This file is indexed.

/usr/share/gap/doc/ref/chapBib.txt is in gap-online-help 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  
  
  References
  
  [SPAS]  SPAS  - Subgroup Presentation Algorithms System, version 2.5, User's
  reference   manual,  Lehrstuhl  D  für  Mathematik,  Rheinisch  Westfälische
  Technische Hochschule, Aachen, Germany (1989).
  
  [AMW82]  Arrell,  D.  G., Manrai, S. and Worboys, M. F. (Campbell, C. M. and
  Robertson,  E.  F.,  Eds.),  A  procedure  for obtaining simplified defining
  relations  for  a  subgroup,  in  Groups–St Andrews 1981 (St Andrews, 1981),
  Cambridge  Univ.  Press,  London Math. Soc. Lecture Note Ser., 71, Cambridge
  (1982), 155–159.
  
  [AR84] Arrell, D. G. and Robertson, E. F. (Atkinson, M. D., Ed.), A modified
  Todd-Coxeter  algorithm,  in  Computational  group  theory  (Durham,  1982),
  Academic Press, London (1984), 27–32.
  
  [Art73]  Artin, E., Galoissche Theorie, Verlag Harri Deutsch, Zurich (1973),
  86  pages,  ((Übersetzung  nach  der  zweiten englischen Auflage besorgt von
  Viktor  Ziegler,  Mit  einem  Anhang von N. A. Milgram, Zweite, unveränderte
  Auflage, Deutsch-Taschenbücher, No. 21)).
  
  [BCFS91]  Babai,  L.,  Cooperman, G., Finkelstein, L. and Seress, Á., Nearly
  Linear  Time  Algorithms  for  Permutation  Groups  with  a  Small  Base, in
  Proceedings  of  the  International  Symposium  on  Symbolic  and  Algebraic
  Computation (ISSAC'91), Bonn 1991, ACM Press (1991), 200–209.
  
  [Bak84]  Baker,  A.,  A  concise  introduction  to  the  theory  of numbers,
  Cambridge University Press, Cambridge (1984), xiii+95 pages.
  
  [BC94]  Baum,  U.  and Clausen, M., Computing irreducible representations of
  supersolvable groups, Math. Comp., 63, 207 (1994), 351–359.
  
  [BTW93]   Beauzamy,   B.,   Trevisan,   V.   and  Wang,  P.  S.,  Polynomial
  factorization:  sharp bounds, efficient algorithms, J. Symbolic Comput., 15,
  4 (1993), 393–413.
  
  [BC76]  Beetham, M. J. and Campbell, C. M., A note on the Todd-Coxeter coset
  enumeration algorithm, Proc. Edinburgh Math. Soc. (2), 20, 1 (1976), 73–79.
  
  [Ber76] Berger, T. R., Characters and derived length in groups of odd order,
  J. Algebra, 39, 1 (1976), 199–207.
  
  [Bes92]  Besche,  H.  U., Die Berechnung von Charaktergraden und Charakteren
  endlicher  auflösbarer  Gruppen  im Computeralgebrasystem GAP, Diplomarbeit,
  Lehrstuhl  D  für  Mathematik, Rheinisch Westfälische Technische Hochschule,
  Aachen, Germany (1992).
  
  [BE99a]  Besche,  H.  U.  and  Eick,  B.,  Construction of finite groups, J.
  Symbolic Comput., 27, 4 (1999), 387–404.
  
  [BE99b]  Besche, H. U. and Eick, B., The groups of order at most 1000 except
  512 and 768, J. Symbolic Comput., 27, 4 (1999), 405–413.
  
  [BE01]  Besche,  H.  U.  and  Eick,  B.,  The groups of order q^n ⋅ p, Comm.
  Algebra, 29, 4 (2001), 1759–1772.
  
  [BEO01]  Besche,  H. U., Eick, B. and O'Brien, E. A., The groups of order at
  most  2000,  Electron.  Res.  Announc.  Amer.  Math.  Soc.,  7  (2001),  1–4
  (electronic).
  
  [BEO02]  Besche,  H.  U., Eick, B. and O'Brien, E. A., A millennium project:
  constructing  small  groups,  Internat.  J.  Algebra  Comput., 12, 5 (2002),
  623–644.
  
  [BFS79]  Beyl,  F.  R.,  Felgner,  U. and Schmid, P., On groups occurring as
  center factor groups, J. Algebra, 61, 1 (1979), 161–177.
  
  [Bou70]  Bourbaki,  N.,  Éléments de mathématique. Algèbre. Chapitres 1 à 3,
  Hermann, Paris (1970), xiii+635 pp. (not consecutively paged) pages.
  
  [BC89]  Brent,  R.  P.  and  Cohen, G. L., A new lower bound for odd perfect
  numbers, Math. Comp., 53, 187 (1989), 431–437, S7–S24.
  
  [Bre91]     Breuer,     T.,     Potenzabbildungen,     Untergruppenfusionen,
  Tafel-Automorphismen,  Diplomarbeit,  Lehrstuhl  D für Mathematik, Rheinisch
  Westfälische Technische Hochschule, Aachen, Germany (1991).
  
  [Bre97] Breuer, T., Integral bases for subfields of cyclotomic fields, Appl.
  Algebra Engrg. Comm. Comput., 8, 4 (1997), 279–289.
  
  [Bre99]  Breuer, T., Computing possible class fusions from character tables,
  Comm. Algebra, 27, 6 (1999), 2733–2748.
  
  [BL98]  Breuer,  T.  and  Linton,  S.,  The  GAP 4  Type  System. Organizing
  Algebraic  Algorithms,  in  ISSAC '98: Proceedings of the 1998 international
  symposium  on  Symbolic  and algebraic computation, ACM Press, New York, NY,
  USA (1998), 38–45, ((Chairman: Volker Weispfenning and Barry Trager)).
  
  [BP98] Breuer, T. and Pfeiffer, G., Finding possible permutation characters,
  J. Symbolic Comput., 26, 3 (1998), 343–354.
  
  [BLS75]  Brillhart, J., Lehmer, D. and Selfridge, J., New primality criteria
  and  factorizations  of  2^m  ±  1,  Mathematics  of Computation, 29 (1975),
  620–647.
  
  [BJR87] Brown, R., Johnson, D. L. and Robertson, E. F., Some computations of
  nonabelian tensor products of groups, J. Algebra, 111, 1 (1987), 177–202.
  
  [Bur55]  Burnside,  W., Theory of groups of finite order, Dover Publications
  Inc.,  New  York  (1955),  xxiv+512 pages, ((Unabridged republication of the
  second edition, published in 1911)).
  
  [But93] Butler, G., The transitive groups of degree fourteen and fifteen, J.
  Symbolic Comput., 16, 5 (1993), 413–422.
  
  [BM83]  Butler,  G.  and  McKay,  J.,  The transitive groups of degree up to
  eleven, Comm. Algebra, 11, 8 (1983), 863–911.
  
  [Can73]  Cannon, J. J., Construction of defining relators for finite groups,
  Discrete Math., 5 (1973), 105–129.
  
  [Car72]  Carter,  R.  W.,  Simple  groups  of  Lie  type, John Wiley & Sons,
  London-New   York-Sydney   (1972),   viii+331   pages,  ((Pure  and  Applied
  Mathematics, Vol. 28)).
  
  [Coh93]  Cohen,  H.,  A  course  in  computational  algebraic number theory,
  Springer-Verlag,  Graduate Texts in Mathematics, 138, Berlin (1993), xii+534
  pages.
  
  [Con90a]  Conlon,  S.  B.,  Calculating  characters of p-groups, J. Symbolic
  Comput., 9, 5-6 (1990), 535–550, ((Computational group theory, Part 1)).
  
  [Con90b]  Conlon,  S. B., Computing modular and projective character degrees
  of   soluble   groups,   J.   Symbolic  Comput.,  9,  5-6  (1990),  551–570,
  ((Computational group theory, Part 1)).
  
  [CCNPW85]  Conway,  J.  H.,  Curtis, R. T., Norton, S. P., Parker, R. A. and
  Wilson,  R.  A.,  Atlas  of  finite groups, Oxford University Press, Eynsham
  (1985),  xxxiv+252  pages,  ((Maximal  subgroups and ordinary characters for
  simple groups, With computational assistance from J. G. Thackray)).
  
  [CHM98]  Conway,  J. H., Hulpke, A. and McKay, J., On transitive permutation
  groups, LMS J. Comput. Math., 1 (1998), 1–8 (electronic).
  
  [CLO97]  Cox,  D.,  Little,  J.  and  O'Shea,  D.,  Ideals,  varieties,  and
  algorithms,   Springer-Verlag,   Second   edition,  Undergraduate  Texts  in
  Mathematics,   New   York   (1997),  xiv+536  pages,  ((An  introduction  to
  computational algebraic geometry and commutative algebra)).
  
  [DE05]  Dietrich,  H.  and  Eick,  B.,  On the groups of cube-free order, J.
  Algebra, 292, 1 (2005), 122–137.
  
  [Dix67]  Dixon,  J.  D.,  High speed computation of group characters, Numer.
  Math., 10 (1967), 446–450.
  
  [Dix93] Dixon, J. D. (Finkelstein, L. and Kantor, W. M., Eds.), Constructing
  representations  of finite groups, in Groups and computation (New Brunswick,
  NJ,  1991),  Amer.  Math.  Soc., DIMACS Ser. Discrete Math. Theoret. Comput.
  Sci., 11, Providence, RI (1993), 105–112.
  
  [DM88]  Dixon,  J.  D. and Mortimer, B., The primitive permutation groups of
  degree  less  than  1000, Math. Proc. Cambridge Philos. Soc., 103, 2 (1988),
  213–238.
  
  [Dre69]  Dress,  A.,  A  characterisation  of solvable groups, Math. Z., 110
  (1969), 213–217.
  
  [Eic97]  Eick,  B.  (Finkelstein,  L.  and  Kantor,  W.  M.,  Eds.), Special
  presentations   for  finite  soluble  groups  and  computing  (pre-)Frattini
  subgroups,  in  Groups  and computation, II (New Brunswick, NJ, 1995), Amer.
  Math.   Soc.,   DIMACS  Ser.  Discrete  Math.  Theoret.  Comput.  Sci.,  28,
  Providence, RI (1997), 101–112.
  
  [EH03]  Eick,  B. and Höfling, B., The solvable primitive permutation groups
  of degree at most 6560, LMS J. Comput. Math., 6 (2003), 29–39 (electronic).
  
  [EH]  Eick,  B.  and  Hulpke,  A.,  Computing  the  maximal  subgroups  of a
  permutation group I, 155–168.
  
  [EO99a] Eick, B. and O'Brien, E. A., Enumerating p-groups, J. Austral. Math.
  Soc. Ser. A, 67, 2 (1999), 191–205, ((Group theory)).
  
  [EO99b]  Eick, B. and O'Brien, E. A. (Matzat, B. H., Greuel, G.-M. and Hiss,
  G., Eds.), The groups of order 512, in Algorithmic algebra and number theory
  (Heidelberg,  1997),  Springer,  Berlin  (1999),  379–380,  ((Proceedings of
  Abschlusstagung   des   DFG   Schwerpunktes   Algorithmische   Algebra   und
  Zahlentheorie in Heidelberg)).
  
  [Ell98]  Ellis,  G., On the capability of groups, Proc. Edinburgh Math. Soc.
  (2), 41, 3 (1998), 487–495.
  
  [FJNT95]  Felsch,  V., Johnson, D. L., Neubüser, J. and Tsaranov, S. V., The
  structure of certain Coxeter groups, in Groups '93 Galway/St Andrews, Vol. 1
  (Galway,  1993), Cambridge Univ. Press, London Math. Soc. Lecture Note Ser.,
  211, Cambridge (1995), 177–190.
  
  [FN79]  Felsch,  V.  and Neubüser, J. (Ng, E. W., Ed.), An algorithm for the
  computation  of  conjugacy classes and centralizers in p-groups, in Symbolic
  and algebraic computation (EUROSAM '79, Internat. Sympos., Marseille, 1979),
  Springer,  Lecture  Notes  in  Comput.  Sci.,  72,  Berlin  (1979), 452–465,
  ((EUROSAM '79, an International Symposium held in Marseille, June 1979)).
  
  [Fra82]  Frame,  J.  S.,  Recursive  computation of tensor power components,
  Bayreuth. Math. Schr., 10 (1982), 153–159.
  
  [Gir03]  Girnat,  B.,  Klassifikation  der  Gruppen  bis  zur  Ordnung  p^5,
  Staatsexamensarbeit, TU Braunschweig, Braunschweig, Germany (2003).
  
  [Hal36]  Hall,  P.,  The  Eulerian  functions  of  a  group, Quarterly J. Of
  Mathematics, os-7, 1 (1936), 134–151.
  
  [HJ59] Hall Jr., M., The theory of groups, The Macmillan Co., New York, N.Y.
  (1959), xiii+434 pages.
  
  [Hav69]  Havas,  G.,  Symbolic  and  Algebraic Calculation, Basser Computing
  Dept.,  Technical  Report, Basser Department of Computer Science, University
  of Sydney, 89, Sydney, Australia (1969).
  
  [HKRR84]  Havas,  G.,  Kenne,  P. E., Richardson, J. S. and Robertson, E. F.
  (Atkinson,  M.  D.,  Ed.), A Tietze transformation program, in Computational
  group theory (Durham, 1982), Academic Press, London (1984), 69–73.
  
  [Hav74]  Havas, G. (Newman, M. F., Ed.), A Reidemeister-Schreier program, in
  Proceedings  of  the Second International Conference on the Theory of Groups
  (Australian  Nat.  Univ., Canberra, 1973), Springer, Lecture Notes in Math.,
  372, Berlin (1974), 347–356. Lecture Notes in Math., Vol. 372, ((Held at the
  Australian  National  University,  Canberra,  August  13–24,  1973,  With an
  introduction by B. H. Neumann, Lecture Notes in Mathematics, Vol. 372)).
  
  [HIÖ89] Hawkes, T., Isaacs, I. M. and Özaydin, M., On the Möbius function of
  a finite group, Rocky Mountain J. Math., 19, 4 (1989), 1003–1034.
  
  [HJLP]  Hiss,  G.,  Jansen,  C.,  Lux,  K.  and Parker, R. A., Computational
  Modular Character Theory, http://www.math.rwth-aachen.de/~MOC/CoMoChaT/.
  
  [HP89]  Holt,  D.  F.  and  Plesken, W., Perfect groups, The Clarendon Press
  Oxford  University  Press,  Oxford Mathematical Monographs, New York (1989),
  xii+364   pages,   ((With   an   appendix  by  W.  Hanrath,  Oxford  Science
  Publications)).
  
  [HR94]  Holt,  D.  F.  and  Rees, S., Testing modules for irreducibility, J.
  Austral. Math. Soc. Ser. A, 57, 1 (1994), 1–16.
  
  [How76]  Howie,  J.  M., An introduction to semigroup theory, Academic Press
  [Harcourt Brace Jovanovich Publishers], London (1976), x+272 pages, ((L.M.S.
  Monographs, No. 7)).
  
  [Hul93]  Hulpke,  A.,  Zur  Berechnung  von  Charaktertafeln,  Diplomarbeit,
  Lehrstuhl  D  für  Mathematik,  Rheinisch Westfälische Technische Hochschule
  (1993).
  
  [Hul96]    Hulpke,   A.,   Konstruktion   transitiver   Permutationsgruppen,
  Dissertation,   Verlag   der   Augustinus  Buchhandlung,  Aachen,  Rheinisch
  Westfälische Technische Hochschule, Aachen, Germany (1996).
  
  [Hul98]  Hulpke,  A., Computing normal subgroups, in Proceedings of the 1998
  International  Symposium  on  Symbolic  and Algebraic Computation (Rostock),
  ACM,  New York (1998), 194–198 (electronic), ((Chairman: Volker Weispfenning
  and Barry Trager)).
  
  [Hul99]   Hulpke,   A.,   Computing  subgroups  invariant  under  a  set  of
  automorphisms, J. Symbolic Comput., 27, 4 (1999), 415–427.
  
  [Hul00]  Hulpke,  A.,  Conjugacy  classes  in  finite permutation groups via
  homomorphic images, Math. Comp., 69, 232 (2000), 1633–1651.
  
  [Hul01]  Hulpke,  A., Representing subgroups of finitely presented groups by
  quotient subgroups, Experiment. Math., 10, 3 (2001), 369–381.
  
  [Hul05]  Hulpke, A., Constructing transitive permutation groups, J. Symbolic
  Comput., 39, 1 (2005), 1–30.
  
  [Hum72]  Humphreys,  J.  E., Introduction to Lie algebras and representation
  theory, Springer-Verlag, New York (1972), xii+169 pages, ((Graduate Texts in
  Mathematics, Vol. 9)).
  
  [Hum78]  Humphreys,  J.  E., Introduction to Lie algebras and representation
  theory,  Springer-Verlag, Graduate Texts in Mathematics, 9, New York (1978),
  xii+171 pages, ((Second printing, revised)).
  
  [Hup67]  Huppert,  B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren
  der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.
  
  [HB82]  Huppert,  B.  and Blackburn, N., Finite groups. II, Springer-Verlag,
  Grundlehren Math. Wiss., 242, Berlin (1982), xiii+531 pages.
  
  [Isa76]  Isaacs,  I.  M.,  Character theory of finite groups, Academic Press
  [Harcourt  Brace  Jovanovich  Publishers],  New  York (1976), xii+303 pages,
  ((Pure and Applied Mathematics, No. 69)).
  
  [IE94]   Ishibashi,  H.  and  Earnest,  A.  G.,  Two-element  generation  of
  orthogonal groups over finite fields, J. Algebra, 165, 1 (1994), 164–171.
  
  [JLPW95]  Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer
  characters, The Clarendon Press Oxford University Press, London Mathematical
  Society  Monographs.  New  Series,  11,  New  York  (1995), xviii+327 pages,
  ((Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications)).
  
  [Joh97] Johnson, D. L., Presentations of groups, Cambridge University Press,
  Second  edition,  London  Mathematical  Society Student Texts, 15, Cambridge
  (1997), xii+216 pages.
  
  [Kau92]   Kaup,   A.,   Gitterbasen   und   Charaktere   endlicher  Gruppen,
  Diplomarbeit,  Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
  Hochschule, Aachen, Germany (1992).
  
  [KLM01]  Kemper,  G.,  Lübeck, F. and Magaard, K., Matrix generators for the
  Ree groups ^2G_2(q), Comm. Algebra, 29, 1 (2001), 407–413.
  
  [KL90]  Kleidman,  P.  and Liebeck, M., The subgroup structure of the finite
  classical  groups,  Cambridge  University Press, London Mathematical Society
  Lecture Note Series, 129, Cambridge (1990), x+303 pages.
  
  [Kli66]  Klimyk,  A.  U., Decomposition of the direct product of irreducible
  representations of semisimple Lie algebras into irreducible representations,
  Ukrain. Mat. Ž., 18, 5 (1966), 19–27.
  
  [Kli68]  Klimyk,  A.  U.,  Decomposition  of a direct product of irreducible
  representations    of    a   semisimple   Lie   algebra   into   irreducible
  representations,  in  American  Mathematical Society Translations. Series 2,
  American Mathematical Society, 76, Providence, R.I. (1968), 63–73.
  
  [Knu98]   Knuth,   D.  E.,  The  Art  of  Computer  Programming,  Volume  2:
  Seminumerical Algorithms, Addison-Wesley, third edition (1998).
  
  [LNS84] Laue, R., Neubüser, J. and Schoenwaelder, U. (Atkinson, M. D., Ed.),
  Algorithms  for finite soluble groups and the SOGOS system, in Computational
  group theory (Durham, 1982), Academic Press, London (1984), 105–135.
  
  [LLL82]  Lenstra,  A.  K.,  Lenstra  Jr.,  H.  W.  and Lovász, L., Factoring
  polynomials with rational coefficients, Math. Ann., 261, 4 (1982), 515–534.
  
  [Leo91]  Leon,  J.  S., Permutation group algorithms based on partitions. I.
  Theory  and  algorithms,  J.  Symbolic  Comput.,  12,  4-5  (1991), 533–583,
  ((Computational group theory, Part 2)).
  
  [Lüb03]   Lübeck,   F.,   Conway   polynomials  for  finite  fields  (2003),
  http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol.
  
  [LRW97]  Luks,  E. M., Rákóczi, F. and Wright, C. R. B., Some algorithms for
  nilpotent permutation groups, J. Symbolic Comput., 23, 4 (1997), 335–354.
  
  [LP91]  Lux,  K.  and Pahlings, H. (Michler, G. O. and Ringel, C. M., Eds.),
  Computational   aspects  of  representation  theory  of  finite  groups,  in
  Representation  theory  of  finite  groups  and  finite-dimensional algebras
  (Bielefeld, 1991), Birkhäuser, Progr. Math., 95, Basel (1991), 37–64.
  
  [Maa10]  Maas,  L.,  On  a construction of the basic spin representations of
  symmetric groups, Communications in Algebra, 38 (2010), 4545–4552.
  
  [Mac81]  Macdonald,  I.  G.,  Numbers  of  conjugacy  classes in some finite
  classical groups, Bull. Austral. Math. Soc., 23, 1 (1981), 23–48.
  
  [MV97]  Mahajan,  M.  and Vinay, V., Determinant: combinatorics, algorithms,
  and  complexity,  Chicago J. Theoret. Comput. Sci. (1997), Article 5, 26 pp.
  (electronic).
  
  [MY79]  McKay,  J.  and  Young, K. C., The nonabelian simple groups G, |G| <
  10^6–minimal generating pairs, Math. Comp., 33, 146 (1979), 812–814.
  
  [MN89]  Mecky,  M.  and  Neubüser,  J.,  Some  remarks on the computation of
  conjugacy  classes  of  soluble  groups,  Bull.  Austral.  Math. Soc., 40, 2
  (1989), 281–292.
  
  [Mur58] Murnaghan, F. D., The orthogonal and symplectic groups, Comm. Dublin
  Inst. Adv. Studies. Ser. A, no., 13 (1958), 146.
  
  [Neb95]   Nebe,   G.,   Endliche   rationale   Matrixgruppen  vom  Grad  24,
  Dissertation,   Rheinisch   Westfälische   Technische  Hochschule,  Aachener
  Beiträge zur Mathematik, 12, Aachen, Germany (1995).
  
  [Neb96]  Nebe,  G.,  Finite  subgroups  of  GL_n(Q)  for  25 ≤ n ≤ 31, Comm.
  Algebra, 24, 7 (1996), 2341–2397.
  
  [NP95] Nebe, G. and Plesken, W., Finite rational matrix groups of degree 16,
  Mem. Amer. Math. Soc., AMS, 556 (1995), 74–144, ((vol. 116)).
  
  [Neu82]  Neubüser,  J.  (Campbell,  C.  M.  and  Robertson, E. F., Eds.), An
  elementary  introduction  to  coset  table  methods  in  computational group
  theory, in Groups–St Andrews 1981 (St Andrews, 1981), Cambridge Univ. Press,
  London Math. Soc. Lecture Note Ser., 71, Cambridge (1982), 1–45.
  
  [NPP84]  Neubüser,  J., Pahlings, H. and Plesken, W. (Atkinson, M. D., Ed.),
  CAS;  design  and  use  of a system for the handling of characters of finite
  groups, in Computational group theory (Durham, 1982), Academic Press, London
  (1984), 195–247.
  
  [Neu92]   Neukirch,   J.,   Algebraische  Zahlentheorie,  Springer,  Berlin,
  Heidelberg and New York (1992).
  
  [New90]  Newman, M. F., Proving a group infinite, Arch. Math. (Basel), 54, 3
  (1990), 209–211.
  
  [New77]  Newman,  M.  F. (Bryce, R. A., Cossey, J. and Newman, M. F., Eds.),
  Determination  of  groups  of  prime-power  order,  in  Group  theory (Proc.
  Miniconf.,  Australian  Nat. Univ., Canberra, 1975), Springer, Lecture Notes
  in  Math.,  573,  Berlin  (1977),  73–84.  Lecture Notes in Math., Vol. 573,
  ((Lecture Notes in Mathematics, Vol. 573)).
  
  [NOV04]  Newman,  M.  F.,  O'Brien, E. A. and Vaughan-Lee, M. R., Groups and
  nilpotent  Lie  rings whose order is the sixth power of a prime, J. Algebra,
  278, 1 (2004), 383–401.
  
  [O'B90]  O'Brien,  E.  A.,  The  p-group  generation  algorithm, J. Symbolic
  Comput., 9, 5-6 (1990), 677–698, ((Computational group theory, Part 1)).
  
  [O'B91]  O'Brien, E. A., The groups of order 256, J. Algebra, 143, 1 (1991),
  219–235.
  
  [OV05]  O'Brien, E. A. and Vaughan-Lee, M. R., The groups with order p^7 for
  odd prime p, J. Algebra, 292, 1 (2005), 243–258.
  
  [Pah93]  Pahlings, H., On the Möbius function of a finite group, Arch. Math.
  (Basel), 60, 1 (1993), 7–14.
  
  [Par84]  Parker,  R.  A. (Atkinson, M. D., Ed.), The computer calculation of
  modular  characters  (the  meat-axe), in Computational group theory (Durham,
  1982), Academic Press, London (1984), 267–274.
  
  [Pfe91]   Pfeiffer,   G.,   Von  Permutationscharakteren  und  Markentafeln,
  Diplomarbeit,  Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
  Hochschule, Aachen, Germany (1991).
  
  [Pfe97]  Pfeiffer, G., The subgroups of M_24, or how to compute the table of
  marks of a finite group, Experiment. Math., 6, 3 (1997), 247–270.
  
  [Ple85]   Plesken,   W.,  Finite  unimodular  groups  of  prime  degree  and
  circulants, J. Algebra, 97, 1 (1985), 286–312.
  
  [Ple95]  Plesken,  W.,  Solving XX^ tr = A over the integers, Linear Algebra
  Appl., 226/228 (1995), 331--344.
  
  [PN95]  Plesken,  W. and Nebe, G., Finite rational matrix groups, Mem. Amer.
  Math. Soc., AMS, 556 (1995), 1–73, ((vol. 116)).
  
  [PP77] Plesken, W. and Pohst, M., On maximal finite irreducible Subgroups of
  GL(n,Z).  I.  The  five and seven dimensional cases, II. The six dimensional
  case, Math. Comp., 31 (1977), 536–576.
  
  [PP80] Plesken, W. and Pohst, M., On maximal finite irreducible Subgroups of
  GL(n,Z). III. The nine dimensional case, IV. Remarks on even dimensions with
  application  to  n  =  8,  V.  The  eight  dimensional  case  and a complete
  description of dimensions less than ten, Math. Comp., 34 (1980), 245–301.
  
  [Poh87]  Pohst,  M.,  A  modification  of  the  LLL  reduction algorithm, J.
  Symbolic Comput., 4, 1 (1987), 123–127.
  
  [Rin93]  Ringe,  M., The C MeatAxe, Release 1.5, Lehrstuhl D für Mathematik,
  Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1993).
  
  [Rob88]  Robertson,  E.  F.,  Tietze transformations with weighted substring
  search, J. Symbolic Comput., 6, 1 (1988), 59–64.
  
  [Ron05] Roney-Dougal, C. M., The primitive permutation groups of degree less
  than 2500, J. Algebra, 292, 1 (2005), 154–183.
  
  [RU03]   Roney-Dougal,  C.  M.  and  Unger,  W.  R.,  The  affine  primitive
  permutation  groups  of  degree  less  than 1000, J. Symbolic Comput., 35, 4
  (2003), 421–439.
  
  [Roy87]  Royle,  G.  F., The transitive groups of degree twelve, J. Symbolic
  Comput., 4, 2 (1987), 255–268.
  
  [RT98]  Rylands,  L.  J.  and  Taylor,  D.  E.,  Matrix  generators  for the
  orthogonal groups, J. Symbolic Comput., 25, 3 (1998), 351–360.
  
  [Sch92]  Scherner, M., Erweiterung einer Arithmetik von Kreisteilungskörpern
  auf   deren  Teilkörper  und  deren  Implementation  in  GAP,  Diplomarbeit,
  Lehrstuhl  D  für  Mathematik, Rheinisch Westfälische Technische Hochschule,
  Aachen, Germany (1992).
  
  [Sch94]  Schiffer,  U.,  Cliffordmatrizen,  Diplomarbeit,  Lehrstuhl  D  für
  Mathematik,  Rheinisch  Westfälische  Technische Hochschule, Aachen, Germany
  (1994).
  
  [Sch90] Schneider, G. J. A., Dixon's character table algorithm revisited, J.
  Symbolic Comput., 9, 5-6 (1990), 601–606, ((Computational group theory, Part
  1)).
  
  [Sch11]   Schur,   J.,  Über  die  Darstellung  der  symmetrischen  und  der
  alternierenden  Gruppe  durch gebrochene lineare Substitutionen, Journal für
  die reine und angewandte Mathematik, 139 (1911), 155–250.
  
  [Sco73]  Scott,  L.  L.,  Modular  permutation representations, Trans. Amer.
  Math. Soc., 175 (1973), 101–121.
  
  [Sho92]  Short,  M.  W.,  The primitive soluble permutation groups of degree
  less  than  256, Springer-Verlag, Lecture Notes in Mathematics, 1519, Berlin
  (1992), x+145 pages.
  
  [Sim90] Sims, C. C., Computing the order of a solvable permutation group, J.
  Symbolic Comput., 9, 5-6 (1990), 699–705, ((Computational group theory, Part
  1)).
  
  [Sim94]  Sims,  C. C., Computation with finitely presented groups, Cambridge
  University  Press,  Encyclopedia  of  Mathematics  and its Applications, 48,
  Cambridge (1994), xiii+604 pages.
  
  [ACM]   Sims,  C.  C.  (Küchlin,  W.,  Ed.),  Computing  with  subgroups  of
  automorphism   groups   of   finite  groups,  in  Proceedings  of  the  1997
  International  Symposium  on Symbolic and Algebraic Computation (Kihei, HI),
  The  Association  for  Computing  Machinery,  ACM,  New York (1997), 400–403
  (electronic), ((Held in Kihei, HI, July 21–23, 1997)).
  
  [Sim70]  Sims, C. C. (Leech, J., Ed.), Computational methods in the study of
  permutation  groups,  in  Computational  Problems in Abstract Algebra (Proc.
  Conf.,  Oxford, 1967) , Pergamon, Proceedings of a Conference held at Oxford
  under   the  auspices  of  the  Science  Research  Council,  Atlas  Computer
  Laboratory,   29,   Oxford   (1970),   169–183,   (RUSSIAN  translation  in:
  Computations  in algebra and number theory (Russian), edited by B. B. Venkov
  and D. K. Faddeev, pp. 129–147, Matematika, Novoie v Zarubeznoi Naukie, vol.
  2, Izdat. MIR, Moscow, 1976).
  
  [SM85]  Soicher,  L.  and  McKay,  J.,  Computing  Galois  groups  over  the
  rationals, J. Number Theory, 20, 3 (1985), 273–281.
  
  [Sou94]  Souvignier, B., Irreducible finite integral matrix groups of degree
  8   and  10,  Math.  Comp.,  63,  207  (1994),  335–350,  ((With  microfiche
  supplement)).
  
  [Tay87]  Taylor, D. E., Pairs of Generators for Matrix Groups. I, The Cayley
  Bulletin, 3 (1987).
  
  [The93]  Theißen,  H., Methoden zur Bestimmung der rationalen Konjugiertheit
  in  endlichen  Gruppen,  Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
  Westfälische Technische Hochschule, Aachen, Germany (1993).
  
  [The97]   Theißen,   H.,   Eine   Methode   zur   Normalisatorberechnung  in
  Permutationsgruppen  mit Anwendungen in der Konstruktion primitiver Gruppen,
  Dissertation,  Rheinisch Westfälische Technische Hochschule, Aachen, Germany
  (1997).
  
  [vdW76]  van  der Waall, R. W., On symplectic primitive modules and monomial
  groups, Nederl. Akad. Wetensch. Proc. Ser. A 79, Indag. Math., 38, 4 (1976),
  362–375.
  
  [Wag90]  Wagon,  S., Editor's corner: the Euclidean algorithm strikes again,
  Amer. Math. Monthly, 97, 2 (1990), 125–129.
  
  [Wie69]  Wielandt,  H.,  Permutation  groups through invariant relations and
  invariant  functions,  Lecture  Notes,  Department  of Mathematics, The Ohio
  State University (1969).
  
  [Zag90]  Zagier,  D., A one-sentence proof that every prime p ≡ 1 mod 4 is a
  sum of two squares, Amer. Math. Monthly, 97, 2 (1990), 144.
  
  [Zum89]  Zumbroich,  M., Grundlagen einer Arithmetik in Kreisteilungskörpern
  und  ihre  Implementation  in CAS, Diplomarbeit, Lehrstuhl D für Mathematik,
  Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1989).