/usr/share/gnu-smalltalk/examples/DeltaBlue.st is in gnu-smalltalk-common 3.2.5-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 | "======================================================================
|
| The Richards Benchmark in Smalltalk
|
|
======================================================================"
"======================================================================
|
| Copyright 1996 John Maloney and Mario Wolczko
|
| This file is part of GNU Smalltalk.
|
| GNU Smalltalk is free software; you can redistribute it and/or modify it
| under the terms of the GNU General Public License as published by the Free
| Software Foundation; either version 2, or (at your option) any later version.
|
| GNU Smalltalk is distributed in the hope that it will be useful, but WITHOUT
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
| FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
| details.
|
| You should have received a copy of the GNU General Public License along with
| GNU Smalltalk; see the file COPYING. If not, write to the Free Software
| Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
======================================================================"
Object subclass: #Planner
instanceVariableNames: 'currentMark '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-DeltaBlue'!
Planner class
instanceVariableNames: 'currentPlanner '!
Planner comment:
'This benchmark is an implementation of the DeltaBlue Constraint Solver
described in `The DeltaBlue Algorithm: An Incremental Constraint
Hierarchy Solver'', by Bjorn N. Freeman-Benson and John Maloney,
Communications of the ACM, January 1990 (also as University of
Washington TR 89-08-06).
To run the benchmark, execute the expression `Planner standardBenchmark''.'!
Object subclass: #Strength
instanceVariableNames: 'symbolicValue arithmeticValue '
classVariableNames: 'AbsoluteStrongest AbsoluteWeakest Required StrengthConstants StrengthTable '
poolDictionaries: ''
category: 'DB-DeltaBlue'!
Strength comment:
'Strengths are used to measure the relative importance of constraints. The
hierarchy of available strengths is determined by the class variable
StrengthTable (see my class initialization method). Because Strengths are
invariant, references to Strength instances are shared (i.e. all references to
"Strength of: #required" point to a single, shared instance). New strengths may
be inserted in the strength hierarchy without disrupting current constraints.
Instance variables:
symbolicValue symbolic strength name (e.g. #required) <Symbol>
arithmeticValue index of the constraint in the hierarchy, used for comparisons <Number>
'!
Object subclass: #AbstractConstraint
instanceVariableNames: 'strength '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-DeltaBlue'!
AbstractConstraint comment:
'I am an abstract class representing a system-maintainable relationship (or
"constraint") between a set of variables. I supply a strength instance
variable; concrete subclasses provide a means of storing the constrained
variables and other information required to represent a constraint.
Instance variables:
strength the strength of this constraint <Strength>
'!
Object subclass: #Variable
instanceVariableNames: 'value constraints determinedBy walkStrength stay mark '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-DeltaBlue'!
Variable comment:
'I represent a constrained variable. In addition to my value, I maintain the
structure of the constraint graph, the current dataflow graph, and various
parameters of interest to the DeltaBlue incremental constraint solver.
Instance variables:
value my value; changed by constraints, read by client <Object>
constraints normal constraints that reference me <Array of Constraint>
determinedBy the constraint that currently determines
my value (or nil if there isn''t one) <Constraint>
walkStrength my walkabout strength <Strength>
stay true if I am a planning-time constant <Boolean>
mark used by the planner to mark constraints <Number>'!
AbstractConstraint subclass: #UnaryConstraint
instanceVariableNames: 'output satisfied '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
UnaryConstraint comment:
'I am an abstract superclass for constraints having a single possible output
variable.
Instance variables:
output possible output variable <Variable>
satisfied true if I am currently satisfied <Boolean>'!
UnaryConstraint subclass: #EditConstraint
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
EditConstraint comment:
'I am a unary input constraint used to mark a variable that the client
wishes to change.'!
UnaryConstraint subclass: #StayConstraint
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
StayConstraint comment:
'I mark variables that should, with some level of preference, stay the same.
I have one method with zero inputs and one output, which does nothing. Planners
may exploit the fact that, if I am satisfied, my output will not change during
plan execution. This is called "stay optimization."'!
AbstractConstraint subclass: #BinaryConstraint
instanceVariableNames: 'v1 v2 direction '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
BinaryConstraint comment:
'I am an abstract superclass for constraints having two possible output
variables.
Instance variables:
v1, v2 possible output variables <Variable>
direction one of:
#forward (v2 is output)
#backward ( v1 is output)
nil (not satisfied)'!
BinaryConstraint subclass: #ScaleConstraint
instanceVariableNames: 'scale offset '
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
ScaleConstraint comment:
'I relate two variables by the linear scaling relationship:
"v2 = (v1 * scale) + offset". Either v1 or v2 may be changed to maintain this
relationship but the scale factor and offset are considered read-only.
Instance variables:
scale scale factor input variable <Variable>
offset offset input variable <Variable>'!
BinaryConstraint subclass: #EqualityConstraint
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'DB-Constraints'!
EqualityConstraint comment:
'I constrain two variables to have the same value: "v1 = v2".'!
OrderedCollection variableSubclass: #Plan
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'DB-DeltaBlue'!
Plan comment:
'A Plan is an ordered list of constraints to be executed in sequence to
resatisfy all currently satisfiable constraints in the face of one or more
changing inputs.'!
!UnaryConstraint methodsFor: 'initialize-release'!
var: aVariable strength: strengthSymbol
"Initialize myself with the given variable and strength."
strength := Strength of: strengthSymbol.
output := aVariable.
satisfied := false.
self addConstraint.! !
!UnaryConstraint methodsFor: 'queries'!
isSatisfied
"Answer true if this constraint is satisfied in the current solution."
^satisfied! !
!UnaryConstraint methodsFor: 'add/remove'!
addToGraph
"Add myself to the constraint graph."
output addConstraint: self.
satisfied := false.!
removeFromGraph
"Remove myself from the constraint graph."
(output == nil) ifFalse: [output removeConstraint: self].
satisfied := false.! !
!UnaryConstraint methodsFor: 'planning'!
chooseMethod: mark
"Decide if I can be satisfied and record that decision."
satisfied :=
(output mark ~= mark) and:
[strength stronger: output walkStrength].!
execute
"Enforce this constraint. Assume that it is satisfied."
self subclassResponsibility!
inputsDo: aBlock
"I have no input variables."!
markUnsatisfied
"Record the fact that I am unsatisfied."
satisfied := false.!
output
"Answer my current output variable."
^output!
recalculate
"Calculate the walkabout strength, the stay flag, and, if it is 'stay',
the value for the current output of this constraint. Assume this
constraint is satisfied."
output walkStrength: strength.
output stay: (self isInput not).
(output stay) ifTrue: [self execute]. "stay optimization"! !
!EditConstraint methodsFor: 'queries'!
isInput
"I indicate that a variable is to be changed by imperative code."
^true! !
!EditConstraint methodsFor: 'execution'!
execute
"Edit constraints do nothing."! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
EditConstraint class
instanceVariableNames: ''!
!EditConstraint class methodsFor: 'instance creation'!
var: aVariable strength: strengthSymbol
"Install an edit constraint with the given strength on the given
variable."
^(self new) var: aVariable strength: strengthSymbol! !
!StayConstraint methodsFor: 'execution'!
execute
"Stay constraints do nothing."! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
StayConstraint class
instanceVariableNames: ''!
!StayConstraint class methodsFor: 'instance creation'!
var: aVariable strength: strengthSymbol
"Install a stay constraint with the given strength on the given variable."
^(self new) var: aVariable strength: strengthSymbol! !
!BinaryConstraint methodsFor: 'initialize-release'!
var: variable1 var: variable2 strength: strengthSymbol
"Initialize myself with the given variables and strength."
strength := Strength of: strengthSymbol.
v1 := variable1.
v2 := variable2.
direction := nil.
self addConstraint.! !
!BinaryConstraint methodsFor: 'queries'!
isSatisfied
"Answer true if this constraint is satisfied in the current solution."
^direction notNil! !
!BinaryConstraint methodsFor: 'add/remove'!
addToGraph
"Add myself to the constraint graph."
v1 addConstraint: self.
v2 addConstraint: self.
direction := nil.!
removeFromGraph
"Remove myself from the constraint graph."
(v1 == nil) ifFalse: [v1 removeConstraint: self].
(v2 == nil) ifFalse: [v2 removeConstraint: self].
direction := nil.! !
!BinaryConstraint methodsFor: 'planning'!
chooseMethod: mark
"Decide if I can be satisfied and which way I should flow based on
the relative strength of the variables I relate, and record that
decision."
(v1 mark == mark) ifTrue: "forward or nothing"
[((v2 mark ~= mark) and: [strength stronger: v2 walkStrength])
ifTrue: [^direction := #forward]
ifFalse: [^direction := nil]].
(v2 mark == mark) ifTrue: "backward or nothing"
[((v1 mark ~= mark) and: [strength stronger: v1 walkStrength])
ifTrue: [^direction := #backward]
ifFalse: [^direction := nil]].
"if we get here, neither variable is marked, so we have choice"
(v1 walkStrength weaker: v2 walkStrength)
ifTrue:
[(strength stronger: v1 walkStrength)
ifTrue: [^direction := #backward]
ifFalse: [^direction := nil]]
ifFalse:
[(strength stronger: v2 walkStrength)
ifTrue: [^direction := #forward]
ifFalse: [^direction := nil]].!
execute
"Enforce this constraint. Assume that it is satisfied."
self subclassResponsibility!
inputsDo: aBlock
"Evaluate the given block on my current input variable."
(direction == #forward)
ifTrue: [aBlock value: v1]
ifFalse: [aBlock value: v2].!
markUnsatisfied
"Record the fact that I am unsatisfied."
direction := nil.!
output
"Answer my current output variable."
(direction == #forward)
ifTrue: [^v2]
ifFalse: [^v1]!
recalculate
"Calculate the walkabout strength, the stay flag, and, if it is 'stay',
the value for the current output of this constraint. Assume this
constraint is satisfied."
| in out |
(direction == #forward)
ifTrue: [in := v1. out := v2]
ifFalse: [in := v2. out := v1].
out walkStrength: (strength weakest: in walkStrength).
out stay: (in stay).
(out stay) ifTrue: [self execute]. "stay optimization"! !
!ScaleConstraint methodsFor: 'initialize-release'!
src: srcVar scale: scaleVar offset: offsetVar dst: dstVar strength: strengthSymbol
"Initialize myself with the given variables and strength."
strength := Strength of: strengthSymbol.
v1 := srcVar.
v2 := dstVar.
scale := scaleVar.
offset := offsetVar.
direction := nil.
self addConstraint.! !
!ScaleConstraint methodsFor: 'add/remove'!
addToGraph
"Add myself to the constraint graph."
v1 addConstraint: self.
v2 addConstraint: self.
scale addConstraint: self.
offset addConstraint: self.
direction := nil.!
removeFromGraph
"Remove myself from the constraint graph."
(v1 == nil) ifFalse: [v1 removeConstraint: self].
(v2 == nil) ifFalse: [v2 removeConstraint: self].
(scale == nil) ifFalse: [scale removeConstraint: self].
(offset == nil) ifFalse: [offset removeConstraint: self].
direction := nil.! !
!ScaleConstraint methodsFor: 'planning'!
execute
"Enforce this constraint. Assume that it is satisfied."
(direction == #forward)
ifTrue: [v2 value: (v1 value * scale value) + offset value]
ifFalse: [v1 value: (v2 value - offset value) // scale value].!
inputsDo: aBlock
"Evaluate the given block on my current input variable."
(direction == #forward)
ifTrue: [aBlock value: v1; value: scale; value: offset]
ifFalse: [aBlock value: v2; value: scale; value: offset].!
recalculate
"Calculate the walkabout strength, the stay flag, and, if it is 'stay',
the value for the current output of this constraint. Assume this
constraint is satisfied."
| in out |
(direction == #forward)
ifTrue: [in := v1. out := v2]
ifFalse: [out := v1. in := v2].
out walkStrength: (strength weakest: in walkStrength).
out stay: ((in stay) and: [(scale stay) and: [offset stay]]).
(out stay) ifTrue: [self execute]. "stay optimization"! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
ScaleConstraint class
instanceVariableNames: ''!
!ScaleConstraint class methodsFor: 'instance creation'!
var: src var: scale var: offset var: dst strength: strengthSymbol
"Install a scale constraint with the given strength on the given
variables."
^(self new) src: src scale: scale offset: offset dst: dst strength: strengthSymbol! !
!EqualityConstraint methodsFor: 'execution'!
execute
"Enforce this constraint. Assume that it is satisfied."
(direction == #forward)
ifTrue: [v2 value: v1 value]
ifFalse: [v1 value: v2 value].! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
EqualityConstraint class
instanceVariableNames: ''!
!EqualityConstraint class methodsFor: 'instance creation'!
var: variable1 var: variable2 strength: strengthSymbol
"Install a constraint with the given strength equating the given
variables."
^(self new) var: variable1 var: variable2 strength: strengthSymbol! !
!Planner methodsFor: 'initialize'!
initialize
"Planner initialize"
currentMark := 1.! !
!Planner methodsFor: 'add/remove'!
incrementalAdd: c
"Attempt to satisfy the given constraint and, if successful,
incrementally update the dataflow graph.
Details: If satifying the constraint is successful, it may override a
weaker constraint on its output. The algorithm attempts to resatisfy
that constraint using some other method. This process is repeated
until either a) it reaches a variable that was not previously
determined by any constraint or b) it reaches a constraint that
is too weak to be satisfied using any of its methods. The variables
of constraints that have been processed are marked with a unique mark
value so that we know where we've been. This allows the algorithm to
avoid getting into an infinite loop even if the constraint graph has
an inadvertent cycle."
| mark overridden |
mark := self newMark.
overridden := c satisfy: mark.
[overridden == nil] whileFalse:
[overridden := overridden satisfy: mark].!
incrementalRemove: c
"Entry point for retracting a constraint. Remove the given constraint,
which should be satisfied, and incrementally update the dataflow
graph.
Details: Retracting the given constraint may allow some currently
unsatisfiable downstream constraint be satisfied. We thus collect a
list of unsatisfied downstream constraints and attempt to satisfy
each one in turn. This list is sorted by constraint strength,
strongest first, as a heuristic for avoiding unnecessarily adding
and then overriding weak constraints."
| out unsatisfied |
out := c output.
c markUnsatisfied.
c removeFromGraph.
unsatisfied := self removePropagateFrom: out.
unsatisfied do: [: u | self incrementalAdd: u].! !
!Planner methodsFor: 'planning/value propagation'!
extractPlanFromConstraints: constraints
"Extract a plan for resatisfaction starting from the outputs of the
given constraints, usually a set of input constraints."
| sources |
sources := OrderedCollection new.
constraints do:
[: c | ((c isInput) and: [c isSatisfied]) ifTrue: [sources add: c]].
^self makePlan: sources!
extractPlanFromVariables: variables
"Extract a plan from the dataflow graph having the given variables. It
is assumed that the given set of variables is complete, or at least
that it contains all the input variables."
| sources |
sources := OrderedCollection new.
variables do:
[: v |
(v constraints) do:
[: c | ((c isInput) and: [c isSatisfied]) ifTrue: [sources add: c]]].
^self makePlan: sources!
makePlan: sources
"Extract a plan for resatisfaction starting from the given satisfied
source constraints, usually a set of input constraints. This method
assumes that stay optimization is desired; the plan will contain only
constraints whose output variables are not stay. Constraints that do
no computation, such as stay and edit constraints, are not included
in the plan.
Details: The outputs of a constraint are marked when it is added to
the plan under construction. A constraint may be appended to the plan
when all its input variables are known. A variable is known if either
a) the variable is marked (indicating that has been computed by a
constraint appearing earlier in the plan), b) the variable is 'stay'
(i.e. it is a constant at plan execution time), or c) the variable
is not determined by any constraint. The last provision is for past
states of history variables, which are not stay but which are also
not computed by any constraint."
| mark plan todo c |
mark := self newMark.
plan := Plan new.
todo := sources.
[todo isEmpty] whileFalse:
[c := todo removeFirst.
((c output mark ~= mark) and: "not in plan already and..."
[c inputsKnown: mark]) ifTrue: "eligible for inclusion"
[plan addLast: c.
c output mark: mark.
self addConstraintsConsuming: c output to: todo]].
^plan!
propagateFrom: v
"The given variable has changed. Propagate new values downstream."
| todo c |
todo := OrderedCollection new.
self addConstraintsConsuming: v to: todo.
[todo isEmpty] whileFalse:
[c := todo removeFirst.
c execute.
self addConstraintsConsuming: c output to: todo].! !
!Planner methodsFor: 'private'!
addConstraintsConsuming: v to: aCollection
| determiningC |
determiningC := v determinedBy.
v constraints do:
[: c |
((c == determiningC) or: [c isSatisfied not]) ifFalse:
[aCollection add: c]].!
addPropagate: c mark: mark
"Recompute the walkabout strengths and stay flags of all variables
downstream of the given constraint and recompute the actual values
of all variables whose stay flag is true. If a cycle is detected,
remove the given constraint and answer false. Otherwise, answer true.
Details: Cycles are detected when a marked variable is encountered
downstream of the given constraint. The sender is assumed to have
marked the inputs of the given constraint with the given mark. Thus,
encountering a marked node downstream of the output constraint means
that there is a path from the constraint's output to one of its
inputs."
| todo d |
todo := OrderedCollection with: c.
[todo isEmpty] whileFalse:
[d := todo removeFirst.
(d output mark = mark) ifTrue:
[self incrementalRemove: c.
^false].
d recalculate.
self addConstraintsConsuming: d output to: todo].
^true!
changeVar: aVariable newValue: newValue
| editConstraint plan |
editConstraint := EditConstraint var: aVariable strength: #preferred.
plan := self extractPlanFromConstraints: (Array with: editConstraint).
10 timesRepeat: [
aVariable value: newValue.
plan execute].
editConstraint destroyConstraint.!
constraintsConsuming: v do: aBlock
| determiningC |
determiningC := v determinedBy.
v constraints do:
[: c |
((c == determiningC) or: [c isSatisfied not]) ifFalse:
[aBlock value: c]].!
newMark
"Select a previously unused mark value.
Details: We just keep incrementing. If necessary, the counter will
turn into a LargePositiveInteger. In that case, it will be a bit
slower to compute the next mark but the algorithms will all behave
correctly. We reserve the value '0' to mean 'unmarked'. Thus, this
generator starts at '1' and will never produce '0' as a mark value."
^currentMark := currentMark + 1!
removePropagateFrom: out
"Update the walkabout strengths and stay flags of all variables
downstream of the given constraint. Answer a collection of unsatisfied
constraints sorted in order of decreasing strength."
| unsatisfied todo v nextC |
unsatisfied := SortedCollection sortBlock:
[: c1 : c2 | c1 strength stronger: c2 strength].
out determinedBy: nil.
out walkStrength: Strength absoluteWeakest.
out stay: true.
todo := OrderedCollection with: out.
[todo isEmpty] whileFalse:
[v := todo removeFirst.
v constraints do:
[: c | (c isSatisfied) ifFalse: [unsatisfied add: c]].
self constraintsConsuming: v do:
[: c |
c recalculate.
todo add: c output]].
^unsatisfied! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
!Planner class methodsFor: 'instance creation'!
new
^currentPlanner := super new initialize! !
!Planner class methodsFor: 'benchmarks'!
chainTest: n
"Do chain-of-equality-constraints performance tests."
| vars editConstraint plan planner |
planner := Planner new.
vars := (1 to: n+1) collect: [ :i | Variable new].
"thread a chain of equality constraints through the variables"
1 to: n do:
[ :i || v1 v2 |
v1 := vars at: i.
v2 := vars at: i + 1.
EqualityConstraint var: v1 var: v2 strength: #required].
StayConstraint var: vars last strength: #strongDefault.
editConstraint := EditConstraint var: (vars first) strength: #preferred.
plan := planner extractPlanFromConstraints: (Array with: editConstraint).
1 to: 100 do: [ :v |
vars first value: v.
plan execute.
vars last value ~= v ifTrue: [self error: 'Chain test failed!!']].
editConstraint destroyConstraint!
projectionTest: n
"This test constructs a two sets of variables related to each other by
a simple linear transformation (scale and offset)."
| scale offset src dst planner dests |
planner := Planner new.
dests := OrderedCollection new.
scale := Variable value: 10.
offset := Variable value: 1000.
1 to: n do:
[ :i |
src := Variable value: i.
dst := Variable value: i.
dests add: dst.
StayConstraint var: src strength: #default.
ScaleConstraint var: src var: scale var: offset var: dst strength: #required].
planner changeVar: src newValue: 17.
dst value ~= 1170 ifTrue: [self error: 'Projection test 1 failed!!'].
planner changeVar: dst newValue: 1050.
src value ~= 5 ifTrue: [self error: 'Projection test 2 failed!!'].
planner changeVar: scale newValue: 5.
1 to: n - 1 do: [ :i |
(dests at: i) value ~= (i*5 + 1000)
ifTrue: [self error: 'Projection test 3 failed!!']].
planner changeVar: offset newValue: 2000.
1 to: n - 1 do: [ :i |
(dests at: i) value ~= (i*5 + 2000)
ifTrue: [self error: 'Projection test 4 failed!!']].!
report: string times: count run: aBlock
"Report the time required to execute the given block."
| time |
time := Time millisecondsToRun: [count timesRepeat: aBlock].
Transcript show: string, ' ', (time // count) printString, ' milliseconds'; cr.!
standardBenchmark
"This the combined benchmark."
"Planner standardBenchmark"
self report: 'Chain and projection tests' times: 100 run: [
self chainTest: 100.
self projectionTest: 100
]! !
!Planner class methodsFor: 'accessing'!
current
^currentPlanner! !
!Plan methodsFor: 'execution'!
execute
"Execute my constraints in order."
self do: [: c | c execute].! !
!Strength methodsFor: 'comparing'!
sameAs: aStrength
"Answer true if I am the same strength as the given Strength."
^arithmeticValue = aStrength arithmeticValue!
stronger: aStrength
"Answer true if I am stronger than the given Strength."
^arithmeticValue < aStrength arithmeticValue!
weaker: aStrength
"Answer true if I am weaker than the given Strength."
^arithmeticValue > aStrength arithmeticValue! !
!Strength methodsFor: 'max/min'!
strongest: aStrength
"Answer the stronger of myself and aStrength."
(aStrength stronger: self)
ifTrue: [^aStrength]
ifFalse: [^self].!
weakest: aStrength
"Answer the weaker of myself and aStrength."
(aStrength weaker: self)
ifTrue: [^aStrength]
ifFalse: [^self].! !
!Strength methodsFor: 'printing'!
printOn: aStream
"Append a string which represents my strength onto aStream."
aStream nextPutAll: '%', symbolicValue, '%'.! !
!Strength methodsFor: 'private'!
arithmeticValue
"Answer my arithmetic value. Used for comparisons. Note that
STRONGER constraints have SMALLER arithmetic values."
^arithmeticValue!
initializeWith: symVal
"Record my symbolic value and reset my arithmetic value."
symbolicValue := symVal.
arithmeticValue := StrengthTable at: symbolicValue.! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
Strength class
instanceVariableNames: ''!
!Strength class methodsFor: 'class initialization'!
initialize
"Initialize the symbolic strength table. Fix the internally caches
values of all existing instances."
"Strength initialize"
StrengthTable := Dictionary new.
StrengthTable at: #absoluteStrongest put: -10000.
StrengthTable at: #required put: -800.
StrengthTable at: #strongPreferred put: -600.
StrengthTable at: #preferred put: -400.
StrengthTable at: #strongDefault put: -200.
StrengthTable at: #default put: 0.
StrengthTable at: #weakDefault put: 500.
StrengthTable at: #absoluteWeakest put: 10000.
StrengthConstants := Dictionary new.
StrengthTable keys do:
[: strengthSymbol |
StrengthConstants
at: strengthSymbol
put: ((super new) initializeWith: strengthSymbol)].
AbsoluteStrongest := Strength of: #absoluteStrongest.
AbsoluteWeakest := Strength of: #absoluteWeakest.
Required := Strength of: #required.! !
!Strength class methodsFor: 'instance creation'!
of: aSymbol
"Answer an instance with the specified strength."
^StrengthConstants at: aSymbol! !
!Strength class methodsFor: 'constants'!
absoluteStrongest
^AbsoluteStrongest!
absoluteWeakest
^AbsoluteWeakest!
required
^Required! !
!AbstractConstraint methodsFor: 'accessing'!
strength
"Answer my strength."
^strength!
strength: strengthSymbol
"Set my strength."
strength := Strength of: strengthSymbol.! !
!AbstractConstraint methodsFor: 'queries'!
isInput
"Normal constraints are not input constraints. An input constraint is
one that depends on external state, such as the mouse, the keyboard,
a clock, or some arbitrary piece of imperative code."
^false!
isSatisfied
"Answer true if this constraint is satisfied in the current solution."
self subclassResponsibility! !
!AbstractConstraint methodsFor: 'add/remove'!
addConstraint
"Activate this constraint and attempt to satisfy it."
self addToGraph.
Planner current incrementalAdd: self.!
addToGraph
"Add myself to the constraint graph."
self subclassResponsibility!
destroyConstraint
"Deactivate this constraint, remove it from the constraint graph,
possibly causing other constraints to be satisfied, and destroy it."
(self isSatisfied) ifTrue: [Planner current incrementalRemove: self].
self removeFromGraph.
self release.!
removeFromGraph
"Remove myself from the constraint graph."
self subclassResponsibility! !
!AbstractConstraint methodsFor: 'planning'!
chooseMethod: mark
"Decide if I can be satisfied and record that decision. The output of
the choosen method must not have the given mark and must have a
walkabout strength less than that of this constraint."
self subclassResponsibility!
execute
"Enforce this constraint. Assume that it is satisfied."
self subclassResponsibility!
inputsDo: aBlock
"Assume that I am satisfied. Evaluate the given block on all my current
input variables."
self subclassResponsibility!
inputsKnown: mark
"Assume that I am satisfied. Answer true if all my current inputs are
known. A variable is known if either a) it is 'stay' (i.e. it is a
constant at plan execution time), b) it has the given mark (indicating
that it has been computed by a constraint appearing earlier in the
plan), or c) it is not determined by any constraint."
self inputsDo:
[: v |
((v mark = mark) or: [(v stay) or: [v determinedBy == nil]]) ifFalse:
[^false]].
^true!
markUnsatisfied
"Record the fact that I am unsatisfied."
self subclassResponsibility!
output
"Answer my current output variable. Raise an error if I am not
currently satisfied."
self subclassResponsibility!
recalculate
"Calculate the walkabout strength, the stay flag, and, if it is 'stay',
the value for the current output of this constraint. Assume this
constraint is satisfied."
self subclassResponsibility!
satisfy: mark
"Attempt to find a way to enforce this (still unsatisfied) constraint.
If successful, record the solution, perhaps modifying the current
dataflow graph. Answer the constraint that this constraint overrides,
if there is one, or nil, if there isn't."
| overridden out |
self chooseMethod: mark.
(self isSatisfied)
ifTrue: "constraint can be satisfied"
["mark inputs to allow cycle detection in addPropagate"
self inputsDo: [: in | in mark: mark].
out := self output.
overridden := out determinedBy.
(overridden == nil) ifFalse: [overridden markUnsatisfied].
out determinedBy: self.
(Planner current addPropagate: self mark: mark) ifFalse:
[self notify:
('Cycle encountered adding:\ ',
self printString,
'\Constraint removed.') withCRs.
^nil].
out mark: mark]
ifFalse: "constraint cannot be satisfied"
[overridden := nil.
(strength sameAs: (Strength required)) ifTrue:
[self notify: 'Failed to satisfy a required constraint']].
^overridden! !
!AbstractConstraint methodsFor: 'printing'!
longPrintOn: aStream
| bindings |
aStream nextPut: $(.
self shortPrintOn: aStream.
aStream space; nextPutAll: self strength printString.
(self isSatisfied)
ifTrue:
[aStream cr; space; space; space.
self inputsDo:
[: in | aStream nextPutAll: 'v', in asOop printString, ' '].
aStream nextPutAll: '-> '.
aStream nextPutAll: 'v', self output asOop printString]
ifFalse:
[aStream space; nextPutAll: 'UNSATISFIED'].
aStream nextPut: $); cr.!
printOn: aStream
self shortPrintOn: aStream!
shortPrintOn: aStream
aStream nextPutAll: self class name, '(', self asOop printString, ')'.! !
!Variable methodsFor: 'initialize-release'!
initialize
value := 0.
constraints := OrderedCollection new: 2.
determinedBy := nil.
walkStrength := Strength absoluteWeakest.
stay := true.
mark := 0.! !
!Variable methodsFor: 'access'!
addConstraint: aConstraint
"Add the given constraint to the set of all constraints that refer
to me."
constraints add: aConstraint.!
constraints
"Answer the set of constraints that refer to me."
^constraints!
determinedBy
"Answer the constraint that determines my value in the current
dataflow."
^determinedBy!
determinedBy: aConstraint
"Record that the given constraint determines my value in the current
data flow."
determinedBy := aConstraint.!
mark
"Answer my mark value."
^mark!
mark: markValue
"Set my mark value."
mark := markValue.!
removeConstraint: c
"Remove all traces of c from this variable."
constraints remove: c ifAbsent: [].
(determinedBy == c) ifTrue: [determinedBy := nil].!
stay
"Answer my stay flag."
^stay!
stay: aBoolean
"Set my stay flag."
stay := aBoolean!
value
"Answer my value."
^value!
value: anObject
"Set my value."
value := anObject.!
walkStrength
"Answer my walkabout strength in the current dataflow."
^walkStrength!
walkStrength: aStrength
"Set my walkabout strength in the current dataflow."
walkStrength := aStrength.! !
!Variable methodsFor: 'changes'!
setValue: aValue
"Attempt to assign the given value to me using a strength of
#preferred."
self setValue: aValue strength: #preferred.!
setValue: aValue strength: strengthSymbol
"Attempt to assign the given value to me using the given strength."
| editConstraint |
editConstraint := EditConstraint var: self strength: strengthSymbol.
(editConstraint isSatisfied) ifTrue:
[self value: aValue.
Planner propagateFrom: self].
editConstraint destroyConstraint.! !
!Variable methodsFor: 'printing'!
longPrintOn: aStream
self shortPrintOn: aStream.
aStream nextPutAll: ' Constraints: '.
(constraints isEmpty)
ifTrue: [aStream cr; tab; nextPutAll: 'none']
ifFalse:
[constraints do:
[: c | aStream cr; tab. c shortPrintOn: aStream]].
(determinedBy isNil) ifFalse:
[aStream cr; nextPutAll: ' Determined by: '.
aStream cr; tab. determinedBy shortPrintOn: aStream].
aStream cr.!
printOn: aStream
self shortPrintOn: aStream!
shortPrintOn: aStream
aStream nextPutAll: 'V(', self asOop printString, ', '.
aStream nextPutAll: walkStrength printString, ', '.
(stay isNil) ifFalse:
[aStream nextPutAll: (stay ifTrue: ['stay, '] ifFalse: ['changing, '])].
aStream nextPutAll: value printString.
aStream nextPutAll: ')'.
aStream cr.! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
Variable class
instanceVariableNames: ''!
!Variable class methodsFor: 'instance creation'!
new
^super new initialize!
value: aValue
^(super new) initialize; value: aValue! !
Strength initialize!
|