/usr/share/gap/doc/ref/chap36.txt is in gap-online-help 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
[1X36 [33X[0;0YWords[133X[101X
[33X[0;0YThis chapter describes categories of [13Xwords[113X and [13Xnonassociative words[113X, and
operations for them. For information about [13Xassociative words[113X, which occur
for example as elements in free groups, see ChapterĀ [14X37[114X.[133X
[1X36.1 [33X[0;0YCategories of Words and Nonassociative Words[133X[101X
[1X36.1-1 IsWord[101X
[29X[2XIsWord[102X( [3Xobj[103X ) [32X Category
[29X[2XIsWordWithOne[102X( [3Xobj[103X ) [32X Category
[29X[2XIsWordWithInverse[102X( [3Xobj[103X ) [32X Category
[33X[0;0YGiven a free multiplicative structure [22XM[122X that is freely generated by a subset
[22XX[122X, any expression of an element in [22XM[122X as an iterated product of elements in [22XX[122X
is called a [13Xword[113X over [22XX[122X.[133X
[33X[0;0YInteresting cases of free multiplicative structures are those of free
semigroups, free monoids, and free groups, where the multiplication is
associative (seeĀ [2XIsAssociative[102X ([14X35.4-7[114X)), which are described in ChapterĀ [14X37[114X,
and also the case of free magmas, where the multiplication is nonassociative
(seeĀ [2XIsNonassocWord[102X ([14X36.1-3[114X)).[133X
[33X[0;0YElements in free magmas (seeĀ [2XFreeMagma[102X ([14X36.4-1[114X)) lie in the category [2XIsWord[102X;
similarly, elements in free magmas-with-one (seeĀ [2XFreeMagmaWithOne[102X ([14X36.4-2[114X))
lie in the category [2XIsWordWithOne[102X, and so on.[133X
[33X[0;0Y[2XIsWord[102X is mainly a [21Xcommon roof[121X for the two [13Xdisjoint[113X categories [2XIsAssocWord[102X
([14X37.1-1[114X) and [2XIsNonassocWord[102X ([14X36.1-3[114X) of associative and nonassociative
words. This means that associative words are [13Xnot[113X regarded as special cases
of nonassociative words. The main reason for this setup is that we are
interested in different external representations for associative and
nonassociative words (seeĀ [14X36.5[114X and [14X37.7[114X).[133X
[33X[0;0YNote that elements in finitely presented groups and also elements in
polycyclic groups in [5XGAP[105X are [13Xnot[113X in [2XIsWord[102X although they are usually called
words, see ChaptersĀ [14X47[114X andĀ [14X46[114X.[133X
[33X[0;0YWords are [13Xconstants[113X (seeĀ [14X12.6[114X), that is, they are not copyable and not
mutable.[133X
[33X[0;0YThe usual way to create words is to form them as products of known words,
starting from [13Xgenerators[113X of a free structure such as a free magma or a free
group (seeĀ [2XFreeMagma[102X ([14X36.4-1[114X), [2XFreeGroup[102X ([14X37.2-1[114X)).[133X
[33X[0;0YWords are also used to implement free algebras, in the same way as group
elements are used to implement group algebras (seeĀ [14X62.3[114X and ChapterĀ [14X65[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:= FreeMagmaWithOne( 2 );; gens:= GeneratorsOfMagmaWithOne( m );[127X[104X
[4X[28X[ x1, x2 ][128X[104X
[4X[25Xgap>[125X [27Xw1:= gens[1] * gens[2] * gens[1];[127X[104X
[4X[28X((x1*x2)*x1)[128X[104X
[4X[25Xgap>[125X [27Xw2:= gens[1] * ( gens[2] * gens[1] );[127X[104X
[4X[28X(x1*(x2*x1))[128X[104X
[4X[25Xgap>[125X [27Xw1 = w2; IsAssociative( m );[127X[104X
[4X[28Xfalse[128X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XIsWord( w1 ); IsAssocWord( w1 ); IsNonassocWord( w1 );[127X[104X
[4X[28Xtrue[128X[104X
[4X[28Xfalse[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xs:= FreeMonoid( 2 );; gens:= GeneratorsOfMagmaWithOne( s );[127X[104X
[4X[28X[ m1, m2 ][128X[104X
[4X[25Xgap>[125X [27Xu1:= ( gens[1] * gens[2] ) * gens[1];[127X[104X
[4X[28Xm1*m2*m1[128X[104X
[4X[25Xgap>[125X [27Xu2:= gens[1] * ( gens[2] * gens[1] );[127X[104X
[4X[28Xm1*m2*m1[128X[104X
[4X[25Xgap>[125X [27Xu1 = u2; IsAssociative( s );[127X[104X
[4X[28Xtrue[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsWord( u1 ); IsAssocWord( u1 ); IsNonassocWord( u1 );[127X[104X
[4X[28Xtrue[128X[104X
[4X[28Xtrue[128X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xa:= (1,2,3);; b:= (1,2);;[127X[104X
[4X[25Xgap>[125X [27Xw:= a*b*a;; IsWord( w );[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X36.1-2 IsWordCollection[101X
[29X[2XIsWordCollection[102X( [3Xobj[103X ) [32X Category
[33X[0;0Y[2XIsWordCollection[102X is the collections category (seeĀ [2XCategoryCollections[102X
([14X30.2-4[114X)) of [2XIsWord[102X ([14X36.1-1[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIsWordCollection( m ); IsWordCollection( s );[127X[104X
[4X[28Xtrue[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsWordCollection( [ "a", "b" ] );[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X36.1-3 IsNonassocWord[101X
[29X[2XIsNonassocWord[102X( [3Xobj[103X ) [32X Category
[29X[2XIsNonassocWordWithOne[102X( [3Xobj[103X ) [32X Category
[33X[0;0YA [13Xnonassociative word[113X in [5XGAP[105X is an element in a free magma or a free
magma-with-one (seeĀ [14X36.4[114X).[133X
[33X[0;0YThe default methods for [2XViewObj[102X ([14X6.3-5[114X) and [2XPrintObj[102X ([14X6.3-5[114X) show
nonassociative words as products of letters, where the succession of
multiplications is determined by round brackets.[133X
[33X[0;0YIn this sense each nonassociative word describes a [21Xprogram[121X to form a product
of generators. (Also associative words can be interpreted as such programs,
except that the exact succession of multiplications is not prescribed due to
the associativity.) The function [2XMappedWord[102X ([14X36.3-1[114X) implements a way to
apply such a program. A more general way is provided by straight line
programs (seeĀ [14X37.8[114X).[133X
[33X[0;0YNote that associative words (see ChapterĀ [14X37[114X) are [13Xnot[113X regarded as special
cases of nonassociative words (seeĀ [2XIsWord[102X ([14X36.1-1[114X)).[133X
[1X36.1-4 IsNonassocWordCollection[101X
[29X[2XIsNonassocWordCollection[102X( [3Xobj[103X ) [32X Category
[29X[2XIsNonassocWordWithOneCollection[102X( [3Xobj[103X ) [32X Category
[33X[0;0Y[2XIsNonassocWordCollection[102X is the collections category
(seeĀ [2XCategoryCollections[102X ([14X30.2-4[114X)) of [2XIsNonassocWord[102X ([14X36.1-3[114X), and
[2XIsNonassocWordWithOneCollection[102X is the collections category of
[2XIsNonassocWordWithOne[102X ([14X36.1-3[114X).[133X
[1X36.2 [33X[0;0YComparison of Words[133X[101X
[1X36.2-1 \=[101X
[29X[2X\=[102X( [3Xw1[103X, [3Xw2[103X ) [32X function
[33X[0;0YTwo words are equal if and only if they are words over the same alphabet and
with equal external representations (seeĀ [14X36.5[114X and [14X37.7[114X). For nonassociative
words, the latter means that the words arise from the letters of the
alphabet by the same sequence of multiplications.[133X
[1X36.2-2 \<[101X
[29X[2X\<[102X( [3Xw1[103X, [3Xw2[103X ) [32X function
[33X[0;0YWords are ordered according to their external representation. More
precisely, two words can be compared if they are words over the same
alphabet, and the word with smaller external representation is smaller. For
nonassociative words, the ordering is defined inĀ [14X36.5[114X; associative words are
ordered by the shortlex ordering via [10X<[110X (seeĀ [14X37.7[114X).[133X
[33X[0;0YNote that the alphabet of a word is determined by its family (seeĀ [14X13.1[114X), and
that the result of each call to [2XFreeMagma[102X ([14X36.4-1[114X), [2XFreeGroup[102X ([14X37.2-1[114X) etc.
consists of words over a new alphabet. In particular, there is no [21Xuniversal[121X
empty word, every families of words in [2XIsWordWithOne[102X ([14X36.1-1[114X) has its own
empty word.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:= FreeMagma( "a", "b" );;[127X[104X
[4X[25Xgap>[125X [27Xx:= FreeMagma( "a", "b" );;[127X[104X
[4X[25Xgap>[125X [27Xmgens:= GeneratorsOfMagma( m );[127X[104X
[4X[28X[ a, b ][128X[104X
[4X[25Xgap>[125X [27Xxgens:= GeneratorsOfMagma( x );[127X[104X
[4X[28X[ a, b ][128X[104X
[4X[25Xgap>[125X [27Xa:= mgens[1];; b:= mgens[2];;[127X[104X
[4X[25Xgap>[125X [27Xa = xgens[1];[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xa*(a*a) = (a*a)*a; a*b = b*a; a*a = a*a;[127X[104X
[4X[28Xfalse[128X[104X
[4X[28Xfalse[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xa < b; b < a; a < a*b;[127X[104X
[4X[28Xtrue[128X[104X
[4X[28Xfalse[128X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X36.3 [33X[0;0YOperations for Words[133X[101X
[33X[0;0YTwo words can be multiplied via [10X*[110X only if they are words over the same
alphabet (seeĀ [14X36.2[114X).[133X
[1X36.3-1 MappedWord[101X
[29X[2XMappedWord[102X( [3Xw[103X, [3Xgens[103X, [3Ximgs[103X ) [32X operation
[33X[0;0Y[2XMappedWord[102X returns the object that is obtained by replacing each occurrence
in the word [3Xw[103X of a generator in the list [3Xgens[103X by the corresponding object in
the list [3Ximgs[103X. The lists [3Xgens[103X and [3Ximgs[103X must of course have the same length.[133X
[33X[0;0Y[2XMappedWord[102X needs to do some preprocessing to get internal generator numbers
etc. When mapping many (several thousand) words, an explicit loop over the
words syllables might be faster.[133X
[33X[0;0YFor example, if the elements in [3Ximgs[103X are all [13Xassociative words[113X (see
ChapterĀ [14X37[114X) in the same family as the elements in [3Xgens[103X, and some of them are
equal to the corresponding generators in [3Xgens[103X, then those may be omitted
from [3Xgens[103X and [3Ximgs[103X. In this situation, the special case that the lists [3Xgens[103X
and [3Ximgs[103X have only length [22X1[122X is handled more efficiently by [2XEliminatedWord[102X
([14X37.4-6[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:= FreeMagma( "a", "b" );; gens:= GeneratorsOfMagma( m );;[127X[104X
[4X[25Xgap>[125X [27Xa:= gens[1]; b:= gens[2];[127X[104X
[4X[28Xa[128X[104X
[4X[28Xb[128X[104X
[4X[25Xgap>[125X [27Xw:= (a*b)*((b*a)*a)*b;[127X[104X
[4X[28X(((a*b)*((b*a)*a))*b)[128X[104X
[4X[25Xgap>[125X [27XMappedWord( w, gens, [ (1,2), (1,2,3,4) ] );[127X[104X
[4X[28X(2,4,3)[128X[104X
[4X[25Xgap>[125X [27Xa:= (1,2);; b:= (1,2,3,4);; (a*b)*((b*a)*a)*b;[127X[104X
[4X[28X(2,4,3)[128X[104X
[4X[25Xgap>[125X [27Xf:= FreeGroup( "a", "b" );;[127X[104X
[4X[25Xgap>[125X [27Xa:= GeneratorsOfGroup(f)[1];; b:= GeneratorsOfGroup(f)[2];;[127X[104X
[4X[25Xgap>[125X [27Xw:= a^5*b*a^2/b^4*a;[127X[104X
[4X[28Xa^5*b*a^2*b^-4*a[128X[104X
[4X[25Xgap>[125X [27XMappedWord( w, [ a, b ], [ (1,2), (1,2,3,4) ] );[127X[104X
[4X[28X(1,3,4,2)[128X[104X
[4X[25Xgap>[125X [27X(1,2)^5*(1,2,3,4)*(1,2)^2/(1,2,3,4)^4*(1,2);[127X[104X
[4X[28X(1,3,4,2)[128X[104X
[4X[25Xgap>[125X [27XMappedWord( w, [ a ], [ a^2 ] );[127X[104X
[4X[28Xa^10*b*a^4*b^-4*a^2[128X[104X
[4X[32X[104X
[1X36.4 [33X[0;0YFree Magmas[133X[101X
[33X[0;0YThe easiest way to create a family of words is to construct the free object
generated by these words. Each such free object defines a unique alphabet,
and its generators are simply the words of length one over this alphabet;
These generators can be accessed via [2XGeneratorsOfMagma[102X ([14X35.4-1[114X) in the case
of a free magma, and via [2XGeneratorsOfMagmaWithOne[102X ([14X35.4-2[114X) in the case of a
free magma-with-one.[133X
[1X36.4-1 [33X[0;0YFreeMagma[133X[101X
[29X[2XFreeMagma[102X( [3Xrank[103X[, [3Xname[103X] ) [32X function
[29X[2XFreeMagma[102X( [3Xname1[103X, [3Xname2[103X, [3X...[103X ) [32X function
[29X[2XFreeMagma[102X( [3Xnames[103X ) [32X function
[29X[2XFreeMagma[102X( [3Xinfinity[103X, [3Xname[103X, [3Xinit[103X ) [32X function
[33X[0;0YCalled with a positive integer [3Xrank[103X, [2XFreeMagma[102X returns a free magma on [3Xrank[103X
generators. If the optional argument [3Xname[103X is given then the generators are
printed as [3Xname[103X[10X1[110X, [3Xname[103X[10X2[110X etc., that is, each name is the concatenation of the
string [3Xname[103X and an integer from [10X1[110X to [3Xrange[103X. The default for [3Xname[103X is the
string [10X"m"[110X.[133X
[33X[0;0YCalled in the second form, [2XFreeMagma[102X returns a free magma on as many
generators as arguments, printed as [3Xname1[103X, [3Xname2[103X etc.[133X
[33X[0;0YCalled in the third form, [2XFreeMagma[102X returns a free magma on as many
generators as the length of the list [3Xnames[103X, the [22Xi[122X-th generator being printed
as [3Xnames[103X[10X[[110X[22Xi[122X[10X][110X.[133X
[33X[0;0YCalled in the fourth form, [2XFreeMagma[102X returns a free magma on infinitely many
generators, where the first generators are printed by the names in the list
[3Xinit[103X, and the other generators by [3Xname[103X and an appended number.[133X
[1X36.4-2 [33X[0;0YFreeMagmaWithOne[133X[101X
[29X[2XFreeMagmaWithOne[102X( [3Xrank[103X[, [3Xname[103X] ) [32X function
[29X[2XFreeMagmaWithOne[102X( [3Xname1[103X, [3Xname2[103X, [3X...[103X ) [32X function
[29X[2XFreeMagmaWithOne[102X( [3Xnames[103X ) [32X function
[29X[2XFreeMagmaWithOne[102X( [3Xinfinity[103X, [3Xname[103X, [3Xinit[103X ) [32X function
[33X[0;0YCalled with a positive integer [3Xrank[103X, [2XFreeMagmaWithOne[102X returns a free
magma-with-one on [3Xrank[103X generators. If the optional argument [3Xname[103X is given
then the generators are printed as [3Xname[103X[10X1[110X, [3Xname[103X[10X2[110X etc., that is, each name is
the concatenation of the string [3Xname[103X and an integer from [10X1[110X to [3Xrange[103X. The
default for [3Xname[103X is the string [10X"m"[110X.[133X
[33X[0;0YCalled in the second form, [2XFreeMagmaWithOne[102X returns a free magma-with-one on
as many generators as arguments, printed as [3Xname1[103X, [3Xname2[103X etc.[133X
[33X[0;0YCalled in the third form, [2XFreeMagmaWithOne[102X returns a free magma-with-one on
as many generators as the length of the list [3Xnames[103X, the [22Xi[122X-th generator being
printed as [3Xnames[103X[10X[[110X[22Xi[122X[10X][110X.[133X
[33X[0;0YCalled in the fourth form, [2XFreeMagmaWithOne[102X returns a free magma-with-one on
infinitely many generators, where the first generators are printed by the
names in the list [3Xinit[103X, and the other generators by [3Xname[103X and an appended
number.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XFreeMagma( 3 );[127X[104X
[4X[28X<free magma on the generators [ x1, x2, x3 ]>[128X[104X
[4X[25Xgap>[125X [27XFreeMagma( "a", "b" );[127X[104X
[4X[28X<free magma on the generators [ a, b ]>[128X[104X
[4X[25Xgap>[125X [27XFreeMagma( infinity );[127X[104X
[4X[28X<free magma with infinity generators>[128X[104X
[4X[25Xgap>[125X [27XFreeMagmaWithOne( 3 );[127X[104X
[4X[28X<free magma-with-one on the generators [ x1, x2, x3 ]>[128X[104X
[4X[25Xgap>[125X [27XFreeMagmaWithOne( "a", "b" );[127X[104X
[4X[28X<free magma-with-one on the generators [ a, b ]>[128X[104X
[4X[25Xgap>[125X [27XFreeMagmaWithOne( infinity );[127X[104X
[4X[28X<free magma-with-one with infinity generators>[128X[104X
[4X[32X[104X
[33X[0;0YRemember that the names of generators used for printing do not necessarily
distinguish letters of the alphabet; so it is possible to create arbitrarily
weird situations by choosing strange letter names.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:= FreeMagma( "x", "x" ); gens:= GeneratorsOfMagma( m );;[127X[104X
[4X[28X<free magma on the generators [ x, x ]>[128X[104X
[4X[25Xgap>[125X [27Xgens[1] = gens[2];[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X36.5 [33X[0;0YExternal Representation for Nonassociative Words[133X[101X
[33X[0;0YThe external representation of nonassociative words is defined as follows.
The [22Xi[122X-th generator of the family of elements in question has external
representation [22Xi[122X, the identity (if exists) has external representation [22X0[122X,
the inverse of the [22Xi[122X-th generator (if exists) has external representation
[22X-i[122X. If [22Xv[122X and [22Xw[122X are nonassociative words with external representations [22Xe_v[122X
and [22Xe_w[122X, respectively then the product [22Xv * w[122X has external representation [22X[
e_v, e_w ][122X. So the external representation of any nonassociative word is
either an integer or a nested list of integers and lists, where each list
has length two.[133X
[33X[0;0YOne can create a nonassociative word from a family of words and the external
representation of a nonassociative word using [2XObjByExtRep[102X ([14X79.16-1[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:= FreeMagma( 2 );; gens:= GeneratorsOfMagma( m );[127X[104X
[4X[28X[ x1, x2 ][128X[104X
[4X[25Xgap>[125X [27Xw:= ( gens[1] * gens[2] ) * gens[1];[127X[104X
[4X[28X((x1*x2)*x1)[128X[104X
[4X[25Xgap>[125X [27XExtRepOfObj( w ); ExtRepOfObj( gens[1] );[127X[104X
[4X[28X[ [ 1, 2 ], 1 ][128X[104X
[4X[28X1[128X[104X
[4X[25Xgap>[125X [27X ExtRepOfObj( w*w );[127X[104X
[4X[28X[ [ [ 1, 2 ], 1 ], [ [ 1, 2 ], 1 ] ][128X[104X
[4X[25Xgap>[125X [27XObjByExtRep( FamilyObj( w ), 2 );[127X[104X
[4X[28Xx2[128X[104X
[4X[25Xgap>[125X [27XObjByExtRep( FamilyObj( w ), [ 1, [ 2, 1 ] ] );[127X[104X
[4X[28X(x1*(x2*x1))[128X[104X
[4X[32X[104X
|