This file is indexed.

/usr/share/gnu-smalltalk/kernel/Integer.st is in gnu-smalltalk-common 3.2.5-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
"======================================================================
|
|   Integer Method Definitions
|
|
 ======================================================================"

"======================================================================
|
| Copyright 1988,92,94,95,99,2000,2001,2002,2003,2005,2006,2008,2009,2010
| Free Software Foundation, Inc.
| Written by Steve Byrne.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
| 
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
| General Public License for more details.
| 
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.  
|
 ======================================================================"



Number subclass: Integer [
    
    <import: CSymbols>
    <category: 'Language-Data types'>
    <comment: 'I am the abstract integer class of the GNU Smalltalk system.  My
subclasses'' instances can represent signed integers of various
sizes (a subclass is picked according to the size), with varying
efficiency.'>

    Integer class >> coerce: aNumber [
	"Answer aNumber converted to a kind of Integer"

	<category: 'converting'>
	^aNumber truncated
    ]

    hash [
	"Answer an hash value for the receiver"

	<category: 'basic'>
	^self
    ]

    timesRepeat: aBlock [
	"Evaluate aBlock a number of times equal to the receiver's value.
	 Compiled in-line for no argument aBlocks without temporaries, and
	 therefore not overridable."

	<category: 'iterators'>
	1 to: self do: [:each | aBlock value]
    ]

    digitAt: index [
	"Answer the index-th base-256 digit of the receiver (byte), expressed
	 in two's complement"

	<category: 'bit operators'>
	^(self bitShift: 8 - (8 * index)) bitAnd: 255
    ]

    bitAt: index [
	"Answer the index-th bit of the receiver (the LSB has an index
	 of 1)"

	<category: 'bit operators'>
	^(self bitShift: (index - 1) negated) bitAnd: 1
    ]

    bitAt: index put: value [
	"Answer an integer which is identical to the receiver,
	 possibly with the exception of the index-th bit of the
	 receiver (the LSB having an index of 1), which assumes
	 a value equal to the low-order bit of the second parameter."

	<category: 'bit operators'>
	| bit |
	bit := (value bitAnd: 1) bitXor: (self bitAt: index).
	bit := bit bitShift: index - 1.
	^self bitXor: bit
    ]

    bitInvert [
	"Return the 1's complement of the bits of the receiver"

	<category: 'bit operators'>
	^self bitXor: -1
    ]

    bitClear: aMask [
	"Answer an Integer equal to the receiver, except that all the bits
	 that are set in aMask are cleared."

	<category: 'bit operators'>
	^(self bitOr: aMask) bitXor: aMask
    ]

    allMask: anInteger [
	"True if all 1 bits in anInteger are 1 in the receiver"

	<category: 'bit operators'>
	^(self bitAnd: anInteger) = anInteger
    ]

    anyMask: anInteger [
	"True if any 1 bits in anInteger are 1 in the receiver"

	<category: 'bit operators'>
	^(self bitAnd: anInteger) ~= 0
    ]

    clearBit: index [
	"Clear the index-th bit of the receiver and answer a new Integer"

	<category: 'bit operators'>
	| bit |
	bit := 1 bitShift: index - 1.
	^(self bitOr: bit) bitXor: bit
    ]

    noMask: anInteger [
	"Answer true if no 1 bits in anInteger are 1 in the receiver."

	<category: 'bit operators'>
	^(self bitAnd: anInteger) = 0
    ]

    lowBit [
	"Return the index of the lowest order 1 bit of the receiver."

	<category: 'bit operators'>
	self subclassResponsibility
    ]

    highBit [
	"Return the index of the highest order 1 bit of the receiver."

	<category: 'bit operators'>
	self subclassResponsibility
    ]

    isBitSet: index [
	"Answer whether the index-th bit of the receiver is set"

	<category: 'bit operators'>
	^((self bitShift: (index - 1) negated) bitAnd: 1) == 1
    ]

    setBit: index [
	"Set the index-th bit of the receiver and answer a new Integer"

	<category: 'bit operators'>
	^self bitOr: (1 bitShift: index - 1)
    ]

    binomial: anInteger [
	"Compute the number of combinations of anInteger objects among
	 a number of objects given by the receiver."

	<category: 'math methods'>
	| n k mask gcd maxNum step num den stepNum stepDen |
	(self < 0 or: [anInteger < 0 or: [anInteger > self]]) 
	    ifTrue: [^self arithmeticError: 'binomial coefficient with invalid arguments'].

	"The easy one."
	k := anInteger + anInteger > self ifTrue: [self - anInteger] ifFalse: [anInteger].
	k = 0 ifTrue: [^1].

	"The number of SmallInteger factors we computed so far"
	step := 1.

	"Two stacks holding intermediate factors."
	num := OrderedCollection new.
	den := OrderedCollection new.

	"The next factors to be multiplied are k and n."
	n := self.
	
	[stepNum := stepDen := 1.
	
	[maxNum := SmallInteger largest // n.
	[stepNum <= maxNum] whileTrue: 
		[stepNum := stepNum * n.
		stepDen := stepDen * k.
		k = 1 
		    ifTrue: 
			["We're finishing, empty the stack and then simplify the
			 remaining common factors."

			gcd := stepNum gcd: stepDen.
			stepNum := stepNum divExact: gcd.
			stepDen := stepDen divExact: gcd.
			num size timesRepeat: 
				[stepNum := stepNum * num removeLast.
				stepDen := stepDen * den removeLast].
			^stepNum // stepDen].
		n := n - 1.
		k := k - 1].
	(gcd := stepNum gcd: stepDen) > 1 and: 
		[stepNum := stepNum divExact: gcd.
		stepDen := stepDen divExact: gcd.

		"The numerators and denominators have been simplified, try
		 to add some more factors."
		stepNum <= maxNum]] 
		whileTrue.

	"Pop factors from the stack and combine them.  The number of factors
	 we pop is equal to the order of the lowest bit set.
	 
	 That is, on the first iteration we push a size 1 LargeInteger;
	 on the second iteration we pop it and make a size 2 LargeInteger;
	 on the third iteration we push another size 1 LargeInteger;
	 on the fourth iteration we pop it and make a size 2 LargeInteger;
	 we then combine it with the other similarly sized integer and
	 make a size 4 LargeInteger; and so on.
	 
	 For the denominator the balancing is probably worse, since we
	 decide when to stop multiplying based on the numerator's magnitude,
	 but it is not a serious problem."
	mask := step bitXor: step - 1.
	[mask = 1] whileFalse: 
		[stepNum := stepNum * num removeLast.
		stepDen := stepDen * den removeLast.
		mask := mask bitShift: -1].
	gcd := stepNum gcd: stepDen.
	num addLast: (stepNum divExact: gcd).
	den addLast: (stepDen divExact: gcd).
	step := step + 1] 
		repeat
    ]

    factorial [
	"Return the receiver's factorial."

	<category: 'math methods'>
	| mask k n a b max stack |
	self < 0 ifTrue: [^self arithmeticError: 'factorial of a negative number'].
	self < 2 ifTrue: [^1].

	"The number of SmallInteger factors we computed so far"
	k := 1.

	"The next factor to be multiplied."
	n := self.

	"The stack holding intermediate factors."
	stack := OrderedCollection new.
	
	[a := n - 1.
	b := n.
	max := SmallInteger largest // n.
	
	[n := n - 2.
	n < 2 
	    ifTrue: 
		["Done, empty the stack and combine all the factors."

		a := a * b.
		stack size timesRepeat: [a := a * stack removeLast].
		^a].
	b < max] 
		whileTrue: 
		    [a := a * (n - 1).
		    b := b * n].

	"Compose the two SmallInteger factors"
	a := a * b.

	"Pop factors from the stack and combine them.  The number of factors
	 we pop is equal to the order of the lowest bit set.
	 
	 That is, on the first iteration we push a size 1 LargeInteger;
	 on the second iteration we pop it and make a size 2 LargeInteger;
	 on the third iteration we push another size 1 LargeInteger;
	 on the fourth iteration we pop it and make a size 2 LargeInteger;
	 we then combine it with the other similarly sized integer and
	 make a size 4 LargeInteger; and so on."
	mask := k bitXor: k - 1.
	[mask = 1] whileFalse: 
		[a := a * stack removeLast.
		mask := mask bitShift: -1].
	stack addLast: a.
	k := k + 1] 
		repeat
    ]

    estimatedLog [
	"Answer an estimate of (self abs floorLog: 10)"

	<category: 'math methods'>
	^(self highBit asFloatD / FloatD log10Base2) ceiling
    ]

    floorLog: radix [
	"Answer (self log: radix) floor. Optimized to answer an integer."

	<category: 'math methods'>
	| me answer |
	self < self zero 
	    ifTrue: 
		[^self arithmeticError: 'cannot extract logarithm of a negative number'].
	radix <= radix unity 
	    ifTrue: 
		[radix <= radix zero 
		    ifTrue: [^self arithmeticError: 'base of a logarithm cannot be negative'].
		radix = radix unity 
		    ifTrue: [^self arithmeticError: 'base of a logarithm cannot be 1'].
		^(self ceilingLog: radix reciprocal) negated].
	radix isInteger ifFalse: [^(radix coerce: self) floorLog: radix].
	me := self.
	answer := 0.
	[me >= radix] whileTrue: 
		[me := me // radix.
		answer := answer + 1].
	^answer
    ]

    ceilingLog: radix [
	"Answer (self log: radix) ceiling. Optimized to answer an integer."

	<category: 'math methods'>
	| me answer |
	self < self zero 
	    ifTrue: 
		[^self arithmeticError: 'cannot extract logarithm of a negative number'].
	radix <= radix unity 
	    ifTrue: 
		[radix <= radix zero 
		    ifTrue: [^self arithmeticError: 'base of a logarithm cannot be negative'].
		radix = radix unity 
		    ifTrue: [^self arithmeticError: 'base of a logarithm cannot be 1'].
		^(self floorLog: radix reciprocal) negated].
	radix isInteger ifFalse: [^(radix coerce: self) ceilingLog: radix].
	me := self.
	answer := 1.
	[me > radix] whileTrue: 
		[me := me // radix.
		answer := answer + 1].
	^answer
    ]

    gcd: anInteger [
	"Return the greatest common divisor (Euclid's algorithm) between the
	 receiver and anInteger"

	<category: 'math methods'>
	| a b remainder |
	self negative | anInteger negative ifTrue: [^self abs gcd: anInteger abs].
	self < anInteger 
	    ifTrue: 
		[a := anInteger.
		b := self]
	    ifFalse: 
		[a := self.
		b := anInteger].
	[b = 0] whileFalse: 
		[remainder := a \\ b.
		a := b.
		b := remainder].
	^a
    ]

    lcm: anInteger [
	"Return the least common multiple between the receiver and anInteger"

	<category: 'math methods'>
	^((self divExact: (self gcd: anInteger)) * anInteger) abs
    ]

    even [
	"Return whether the receiver is even"

	<category: 'math methods'>
	^(self bitAnd: 1) = 0
    ]

    odd [
	"Return whether the receiver is odd"

	<category: 'math methods'>
	^(self bitAnd: 1) ~= 0
    ]

    asCharacter [
	"Return self as a Character or UnicodeCharacter object."

	<category: 'converting'>
	^Character codePoint: self
    ]

    coerce: aNumber [
	"Coerce aNumber to the receiver's class."

	<category: 'converting'>
	^aNumber truncated
    ]

    ceiling [
	"Return the receiver - it's already truncated"

	<category: 'converting'>
	^self
    ]

    floor [
	"Return the receiver - it's already truncated"

	<category: 'converting'>
	^self
    ]

    truncated [
	"Return the receiver - it's already truncated"

	<category: 'converting'>
	^self
    ]

    rounded [
	"Return the receiver - it's already truncated"

	<category: 'converting'>
	^self
    ]

    asScaledDecimal: n [
	"Answer the receiver, converted to a ScaledDecimal object.
	 The scale is forced to be 0."

	<category: 'converting'>
	^ScaledDecimal newFromNumber: self asFraction scale: 0
    ]

    asFraction [
	"Return the receiver converted to a fraction"

	<category: 'converting'>
	^Fraction numerator: self denominator: 1
    ]

    isLiteralObject [
	"Answer whether the receiver is expressible as a Smalltalk literal."

	<category: 'printing'>
	^true
    ]

    storeLiteralOn: aStream [
	"Store on aStream some Smalltalk code which compiles to the receiver"

	<category: 'printing'>
	self storeOn: aStream
    ]

    printOn: aStream base: b [
	"Print on aStream the base b representation of the receiver"

	<category: 'printing'>
	aStream nextPutAll: (self printString: b)
    ]

    storeOn: aStream base: b [
	"Print on aStream Smalltalk code compiling to the receiver,
	 represented in base b"

	<category: 'printing'>
	aStream nextPutAll: (self printStringRadix: b)
    ]

    radix: baseInteger [
	"Return the base baseInteger representation of the receiver, with BBr in
	 front of it.  This method is deprecated, use #printStringRadix:
	 instead."

	<category: 'printing'>
	^self printStringRadix: baseInteger
    ]

    printStringRadix: baseInteger [
	"Return the base baseInteger representation of the receiver, with BBr in
	 front of it"

	<category: 'printing'>
	| sign num string size radixSize |
	sign := self < self zero.
	num := sign ifFalse: [self] ifTrue: [self negated].
	radixSize := (baseInteger floorLog: 10) + 1.
	size := (num floorLog: baseInteger) + radixSize + 2.
	sign ifTrue: [size := size + 1].
	string := String new: size.
	num replace: string withStringBase: baseInteger.
	string 
	    replaceFrom: 1
	    to: radixSize
	    with: (baseInteger printString: 10)
	    startingAt: 1.
	string at: radixSize + 1 put: $r.
	sign ifTrue: [string at: radixSize + 2 put: $-].
	^string
    ]

    printOn: aStream paddedWith: padding to: size [
	"Print on aStream the base 10 representation of the receiver,
	 padded if necessary to size characters with copies of padding."

	<category: 'printing'>
        self printOn: aStream paddedWith: padding to: size base: 10
    ]

    printPaddedWith: padding to: size [
	"Return the base baseInteger representation of the receiver, padded if
	 necessary to size characters with copies of padding."

	<category: 'printing'>
        ^self printPaddedWith: padding to: size base: 10
    ]

    printOn: aStream paddedWith: padding to: size base: baseInteger [
	"Print on aStream the base b representation of the receiver,
	 padded if necessary to size characters with copies of padding."

	<category: 'printing'>
	| num string extra reqSize |
	self < self zero
	    ifFalse: [num := self. extra := 0]
	    ifTrue: [num := self negated. extra := 1. aStream nextPut: $-].

	reqSize := (num floorLog: baseInteger) + 1.
	aStream next: (size - reqSize - extra max: 0) put: padding.

	string := String new: reqSize.
	num replace: string withStringBase: baseInteger.
	aStream nextPutAll: string
    ]

    printPaddedWith: padding to: size base: baseInteger [
	"Return the base baseInteger representation of the receiver, padded if
	 necessary to size characters with copies of padding."

	<category: 'printing'>
	| num string padFirst reqSize |
	self < self zero
	    ifFalse: [num := self. padFirst := 1]
	    ifTrue: [num := self negated. padFirst := 2].

	reqSize := (num floorLog: baseInteger) + padFirst.
	string := String new: (reqSize max: size).
	padFirst = 2 ifTrue: [string at: 1 put: $-].
	string
	    replaceFrom: padFirst
	    to: string size - reqSize + padFirst - 1
	    withObject: padding.

	num replace: string withStringBase: baseInteger.
	^string
    ]

    printString: baseInteger [
	"Return the base baseInteger representation of the receiver"

	<category: 'printing'>
	| num string |
	^self < self zero 
	    ifFalse: 
		[string := String new: (self floorLog: baseInteger) + 1.
		self replace: string withStringBase: baseInteger]
	    ifTrue: 
		[num := self negated.
		string := String new: (num floorLog: baseInteger) + 2.
		string at: 1 put: $-.
		num replace: string withStringBase: baseInteger]
    ]

    displayString [
	"Return the base 10 representation of the receiver"

	<category: 'printing'>
	^self printString: 10
    ]

    printString [
	"Return the base 10 representation of the receiver"

	<category: 'printing'>
	^self printString: 10
    ]

    displayOn: aStream [
	"Print on aStream the base 10 representation of the receiver"

	<category: 'printing'>
	aStream nextPutAll: (self printString: 10)
    ]

    printOn: aStream [
	"Print on aStream the base 10 representation of the receiver"

	<category: 'printing'>
	aStream nextPutAll: (self printString: 10)
    ]

    storeString [
	"Return the base 10 representation of the receiver"

	<category: 'storing'>
	^self printString: 10
    ]

    storeOn: aStream [
	"Print on aStream the base 10 representation of the receiver"

	<category: 'storing'>
	aStream nextPutAll: (self printString: 10)
    ]

    replace: string withStringBase: b [
	"Put in str the reversed base b representation of the receiver
	 (which is > 0)"

	<category: 'private'>
	| num where |
	num := self.
	where := string size.
	
	[string at: where put: (Character digitValue: num \\ b).
	where := where - 1.
	(num := num // b) > 0] 
		whileTrue.
	^string
    ]

    isRational [
	"Answer whether the receiver is rational - true"

	<category: 'testing functionality'>
	^true
    ]

    isInteger [
	<category: 'testing functionality'>
	^true
    ]

    numerator [
	<category: 'accessing'>
	^self
    ]

    denominator [
	<category: 'accessing'>
	^1
    ]
]