
(Also see [2XRandom[102X ([14X30.7-1[114X).)[133X
|