/usr/share/gap/doc/ref/chap68.txt is in gap-online-help 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
[1X68 [33X[0;0Yp-adic Numbers (preliminary)[133X[101X
[33X[0;0YIn this chapter [22Xp[122X is always a (fixed) prime integer.[133X
[33X[0;0YThe [22Xp[122X-adic numbers [22XQ_p[122X are the completion of the rational numbers with
respect to the valuation [22Xν_p( p^v ⋅ a / b) = v[122X if [22Xp[122X divides neither [22Xa[122X nor [22Xb[122X.
They form a field of characteristic 0 which nevertheless shows some
behaviour of the finite field with [22Xp[122X elements.[133X
[33X[0;0YA [22Xp[122X-adic numbers can be represented by a [21X[22Xp[122X-adic expansion[121X which is similar
to the decimal expansion used for the reals (but written from left to
right). So for example if [22Xp = 2[122X, the numbers [22X1[122X, [22X2[122X, [22X3[122X, [22X4[122X, [22X1/2[122X, and [22X4/5[122X are
represented as [22X1(2)[122X, [22X0.1(2)[122X, [22X1.1(2)[122X, [22X0.01(2)[122X, [22X10(2)[122X, and the infinite
periodic expansion [22X0.010110011001100...(2)[122X. [22Xp[122X-adic numbers can be
approximated by ignoring higher powers of [22Xp[122X, so for example with only 2
digits accuracy [22X4/5[122X would be approximated as [22X0.01(2)[122X. This is different from
the decimal approximation of real numbers in that [22Xp[122X-adic approximation is a
ring homomorphism on the subrings of [22Xp[122X-adic numbers whose valuation is
bounded from below so that rounding errors do not increase with repeated
calculations.[133X
[33X[0;0YIn [5XGAP[105X, [22Xp[122X-adic numbers are always represented by such approximations. A
family of approximated [22Xp[122X-adic numbers consists of [22Xp[122X-adic numbers with a
fixed prime [22Xp[122X and a certain precision, and arithmetic with these numbers is
done with this precision.[133X
[1X68.1 [33X[0;0YPure p-adic Numbers[133X[101X
[33X[0;0YPure [22Xp[122X-adic numbers are the [22Xp[122X-adic numbers described so far.[133X
[1X68.1-1 PurePadicNumberFamily[101X
[29X[2XPurePadicNumberFamily[102X( [3Xp[103X, [3Xprecision[103X ) [32X operation
[33X[0;0Yreturns the family of pure [22Xp[122X-adic numbers over the prime [3Xp[103X with [3Xprecision[103X
[21Xdigits[121X. That is to say, the approximate value will differ from the correct
value by a multiple of [22Xp^digits[122X.[133X
[1X68.1-2 PadicNumber[101X
[29X[2XPadicNumber[102X( [3Xfam[103X, [3Xrat[103X ) [32X function
[33X[0;0Yreturns the element of the [22Xp[122X-adic number family [3Xfam[103X that approximates the
rational number [3Xrat[103X.[133X
[33X[0;0Y[22Xp[122X-adic numbers allow the usual operations for fields.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xfam:=PurePadicNumberFamily(2,20);;[127X[104X
[4X[25Xgap>[125X [27Xa:=PadicNumber(fam,4/5);[127X[104X
[4X[28X0.010110011001100110011(2)[128X[104X
[4X[25Xgap>[125X [27Xfam:=PurePadicNumberFamily(2,3);;[127X[104X
[4X[25Xgap>[125X [27Xa:=PadicNumber(fam,4/5);[127X[104X
[4X[28X0.0101(2)[128X[104X
[4X[25Xgap>[125X [27X3*a;[127X[104X
[4X[28X0.0111(2)[128X[104X
[4X[25Xgap>[125X [27Xa/2;[127X[104X
[4X[28X0.101(2)[128X[104X
[4X[25Xgap>[125X [27Xa*10;[127X[104X
[4X[28X0.001(2)[128X[104X
[4X[32X[104X
[33X[0;0YSee [2XPadicNumber[102X ([14X68.2-2[114X) for other methods for [2XPadicNumber[102X.[133X
[1X68.1-3 Valuation[101X
[29X[2XValuation[102X( [3Xobj[103X ) [32X operation
[33X[0;0YThe valuation is the [22Xp[122X-part of the [22Xp[122X-adic number.[133X
[1X68.1-4 ShiftedPadicNumber[101X
[29X[2XShiftedPadicNumber[102X( [3Xpadic[103X, [3Xint[103X ) [32X operation
[33X[0;0Y[2XShiftedPadicNumber[102X takes a [22Xp[122X-adic number [3Xpadic[103X and an integer [3Xshift[103X and
returns the [22Xp[122X-adic number [22Xc[122X, that is [3Xpadic[103X [10X*[110X [22Xp[122X[10X^[110X[3Xshift[103X.[133X
[1X68.1-5 IsPurePadicNumber[101X
[29X[2XIsPurePadicNumber[102X( [3Xobj[103X ) [32X Category
[33X[0;0YThe category of pure [22Xp[122X-adic numbers.[133X
[1X68.1-6 IsPurePadicNumberFamily[101X
[29X[2XIsPurePadicNumberFamily[102X( [3Xfam[103X ) [32X Category
[33X[0;0YThe family of pure [22Xp[122X-adic numbers.[133X
[1X68.2 [33X[0;0YExtensions of the p-adic Numbers[133X[101X
[33X[0;0YThe usual Kronecker construction with an irreducible polynomial can be used
to construct extensions of the [22Xp[122X-adic numbers. Let [22XL[122X be such an extension.
Then there is a subfield [22XK < L[122X such that [22XK[122X is an unramified extension of the
[22Xp[122X-adic numbers and [22XL/K[122X is purely ramified.[133X
[33X[0;0Y(For an explanation of [21Xramification[121X see for example [Neu92, Section II.7],
or another book on algebraic number theory. Essentially, an extension [22XL[122X of
the [22Xp[122X-adic numbers generated by a rational polynomial [22Xf[122X is unramified if [22Xf[122X
remains squarefree modulo [22Xp[122X and is completely ramified if modulo [22Xp[122X the
polynomial [22Xf[122X is a power of a linear factor while remaining irreducible over
the [22Xp[122X-adic numbers.)[133X
[33X[0;0YThe representation of extensions of [22Xp[122X-adic numbers in [5XGAP[105X uses the subfield
[22XK[122X.[133X
[1X68.2-1 PadicExtensionNumberFamily[101X
[29X[2XPadicExtensionNumberFamily[102X( [3Xp[103X, [3Xprecision[103X, [3Xunram[103X, [3Xram[103X ) [32X function
[33X[0;0YAn extended [22Xp[122X-adic field [22XL[122X is given by two polynomials [22Xh[122X and [22Xg[122X with
coefficient lists [3Xunram[103X (for the unramified part) and [3Xram[103X (for the ramified
part). Then [22XL[122X is isomorphic to [22XQ_p[x,y]/(h(x),g(y))[122X.[133X
[33X[0;0YThis function takes the prime number [3Xp[103X and the two coefficient lists [3Xunram[103X
and [3Xram[103X for the two polynomials. The polynomial given by the coefficients in
[3Xunram[103X must be a cyclotomic polynomial and the polynomial given by [3Xram[103X must
be either an Eisenstein polynomial or [22X1+x[122X. [13XThis is not checked by [5XGAP[105X.[113X[133X
[33X[0;0YEvery number in [22XL[122X is represented as a coefficient list w. r. t. the basis [22X{
1, x, x^2, ..., y, xy, x^2 y, ... }[122X of [22XL[122X. The integer [3Xprecision[103X is the
number of [21Xdigits[121X that all the coefficients have.[133X
[33X[0;0Y[13XA general comment:[113X[133X
[33X[0;0YThe polynomials with which [2XPadicExtensionNumberFamily[102X is called define an
extension of [22XQ_p[122X. It must be ensured that both polynomials are really
irreducible over [22XQ_p[122X! For example [22Xx^2+x+1[122X is [13Xnot[113X irreducible over [22XQ_p[122X.
Therefore the [21Xextension[121X [10XPadicExtensionNumberFamily(3, 4, [1,1,1], [1,1])[110X
contains non-invertible [21Xpseudo-p-adic numbers[121X. Conversely, if an [21Xextension[121X
contains noninvertible elements then one of the defining polynomials was not
irreducible.[133X
[1X68.2-2 PadicNumber[101X
[29X[2XPadicNumber[102X( [3Xfam[103X, [3Xrat[103X ) [32X operation
[29X[2XPadicNumber[102X( [3Xpurefam[103X, [3Xlist[103X ) [32X operation
[29X[2XPadicNumber[102X( [3Xextfam[103X, [3Xlist[103X ) [32X operation
[33X[0;0Y(see also [2XPadicNumber[102X ([14X68.1-2[114X)).[133X
[33X[0;0Y[2XPadicNumber[102X creates a [22Xp[122X-adic number in the [22Xp[122X-adic numbers family [3Xfam[103X. The
first form returns the [22Xp[122X-adic number corresponding to the rational [3Xrat[103X.[133X
[33X[0;0YThe second form takes a pure [22Xp[122X-adic numbers family [3Xpurefam[103X and a list [3Xlist[103X
of length two, and returns the number [22Xp[122X[10X^[110X[3Xlist[103X[10X[1] * [110X[3Xlist[103X[10X[2][110X. It must be
guaranteed that no entry of [3Xlist[103X[10X[2][110X is divisible by the prime [22Xp[122X. (Otherwise
precision will get lost.)[133X
[33X[0;0YThe third form creates a number in the family [3Xextfam[103X of a [22Xp[122X-adic extension.
The second argument must be a list [3Xlist[103X of length two such that [3Xlist[103X[10X[2][110X is
the list of coefficients w.r.t. the basis [22X{ 1, ..., x^{f-1} ⋅ y^{e-1} }[122X of
the extended [22Xp[122X-adic field and [3Xlist[103X[10X[1][110X is a common [22Xp[122X-part of all these
coefficients.[133X
[33X[0;0Y[22Xp[122X-adic numbers admit the usual field operations.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xefam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;[127X[104X
[4X[25Xgap>[125X [27XPadicNumber(efam,7/9);[127X[104X
[4X[28Xpadic(120(3),0(3))[128X[104X
[4X[32X[104X
[33X[0;0Y[13XA word of warning:[113X[133X
[33X[0;0YDepending on the actual representation of quotients, precision may seem to
[21Xvanish[121X. For example in [10XPadicExtensionNumberFamily(3, 5, [1,1,1], [1,1])[110X the
number [10X(1.2000, 0.1210)(3)[110X can be represented as [10X[ 0, [ 1.2000, 0.1210 ] ][110X
or as [10X[ -1, [ 12.000, 1.2100 ] ][110X (here the coefficients have to be
multiplied by [22Xp^{-1}[122X).[133X
[33X[0;0YSo there may be a number [10X(1.2, 2.2)(3)[110X which seems to have only two digits
of precision instead of the declared 5. But internally the number is stored
as [10X[ -3, [ 0.0012, 0.0022 ] ][110X and so has in fact maximum precision.[133X
[1X68.2-3 IsPadicExtensionNumber[101X
[29X[2XIsPadicExtensionNumber[102X( [3Xobj[103X ) [32X Category
[33X[0;0YThe category of elements of the extended [22Xp[122X-adic field.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27X efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;[127X[104X
[4X[25Xgap>[125X [27XIsPadicExtensionNumber(PadicNumber(efam,7/9));[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X68.2-4 IsPadicExtensionNumberFamily[101X
[29X[2XIsPadicExtensionNumberFamily[102X( [3Xfam[103X ) [32X Category
[33X[0;0YFamily of elements of the extended [22Xp[122X-adic field.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xefam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;[127X[104X
[4X[25Xgap>[125X [27XIsPadicExtensionNumberFamily(efam);[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
|