/usr/share/gap/prim/irredsol.gi is in gap-prim-groups 4r7p8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 | #############################################################################
##
#W irredsol.gi GAP group library Mark Short
#W Burkhard Höfling
##
##
#Y Copyright (C) 1993, Murdoch University, Perth, Australia
#Y Copyright (C) 2001, Technische Universität, Braunschweig, Germany
##
## This file contains the functions and data for the irreducible solvable
## matrix group library. It contains exactly one member for each of the
## 372 conjugacy classes of irreducible solvable subgroups of $GL(n,p)$
## where $1 < n$, $p$ is a prime, and $p^n < 256$.
##
## By well known theory, this data also doubles as a library of primitive
## solvable permutation groups of non-prime degree <256.
##
## This file contains the data from Mark Short's thesis, plus two groups
## missing from that list, subsequently discovered by Alexander Hulpke.
##
#############################################################################
##
#F IrreducibleSolvableGroup(<n>,<p>,<k>) . . . . . . old extraction function
##
InstallGlobalFunction( IrreducibleSolvableGroup, function ( n, p, k )
Error ("This function is obsolete. Please see ",
"`IrreducibleSolvableGroupMS' in the GAP manual");
end);
#############################################################################
##
#F IrreducibleSolvableGroupMS(<n>,<p>,<k>) . . . . . extraction function
##
InstallGlobalFunction( IrreducibleSolvableGroupMS, function ( n, p, k )
local
desc, # compact description of group
guard, # number of guardian of group
gdgens, # list of generators for that guardian
len, # length of this list
numgen, # number of generators of the group
pos, # marks position in desc where next normal form begins
i, j, # loop variables
gens, # the generators of the group
idmat, # the identity matrix of GL(n,p)
mat, # evolves from idmat into a generator of the group
grp; # group to be returned
# Check for sensible input
if not (n > 1 and p in Primes and p^n < 256) then
Error( "n must be > 1, p must be prime, and p^n must be < 256" );
fi;
if k > Length( IrredSolGroupList[ n ][ p ] ) then
Error( "there is no k-th group for this n and p" );
fi;
# Pick out a few important pieces of information
desc := IrredSolGroupList[ n ][ p ][ k ];
gdgens := IrredSolJSGens[ n ][ p ][ desc[3] ];
len := Length( gdgens );
# Construct the generators
gens := [ ];
idmat := Immutable( IdentityMat( n, GF( p ) ) );
for i in [1..(Length(desc)-3)/len] do
mat := idmat;
for j in [1..len] do
mat := mat * ( gdgens[ j ] ^ desc[ 3 + len*(i-1) + j ] );
od;
gens[ i ] := mat;
od;
# Make the group and return it
grp := GroupByGenerators( gens, idmat );
SetSize( grp, desc[ 1 ] );
if desc[ 2 ] = 0 then
SetIsPrimitiveMatrixGroup (grp, true);
SetMinimalBlockDimension (grp, n);
else
SetIsPrimitiveMatrixGroup (grp, false);
SetMinimalBlockDimension (grp, desc[ 2 ]);
fi;
return grp;
end ); # IrreducibleSolvableGroupMS( n, p, k )
#############################################################################
##
#F NumberIrreducibleSolvableGroups(<n>,<p>)
##
## returns the number of conjugacy classes of irreducible solvable subgroups
## of GL(n,p)
##
InstallGlobalFunction( NumberIrreducibleSolvableGroups, function ( n, p )
return Length (IrredSolGroupList[ n ][ p ]);
end);
#############################################################################
##
#F AllIrreducibleSolvableGroups(...)
#F select all irreducible solvable groups
##
InstallGlobalFunction (AllIrreducibleSolvableGroups, function ( arg )
local
dims, # dimensions
chars, # characteristics
sizes, # sizes
linprim, # linearly primitive flag
minblockdims, # minimal block dimensions
funs, # other functions requested by caller
vals, # their values
i, # counter through arg
nppairs, # (n,p) pairs such that p^n < 256
np, # counter through nppairs
n, # n
p, # p
grplist, # list of groups to be returned
k, # counter through group descriptions for GL(n,p)
desc, # compact description of the kth group in GL(n,p)
gp, # the group itself
passtest; # boolean flag
# Initialize a few things
funs := [ ];
vals := [ ];
# Loop through the arguments
for i in [1..Length(arg)/2] do
# Special case for Dimension
if arg[2*i-1] in [ Dimension, DimensionOfMatrixGroup, DegreeOfMatrixGroup] then
if not IsList( arg[2*i] ) then
arg[2*i] := [ arg[2*i] ];
fi;
dims := [ ];
for n in arg[2*i] do
if n in [ 2, 3, 4, 5, 6, 7 ] then
Add( dims, n );
else
Print( "#W AllIrreducibleSolvableGroups: ",
"n = ", n, " outside range of library\n" );
fi;
od;
if dims = [ ] then
Error( "all Dimension arguments outside range of library" );
fi;
# Special case for CharFFE
elif arg[2*i-1] = Characteristic then
if not IsList( arg[2*i] ) then
arg[2*i] := [ arg[2*i] ];
fi;
chars := [ ];
for p in arg[2*i] do
if p in [ 2, 3, 5, 7, 11, 13 ] then
Add( chars, p );
else
Print( "#W AllIrreducibleSolvableGroups: ",
"p = ", p, " outside range of library\n" );
fi;
od;
if chars = [ ] then
Error( "all Characteristic arguments outside range of library" );
fi;
# Special case for Size
elif arg[2*i-1] = Size then
if IsList( arg[2*i] ) then
sizes := arg[2*i];
else
sizes := [ arg[2*i] ];
fi;
# Special case for IsPrimitiveMatrixGroup
elif arg[2*i-1] in [ IsLinearlyPrimitive, IsPrimitiveMatrixGroup] then
if IsBool( arg[2*i] ) then
linprim := arg[2*i];
else
Error( "IsPrimitive argument must be boolean" );
fi;
# Special case for MinimalBlockDimension
elif arg[2*i-1] = MinimalBlockDimension then
if IsList( arg[2*i] ) then
minblockdims := arg[2*i];
else
minblockdims := [ arg[2*i] ];
fi;
# General case
elif IsFunction( arg[2*i-1] ) then
Add( funs, arg[2*i-1] );
Add( vals, arg[2*i] );
else
Error( "<fun",i,"> must be a function" );
fi;
od;
# Find the allowable (n,p) pairs
if not IsBound( dims ) and not IsBound( chars ) then
nppairs := [ [2,2], [2,3], [2,5], [2,7], [2,11], [2,13],
[3,2], [3,3], [3,5],
[4,2], [4,3],
[5,2], [5,3],
[6,2],
[7,2] ];
elif IsBound( dims ) and IsBound( chars ) then
nppairs := [ ];
for n in dims do
for p in chars do
if p^n < 256 then
Add( nppairs, [ n, p ] );
else
Print( "#W AllIrreducibleSolvableGroups: n = ", n,
", p = ", p, " outside range of library\n" );
fi;
od;
od;
if nppairs = [ ] then
Error( "none of the specified (n,p) pairs satisfy p^n < 256" );
fi;
else
if not IsBound( dims ) then
dims := [ 2, 3, 4, 5, 6, 7 ];
else
chars := [ 2, 3, 5, 7, 11, 13 ];
fi;
nppairs := [ ];
for n in dims do
for p in chars do
if p^n < 256 then
Add( nppairs, [ n, p ] );
fi;
od;
od;
fi;
# Make the list of groups
grplist := [ ];
# Loop through the allowable (n,p) pairs
for np in nppairs do
n := np[ 1 ];
p := np[ 2 ];
# Loop through the group descriptions
for k in [1..Length( IrredSolGroupList[ n ][ p ] )] do
gp := [ ];
desc := IrredSolGroupList[ n ][ p ][ k ];
# Check if the description satisfies the special case criteria.
# If it does, create the group
if ( not IsBound( sizes ) or desc[1] in sizes )
and ( not IsBound( linprim ) or (desc[2] = 0) = linprim )
and ( not IsBound( minblockdims ) or desc[2] in minblockdims )
then
gp := IrreducibleSolvableGroupMS( n, p, k );
fi;
# Now see if the group (if created) satisfies the other criteria.
# If it does, add it to the list
if gp <> [ ] then
passtest := true;
i := 1;
while passtest and i <= Length( funs ) do
passtest := funs[ i ]( gp ) = vals[ i ]
or ( IsList( vals[ i ] )
and funs[ i ]( gp ) in vals[ i ] );
i := i + 1;
od;
if passtest then
Add( grplist, gp );
fi;
fi;
od;
od;
return grplist;
end); # AllIrreducibleSolvableGroups( fun1, val1, fun2, val2, ... )
#############################################################################
##
#F OneIrreducibleSolvableGroup(...)
## extract one irreducible solvable group
##
InstallGlobalFunction(OneIrreducibleSolvableGroup, function ( arg )
local
dims, # dimensions
chars, # characteristics
sizes, # sizes
linprim, # linearly primitive flag
minblockdims, # minimal block dimensions
funs, # other functions requested by caller
vals, # their values
i, # counter through arg
nppairs, # (n,p) pairs such that p^n < 256
np, # counter through (n,p) pairs
n, # n
p, # p
k, # counter through group descriptions for GL(n,p)
desc, # compact description of the kth group in GL(n,p)
gp, # the group to be returned
passtest; # boolean flag
# Initialize a few things
funs := [ ];
vals := [ ];
# Loop through the arguments
for i in [1..Length(arg)/2] do
# Special case for Dimension
if arg[2*i-1] in [ Dimension, DimensionOfMatrixGroup, DegreeOfMatrixGroup] then
if not IsList( arg[2*i] ) then
arg[2*i] := [ arg[2*i] ];
fi;
dims := [ ];
for n in arg[2*i] do
if n in [ 2, 3, 4, 5, 6, 7 ] then
Add( dims, n );
else
Print( "#W OneIrreducibleSolvableGroup: ",
"n = ", n, " outside range of library\n" );
fi;
od;
if dims = [ ] then
Error( "all Dimension arguments outside range of library" );
fi;
# Special case for CharFFE
elif arg[2*i-1] = Characteristic then
if not IsList( arg[2*i] ) then
arg[2*i] := [ arg[2*i] ];
fi;
chars := [ ];
for p in arg[2*i] do
if p in [ 2, 3, 5, 7, 11, 13 ] then
Add( chars, p );
else
Print( "#W OneIrreducibleSolvableGroup: ",
"p = ", p, " outside range of library\n" );
fi;
od;
if chars = [ ] then
Error( "all Characteristic arguments outside range of library" );
fi;
# Special case for Size
elif arg[2*i-1] = Size then
if IsList( arg[2*i] ) then
sizes := arg[2*i];
else
sizes := [ arg[2*i] ];
fi;
# Special case for IsPrimitiveMatrixGroup
elif arg[2*i-1] in [ IsLinearlyPrimitive, IsPrimitiveMatrixGroup] then
if IsBool( arg[2*i] ) then
linprim := arg[2*i];
else
Error( "IsPrimitiveMatrixGroup argument must be boolean" );
fi;
# Special case for MinimalBlockDimension
elif arg[2*i-1] = MinimalBlockDimension then
if IsList( arg[2*i] ) then
minblockdims := arg[2*i];
else
minblockdims := [ arg[2*i] ];
fi;
# General case
elif IsFunction( arg[2*i-1] ) then
Add( funs, arg[2*i-1] );
Add( vals, arg[2*i] );
else
Error( "<fun",i,"> must be a function" );
fi;
od;
# Find the allowable (n,p) pairs
if not IsBound( dims ) and not IsBound( chars ) then
nppairs := [ [2,2], [2,3], [2,5], [2,7], [2,11], [2,13],
[3,2], [3,3], [3,5],
[4,2], [4,3],
[5,2], [5,3],
[6,2],
[7,2] ];
elif IsBound( dims ) and IsBound( chars ) then
nppairs := [ ];
for n in dims do
for p in chars do
if p^n < 256 then
Add( nppairs, [ n, p ] );
else
Print( "#W OneIrreducibleSolvableGroup: n = ", n,
", p = ", p, " outside range of library\n" );
fi;
od;
od;
if nppairs = [ ] then
Error( "none of the specified (n,p) pairs satisfy p^n < 256" );
fi;
else
if not IsBound( dims ) then
dims := [ 2, 3, 4, 5, 6, 7 ];
else
chars := [ 2, 3, 5, 7, 11, 13 ];
fi;
nppairs := [ ];
for n in dims do
for p in chars do
if p^n < 256 then
Add( nppairs, [ n, p ] );
fi;
od;
od;
fi;
# Find the group.
# Loop through the allowable (n,p) pairs
for np in nppairs do
n := np[ 1 ];
p := np[ 2 ];
# Loop through the group descriptions
for k in [1..Length( IrredSolGroupList[ n ][ p ] )] do
gp := [ ];
desc := IrredSolGroupList[ n ][ p ][ k ];
# Check if the description satisfies the special case criteria.
# If it does, create the group
if ( not IsBound( sizes ) or desc[1] in sizes )
and ( not IsBound( linprim ) or (desc[2] = 0) = linprim )
and ( not IsBound( minblockdims ) or desc[2] in minblockdims )
then
gp := IrreducibleSolvableGroupMS( n, p, k );
fi;
# Now see if the group (if created) satisfies the other criteria.
# If it does, return it
if gp <> [ ] then
passtest := true;
i := 1;
while passtest and i <= Length( funs ) do
passtest := funs[ i ]( gp ) = vals[ i ]
or ( IsList( vals[ i ] )
and funs[ i ]( gp ) in vals[ i ] );
i := i + 1;
od;
if passtest then
return gp;
fi;
fi;
od;
od;
return false;
end); # OneIrreducibleSolvableGroup( fun1, val1, fun2, val2, ... )
#############################################################################
##
#E
##
|