/usr/share/gap/doc/ref/chap33.txt is in gap-online-help 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
[1X33 [33X[0;0YRelations[133X[101X
[33X[0;0YA [13Xbinary relation[113X [22XR[122X on a set [22XX[122X is a subset of [22XX × X[122X. A binary relation can
also be thought of as a (general) mapping from [22XX[122X to itself or as a directed
graph where each edge represents an element of [22XR[122X.[133X
[33X[0;0YIn [5XGAP[105X, a relation is conceptually represented as a general mapping from [22XX[122X
to itself. The category [2XIsBinaryRelation[102X ([14X33.1-1[114X) is a synonym for
[2XIsEndoGeneralMapping[102X ([14X32.13-3[114X). Attributes and properties of relations in
[5XGAP[105X are supported for relations, via considering relations as a subset of [22XX
× X[122X, or as a directed graph; examples include finding the strongly connected
components of a relation, via [2XStronglyConnectedComponents[102X ([14X33.4-5[114X), or
enumerating the tuples of the relation.[133X
[1X33.1 [33X[0;0YGeneral Binary Relations[133X[101X
[33X[0;0YThis section lists general constructors of relations.[133X
[1X33.1-1 IsBinaryRelation[101X
[29X[2XIsBinaryRelation[102X( [3XR[103X ) [32X Category
[33X[0;0Yis exactly the same category as (i.e. a synonym for) [2XIsEndoGeneralMapping[102X
([14X32.13-3[114X).[133X
[1X33.1-2 BinaryRelationByElements[101X
[29X[2XBinaryRelationByElements[102X( [3Xdomain[103X, [3Xelms[103X ) [32X function
[33X[0;0Yis the binary relation on [3Xdomain[103X and with underlying relation consisting of
the tuples collection [3Xelms[103X. This construction is similar to
[2XGeneralMappingByElements[102X ([14X32.2-1[114X) where the source and range are the same
set.[133X
[1X33.1-3 [33X[0;0YIdentityBinaryRelation[133X[101X
[29X[2XIdentityBinaryRelation[102X( [3Xdegree[103X ) [32X function
[29X[2XIdentityBinaryRelation[102X( [3Xdomain[103X ) [32X function
[33X[0;0Yis the binary relation which consists of diagonal pairs, i.e., pairs of the
form [22X(x,x)[122X. In the first form if a positive integer [3Xdegree[103X is given then the
domain is the set of the integers [22X{ 1, ..., [3Xdegree[103X }[122X. In the second form,
the objects [22Xx[122X are from the domain [3Xdomain[103X.[133X
[1X33.1-4 EmptyBinaryRelation[101X
[29X[2XEmptyBinaryRelation[102X( [3Xdegree[103X ) [32X function
[29X[2XEmptyBinaryRelation[102X( [3Xdomain[103X ) [32X function
[33X[0;0Yis the relation with [3XR[103X empty. In the first form of the command with [3Xdegree[103X
an integer, the domain is the set of points [22X{ 1, ..., [3Xdegree[103X }[122X. In the
second form, the domain is that given by the argument [3Xdomain[103X.[133X
[1X33.2 [33X[0;0YProperties and Attributes of Binary Relations[133X[101X
[1X33.2-1 IsReflexiveBinaryRelation[101X
[29X[2XIsReflexiveBinaryRelation[102X( [3XR[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3XR[103X is reflexive, and [9Xfalse[109X otherwise.[133X
[33X[0;0YA binary relation [22XR[122X (as a set of pairs) on a set [22XX[122X is [13Xreflexive[113X if for all [22Xx
∈ X[122X, [22X(x,x) ∈ R[122X. Alternatively, [22XR[122X as a mapping is reflexive if for all [22Xx ∈ X[122X,
[22Xx[122X is an element of the image set [22XR(x)[122X.[133X
[33X[0;0YA reflexive binary relation is necessarily a total endomorphic mapping
(tested via [2XIsTotal[102X ([14X32.3-1[114X)).[133X
[1X33.2-2 IsSymmetricBinaryRelation[101X
[29X[2XIsSymmetricBinaryRelation[102X( [3XR[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3XR[103X is symmetric, and [9Xfalse[109X otherwise.[133X
[33X[0;0YA binary relation [22XR[122X (as a set of pairs) on a set [22XX[122X is [13Xsymmetric[113X if [22X(x,y) ∈ R[122X
then [22X(y,x) ∈ R[122X. Alternatively, [22XR[122X as a mapping is symmetric if for all [22Xx ∈ X[122X,
the preimage set of [22Xx[122X under [22XR[122X equals the image set [22XR(x)[122X.[133X
[1X33.2-3 IsTransitiveBinaryRelation[101X
[29X[2XIsTransitiveBinaryRelation[102X( [3XR[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3XR[103X is transitive, and [9Xfalse[109X otherwise.[133X
[33X[0;0YA binary relation [3XR[103X (as a set of pairs) on a set [22XX[122X is [13Xtransitive[113X if [22X(x,y),
(y,z) ∈ R[122X implies [22X(x,z) ∈ R[122X. Alternatively, [22XR[122X as a mapping is transitive if
for all [22Xx ∈ X[122X, the image set [22XR(R(x))[122X of the image set [22XR(x)[122X of [22Xx[122X is a subset
of [22XR(x)[122X.[133X
[1X33.2-4 IsAntisymmetricBinaryRelation[101X
[29X[2XIsAntisymmetricBinaryRelation[102X( [3Xrel[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3Xrel[103X is antisymmetric, and [9Xfalse[109X
otherwise.[133X
[33X[0;0YA binary relation [3XR[103X (as a set of pairs) on a set [22XX[122X is [13Xantisymmetric[113X if
[22X(x,y), (y,x) ∈ R[122X implies [22Xx = y[122X. Alternatively, [22XR[122X as a mapping is
antisymmetric if for all [22Xx ∈ X[122X, the intersection of the preimage set of [22Xx[122X
under [22XR[122X and the image set [22XR(x)[122X is [22X{ x }[122X.[133X
[1X33.2-5 IsPreOrderBinaryRelation[101X
[29X[2XIsPreOrderBinaryRelation[102X( [3Xrel[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3Xrel[103X is a preorder, and [9Xfalse[109X otherwise.[133X
[33X[0;0YA [13Xpreorder[113X is a binary relation that is both reflexive and transitive.[133X
[1X33.2-6 IsPartialOrderBinaryRelation[101X
[29X[2XIsPartialOrderBinaryRelation[102X( [3Xrel[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3Xrel[103X is a partial order, and [9Xfalse[109X
otherwise.[133X
[33X[0;0YA [13Xpartial order[113X is a preorder which is also antisymmetric.[133X
[1X33.2-7 IsHasseDiagram[101X
[29X[2XIsHasseDiagram[102X( [3Xrel[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3Xrel[103X is a Hasse Diagram of a partial
order, i.e., was computed via [2XHasseDiagramBinaryRelation[102X ([14X33.4-4[114X).[133X
[1X33.2-8 IsEquivalenceRelation[101X
[29X[2XIsEquivalenceRelation[102X( [3XR[103X ) [32X property
[33X[0;0Yreturns [9Xtrue[109X if the binary relation [3XR[103X is an equivalence relation, and [9Xfalse[109X
otherwise.[133X
[33X[0;0YRecall, that a relation [3XR[103X is an [13Xequivalence relation[113X if it is symmetric,
transitive, and reflexive.[133X
[1X33.2-9 Successors[101X
[29X[2XSuccessors[102X( [3XR[103X ) [32X attribute
[33X[0;0Yreturns the list of images of a binary relation [3XR[103X. If the underlying domain
of the relation is not [22X{ 1, ..., n }[122X, for some positive integer [22Xn[122X, then an
error is signalled.[133X
[33X[0;0YThe returned value of [2XSuccessors[102X is a list of lists where the lists are
ordered as the elements according to the sorted order of the underlying set
of [3XR[103X. Each list consists of the images of the element whose index is the
same as the list with the underlying set in sorted order.[133X
[33X[0;0YThe [2XSuccessors[102X of a relation is the adjacency list representation of the
relation.[133X
[1X33.2-10 DegreeOfBinaryRelation[101X
[29X[2XDegreeOfBinaryRelation[102X( [3XR[103X ) [32X attribute
[33X[0;0Yreturns the size of the underlying domain of the binary relation [3XR[103X. This is
most natural when working with a binary relation on points.[133X
[1X33.2-11 PartialOrderOfHasseDiagram[101X
[29X[2XPartialOrderOfHasseDiagram[102X( [3XHD[103X ) [32X attribute
[33X[0;0Yis the partial order associated with the Hasse Diagram [3XHD[103X i.e. the partial
order generated by the reflexive and transitive closure of [3XHD[103X.[133X
[1X33.3 [33X[0;0YBinary Relations on Points[133X[101X
[33X[0;0YWe have special construction methods when the underlying [3XX[103X of our relation
is the set of integers [22X{ 1, ..., n }[122X.[133X
[1X33.3-1 BinaryRelationOnPoints[101X
[29X[2XBinaryRelationOnPoints[102X( [3Xlist[103X ) [32X function
[29X[2XBinaryRelationOnPointsNC[102X( [3Xlist[103X ) [32X function
[33X[0;0YGiven a list of [22Xn[122X lists, each containing elements from the set [22X{ 1, ..., n
}[122X, this function constructs a binary relation such that [22X1[122X is related to
[3Xlist[103X[10X[1][110X, [22X2[122X to [3Xlist[103X[10X[2][110X and so on. The first version checks whether the list
supplied is valid. The the [10XNC[110X version skips this check.[133X
[1X33.3-2 RandomBinaryRelationOnPoints[101X
[29X[2XRandomBinaryRelationOnPoints[102X( [3Xdegree[103X ) [32X function
[33X[0;0Ycreates a relation on points with degree [3Xdegree[103X.[133X
[1X33.3-3 [33X[0;0YAsBinaryRelationOnPoints[133X[101X
[29X[2XAsBinaryRelationOnPoints[102X( [3Xtrans[103X ) [32X function
[29X[2XAsBinaryRelationOnPoints[102X( [3Xperm[103X ) [32X function
[29X[2XAsBinaryRelationOnPoints[102X( [3Xrel[103X ) [32X function
[33X[0;0Yreturn the relation on points represented by general relation [3Xrel[103X,
transformation [3Xtrans[103X or permutation [3Xperm[103X. If [3Xrel[103X is already a binary
relation on points then [3Xrel[103X is returned.[133X
[33X[0;0YTransformations and permutations are special general endomorphic mappings
and have a natural representation as a binary relation on points.[133X
[33X[0;0YIn the last form, an isomorphic relation on points is constructed where the
points are indices of the elements of the underlying domain in sorted order.[133X
[1X33.4 [33X[0;0YClosure Operations and Other Constructors[133X[101X
[1X33.4-1 ReflexiveClosureBinaryRelation[101X
[29X[2XReflexiveClosureBinaryRelation[102X( [3XR[103X ) [32X operation
[33X[0;0Yis the smallest binary relation containing the binary relation [3XR[103X which is
reflexive. This closure inherits the properties symmetric and transitive
from [3XR[103X. E.g., if [3XR[103X is symmetric then its reflexive closure is also.[133X
[1X33.4-2 SymmetricClosureBinaryRelation[101X
[29X[2XSymmetricClosureBinaryRelation[102X( [3XR[103X ) [32X operation
[33X[0;0Yis the smallest binary relation containing the binary relation [3XR[103X which is
symmetric. This closure inherits the properties reflexive and transitive
from [3XR[103X. E.g., if [3XR[103X is reflexive then its symmetric closure is also.[133X
[1X33.4-3 TransitiveClosureBinaryRelation[101X
[29X[2XTransitiveClosureBinaryRelation[102X( [3Xrel[103X ) [32X operation
[33X[0;0Yis the smallest binary relation containing the binary relation [3XR[103X which is
transitive. This closure inherits the properties reflexive and symmetric
from [3XR[103X. E.g., if [3XR[103X is symmetric then its transitive closure is also.[133X
[33X[0;0Y[2XTransitiveClosureBinaryRelation[102X is a modified version of the Floyd-Warshall
method of solving the all-pairs shortest-paths problem on a directed graph.
Its asymptotic runtime is [22XO(n^3)[122X where [22Xn[122X is the size of the vertex set. It
only assumes there is an arbitrary (but fixed) ordering of the vertex set.[133X
[1X33.4-4 HasseDiagramBinaryRelation[101X
[29X[2XHasseDiagramBinaryRelation[102X( [3Xpartial-order[103X ) [32X operation
[33X[0;0Yis the smallest relation contained in the partial order [3Xpartial-order[103X whose
reflexive and transitive closure is equal to [3Xpartial-order[103X.[133X
[1X33.4-5 StronglyConnectedComponents[101X
[29X[2XStronglyConnectedComponents[102X( [3XR[103X ) [32X operation
[33X[0;0Yreturns an equivalence relation on the vertices of the binary relation [3XR[103X.[133X
[1X33.4-6 PartialOrderByOrderingFunction[101X
[29X[2XPartialOrderByOrderingFunction[102X( [3Xdom[103X, [3Xorderfunc[103X ) [32X function
[33X[0;0Yconstructs a partial order whose elements are from the domain [3Xdom[103X and are
ordered using the ordering function [3Xorderfunc[103X. The ordering function must be
a binary function returning a boolean value. If the ordering function does
not describe a partial order then [9Xfail[109X is returned.[133X
[1X33.5 [33X[0;0YEquivalence Relations[133X[101X
[33X[0;0YAn [13Xequivalence relation[113X [3XE[103X over the set [3XX[103X is a relation on [3XX[103X which is
reflexive, symmetric, and transitive. A [13Xpartition[113X [3XP[103X is a set of subsets of [3XX[103X
such that for all [22XR, S ∈ P[122X, [22XR ∩ S[122X is the empty set and [22X∪ P = X[122X. An
equivalence relation induces a partition such that if [22X(x,y) ∈ E[122X then [22Xx, y[122X
are in the same element of [3XP[103X.[133X
[33X[0;0YLike all binary relations in [5XGAP[105X equivalence relations are regarded as
general endomorphic mappings (and the operations, properties and attributes
of general mappings are available). However, partitions provide an efficient
way of representing equivalence relations. Moreover, only the non-singleton
classes or blocks are listed allowing for small equivalence relations to be
represented on infinite sets. Hence the main attribute of equivalence
relations is [2XEquivalenceRelationPartition[102X ([14X33.6-1[114X) which provides the
partition induced by the given equivalence.[133X
[1X33.5-1 EquivalenceRelationByPartition[101X
[29X[2XEquivalenceRelationByPartition[102X( [3Xdomain[103X, [3Xlist[103X ) [32X function
[29X[2XEquivalenceRelationByPartitionNC[102X( [3Xdomain[103X, [3Xlist[103X ) [32X function
[33X[0;0Yconstructs the equivalence relation over the set [3Xdomain[103X which induces the
partition represented by [3Xlist[103X. This representation includes only the
non-trivial blocks (or equivalent classes). [3Xlist[103X is a list of lists, each of
these lists contain elements of [3Xdomain[103X and are pairwise mutually exclusive.[133X
[33X[0;0YThe list of lists do not need to be in any order nor do the elements in the
blocks (see [2XEquivalenceRelationPartition[102X ([14X33.6-1[114X)). a list of elements of
[3Xdomain[103X The partition [3Xlist[103X is a list of lists, each of these is a list of
elements of [3Xdomain[103X that makes up a block (or equivalent class). The [3Xdomain[103X
is the domain over which the relation is defined, and [3Xlist[103X is a list of
lists, each of these is a list of elements of [3Xdomain[103X which are related to
each other. [3Xlist[103X need only contain the nontrivial blocks and singletons will
be ignored. The [10XNC[110X version will not check to see if the lists are pairwise
mutually exclusive or that they contain only elements of the domain.[133X
[1X33.5-2 EquivalenceRelationByRelation[101X
[29X[2XEquivalenceRelationByRelation[102X( [3Xrel[103X ) [32X function
[33X[0;0Yreturns the smallest equivalence relation containing the binary relation
[3Xrel[103X.[133X
[1X33.5-3 EquivalenceRelationByPairs[101X
[29X[2XEquivalenceRelationByPairs[102X( [3XD[103X, [3Xelms[103X ) [32X function
[29X[2XEquivalenceRelationByPairsNC[102X( [3XD[103X, [3Xelms[103X ) [32X function
[33X[0;0Yreturn the smallest equivalence relation on the domain [3XD[103X such that every
pair in [3Xelms[103X is in the relation.[133X
[33X[0;0YIn the [10XNC[110X form, it is not checked that [3Xelms[103X are in the domain [3XD[103X.[133X
[1X33.5-4 EquivalenceRelationByProperty[101X
[29X[2XEquivalenceRelationByProperty[102X( [3Xdomain[103X, [3Xproperty[103X ) [32X function
[33X[0;0Ycreates an equivalence relation on [3Xdomain[103X whose only defining datum is that
of having the property [3Xproperty[103X.[133X
[1X33.6 [33X[0;0YAttributes of and Operations on Equivalence Relations[133X[101X
[1X33.6-1 EquivalenceRelationPartition[101X
[29X[2XEquivalenceRelationPartition[102X( [3Xequiv[103X ) [32X attribute
[33X[0;0Yreturns a list of lists of elements of the underlying set of the equivalence
relation [3Xequiv[103X. The lists are precisely the nonsingleton equivalence classes
of the equivalence. This allows us to describe [21Xsmall[121X equivalences on
infinite sets.[133X
[1X33.6-2 GeneratorsOfEquivalenceRelationPartition[101X
[29X[2XGeneratorsOfEquivalenceRelationPartition[102X( [3Xequiv[103X ) [32X attribute
[33X[0;0Yis a set of generating pairs for the equivalence relation [3Xequiv[103X. This set is
not unique. The equivalence [3Xequiv[103X is the smallest equivalence relation over
the underlying set which contains the generating pairs.[133X
[1X33.6-3 JoinEquivalenceRelations[101X
[29X[2XJoinEquivalenceRelations[102X( [3Xequiv1[103X, [3Xequiv2[103X ) [32X operation
[29X[2XMeetEquivalenceRelations[102X( [3Xequiv1[103X, [3Xequiv2[103X ) [32X operation
[33X[0;0Y[2XJoinEquivalenceRelations[102X returns the smallest equivalence relation
containing both the equivalence relations [3Xequiv1[103X and [3Xequiv2[103X.[133X
[33X[0;0Y[2XMeetEquivalenceRelations[102X returns the intersection of the two equivalence
relations [3Xequiv1[103X and [3Xequiv2[103X.[133X
[1X33.7 [33X[0;0YEquivalence Classes[133X[101X
[1X33.7-1 IsEquivalenceClass[101X
[29X[2XIsEquivalenceClass[102X( [3Xobj[103X ) [32X Category
[33X[0;0Yreturns [9Xtrue[109X if the object [3Xobj[103X is an equivalence class, and [9Xfalse[109X otherwise.[133X
[33X[0;0YAn [13Xequivalence class[113X is a collection of elements which are mutually related
to each other in the associated equivalence relation. Note, this is a
special category of objects and not just a list of elements.[133X
[1X33.7-2 EquivalenceClassRelation[101X
[29X[2XEquivalenceClassRelation[102X( [3XC[103X ) [32X attribute
[33X[0;0Yreturns the equivalence relation of which [3XC[103X is a class.[133X
[1X33.7-3 EquivalenceClasses[101X
[29X[2XEquivalenceClasses[102X( [3Xrel[103X ) [32X attribute
[33X[0;0Yreturns a list of all equivalence classes of the equivalence relation [3Xrel[103X.
Note that it is possible for different methods to yield the list in
different orders, so that for two equivalence relations [22Xc1[122X and [22Xc2[122X we may
have [22Xc1 = c2[122X without having [10XEquivalenceClasses[110X[22X( c1 ) =[122X[10XEquivalenceClasses[110X[22X( c2
)[122X.[133X
[1X33.7-4 EquivalenceClassOfElement[101X
[29X[2XEquivalenceClassOfElement[102X( [3Xrel[103X, [3Xelt[103X ) [32X operation
[29X[2XEquivalenceClassOfElementNC[102X( [3Xrel[103X, [3Xelt[103X ) [32X operation
[33X[0;0Yreturn the equivalence class of [3Xelt[103X in the binary relation [3Xrel[103X, where [3Xelt[103X is
an element (i.e. a pair) of the domain of [3Xrel[103X. In the [10XNC[110X form, it is not
checked that [3Xelt[103X is in the domain over which [3Xrel[103X is defined.[133X
|