This file is indexed.

/usr/share/gocode/src/github.com/hashicorp/raft/raft.go is in golang-github-hashicorp-raft-dev 0.0~git20150728.9b586e2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
package raft

import (
	"bytes"
	"errors"
	"fmt"
	"io"
	"log"
	"os"
	"strconv"
	"sync"
	"time"

	"github.com/armon/go-metrics"
)

const (
	minCheckInterval = 10 * time.Millisecond
)

var (
	keyCurrentTerm  = []byte("CurrentTerm")
	keyLastVoteTerm = []byte("LastVoteTerm")
	keyLastVoteCand = []byte("LastVoteCand")

	// ErrLeader is returned when an operation can't be completed on a
	// leader node.
	ErrLeader = errors.New("node is the leader")

	// ErrNotLeader is returned when an operation can't be completed on a
	// follower or candidate node.
	ErrNotLeader = errors.New("node is not the leader")

	// ErrLeadershipLost is returned when a leader fails to commit a log entry
	// because it's been deposed in the process.
	ErrLeadershipLost = errors.New("leadership lost while committing log")

	// ErrRaftShutdown is returned when operations are requested against an
	// inactive Raft.
	ErrRaftShutdown = errors.New("raft is already shutdown")

	// ErrEnqueueTimeout is returned when a command fails due to a timeout.
	ErrEnqueueTimeout = errors.New("timed out enqueuing operation")

	// ErrKnownPeer is returned when trying to add a peer to the configuration
	// that already exists.
	ErrKnownPeer = errors.New("peer already known")

	// ErrUnknownPeer is returned when trying to remove a peer from the
	// configuration that doesn't exist.
	ErrUnknownPeer = errors.New("peer is unknown")
)

// commitTuple is used to send an index that was committed,
// with an optional associated future that should be invoked.
type commitTuple struct {
	log    *Log
	future *logFuture
}

// leaderState is state that is used while we are a leader.
type leaderState struct {
	commitCh  chan struct{}
	inflight  *inflight
	replState map[string]*followerReplication
	notify    map[*verifyFuture]struct{}
	stepDown  chan struct{}
}

// Raft implements a Raft node.
type Raft struct {
	raftState

	// applyCh is used to async send logs to the main thread to
	// be committed and applied to the FSM.
	applyCh chan *logFuture

	// Configuration provided at Raft initialization
	conf *Config

	// FSM is the client state machine to apply commands to
	fsm FSM

	// fsmCommitCh is used to trigger async application of logs to the fsm
	fsmCommitCh chan commitTuple

	// fsmRestoreCh is used to trigger a restore from snapshot
	fsmRestoreCh chan *restoreFuture

	// fsmSnapshotCh is used to trigger a new snapshot being taken
	fsmSnapshotCh chan *reqSnapshotFuture

	// lastContact is the last time we had contact from the
	// leader node. This can be used to gauge staleness.
	lastContact     time.Time
	lastContactLock sync.RWMutex

	// Leader is the current cluster leader
	leader     string
	leaderLock sync.RWMutex

	// leaderCh is used to notify of leadership changes
	leaderCh chan bool

	// leaderState used only while state is leader
	leaderState leaderState

	// Stores our local addr
	localAddr string

	// Used for our logging
	logger *log.Logger

	// LogStore provides durable storage for logs
	logs LogStore

	// Track our known peers
	peerCh    chan *peerFuture
	peers     []string
	peerStore PeerStore

	// RPC chan comes from the transport layer
	rpcCh <-chan RPC

	// Shutdown channel to exit, protected to prevent concurrent exits
	shutdown     bool
	shutdownCh   chan struct{}
	shutdownLock sync.Mutex

	// snapshots is used to store and retrieve snapshots
	snapshots SnapshotStore

	// snapshotCh is used for user triggered snapshots
	snapshotCh chan *snapshotFuture

	// stable is a StableStore implementation for durable state
	// It provides stable storage for many fields in raftState
	stable StableStore

	// The transport layer we use
	trans Transport

	// verifyCh is used to async send verify futures to the main thread
	// to verify we are still the leader
	verifyCh chan *verifyFuture
}

// NewRaft is used to construct a new Raft node. It takes a configuration, as well
// as implementations of various interfaces that are required. If we have any old state,
// such as snapshots, logs, peers, etc, all those will be restored when creating the
// Raft node.
func NewRaft(conf *Config, fsm FSM, logs LogStore, stable StableStore, snaps SnapshotStore,
	peerStore PeerStore, trans Transport) (*Raft, error) {
	// Validate the configuration
	if err := ValidateConfig(conf); err != nil {
		return nil, err
	}

	// Ensure we have a LogOutput
	var logger *log.Logger
	if conf.Logger != nil {
		logger = conf.Logger
	} else {
		if conf.LogOutput == nil {
			conf.LogOutput = os.Stderr
		}
		logger = log.New(conf.LogOutput, "", log.LstdFlags)
	}

	// Try to restore the current term
	currentTerm, err := stable.GetUint64(keyCurrentTerm)
	if err != nil && err.Error() != "not found" {
		return nil, fmt.Errorf("failed to load current term: %v", err)
	}

	// Read the last log value
	lastIdx, err := logs.LastIndex()
	if err != nil {
		return nil, fmt.Errorf("failed to find last log: %v", err)
	}

	// Get the log
	var lastLog Log
	if lastIdx > 0 {
		if err := logs.GetLog(lastIdx, &lastLog); err != nil {
			return nil, fmt.Errorf("failed to get last log: %v", err)
		}
	}

	// Construct the list of peers that excludes us
	localAddr := trans.LocalAddr()
	peers, err := peerStore.Peers()
	if err != nil {
		return nil, fmt.Errorf("failed to get list of peers: %v", err)
	}
	peers = ExcludePeer(peers, localAddr)

	// Create Raft struct
	r := &Raft{
		applyCh:       make(chan *logFuture),
		conf:          conf,
		fsm:           fsm,
		fsmCommitCh:   make(chan commitTuple, 128),
		fsmRestoreCh:  make(chan *restoreFuture),
		fsmSnapshotCh: make(chan *reqSnapshotFuture),
		leaderCh:      make(chan bool),
		localAddr:     localAddr,
		logger:        logger,
		logs:          logs,
		peerCh:        make(chan *peerFuture),
		peers:         peers,
		peerStore:     peerStore,
		rpcCh:         trans.Consumer(),
		snapshots:     snaps,
		snapshotCh:    make(chan *snapshotFuture),
		shutdownCh:    make(chan struct{}),
		stable:        stable,
		trans:         trans,
		verifyCh:      make(chan *verifyFuture, 64),
	}

	// Initialize as a follower
	r.setState(Follower)

	// Restore the current term and the last log
	r.setCurrentTerm(currentTerm)
	r.setLastLogIndex(lastLog.Index)
	r.setLastLogTerm(lastLog.Term)

	// Attempt to restore a snapshot if there are any
	if err := r.restoreSnapshot(); err != nil {
		return nil, err
	}

	// Setup a heartbeat fast-path to avoid head-of-line
	// blocking where possible. It MUST be safe for this
	// to be called concurrently with a blocking RPC.
	trans.SetHeartbeatHandler(r.processHeartbeat)

	// Start the background work
	r.goFunc(r.run)
	r.goFunc(r.runFSM)
	r.goFunc(r.runSnapshots)
	return r, nil
}

// Leader is used to return the current leader of the cluster.
// It may return empty string if there is no current leader
// or the leader is unknown.
func (r *Raft) Leader() string {
	r.leaderLock.RLock()
	leader := r.leader
	r.leaderLock.RUnlock()
	return leader
}

// setLeader is used to modify the current leader of the cluster
func (r *Raft) setLeader(leader string) {
	r.leaderLock.Lock()
	r.leader = leader
	r.leaderLock.Unlock()
}

// Apply is used to apply a command to the FSM in a highly consistent
// manner. This returns a future that can be used to wait on the application.
// An optional timeout can be provided to limit the amount of time we wait
// for the command to be started. This must be run on the leader or it
// will fail.
func (r *Raft) Apply(cmd []byte, timeout time.Duration) ApplyFuture {
	metrics.IncrCounter([]string{"raft", "apply"}, 1)
	var timer <-chan time.Time
	if timeout > 0 {
		timer = time.After(timeout)
	}

	// Create a log future, no index or term yet
	logFuture := &logFuture{
		log: Log{
			Type: LogCommand,
			Data: cmd,
		},
	}
	logFuture.init()

	select {
	case <-timer:
		return errorFuture{ErrEnqueueTimeout}
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	case r.applyCh <- logFuture:
		return logFuture
	}
}

// Barrier is used to issue a command that blocks until all preceeding
// operations have been applied to the FSM. It can be used to ensure the
// FSM reflects all queued writes. An optional timeout can be provided to
// limit the amount of time we wait for the command to be started. This
// must be run on the leader or it will fail.
func (r *Raft) Barrier(timeout time.Duration) Future {
	metrics.IncrCounter([]string{"raft", "barrier"}, 1)
	var timer <-chan time.Time
	if timeout > 0 {
		timer = time.After(timeout)
	}

	// Create a log future, no index or term yet
	logFuture := &logFuture{
		log: Log{
			Type: LogBarrier,
		},
	}
	logFuture.init()

	select {
	case <-timer:
		return errorFuture{ErrEnqueueTimeout}
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	case r.applyCh <- logFuture:
		return logFuture
	}
}

// VerifyLeader is used to ensure the current node is still
// the leader. This can be done to prevent stale reads when a
// new leader has potentially been elected.
func (r *Raft) VerifyLeader() Future {
	metrics.IncrCounter([]string{"raft", "verify_leader"}, 1)
	verifyFuture := &verifyFuture{}
	verifyFuture.init()
	select {
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	case r.verifyCh <- verifyFuture:
		return verifyFuture
	}
}

// AddPeer is used to add a new peer into the cluster. This must be
// run on the leader or it will fail.
func (r *Raft) AddPeer(peer string) Future {
	logFuture := &logFuture{
		log: Log{
			Type: LogAddPeer,
			peer: peer,
		},
	}
	logFuture.init()
	select {
	case r.applyCh <- logFuture:
		return logFuture
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	}
}

// RemovePeer is used to remove a peer from the cluster. If the
// current leader is being removed, it will cause a new election
// to occur. This must be run on the leader or it will fail.
func (r *Raft) RemovePeer(peer string) Future {
	logFuture := &logFuture{
		log: Log{
			Type: LogRemovePeer,
			peer: peer,
		},
	}
	logFuture.init()
	select {
	case r.applyCh <- logFuture:
		return logFuture
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	}
}

// SetPeers is used to forcibly replace the set of internal peers and
// the peerstore with the ones specified. This can be considered unsafe.
func (r *Raft) SetPeers(p []string) Future {
	peerFuture := &peerFuture{
		peers: p,
	}
	peerFuture.init()

	select {
	case r.peerCh <- peerFuture:
		return peerFuture
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	}
}

// Shutdown is used to stop the Raft background routines.
// This is not a graceful operation. Provides a future that
// can be used to block until all background routines have exited.
func (r *Raft) Shutdown() Future {
	r.shutdownLock.Lock()
	defer r.shutdownLock.Unlock()

	if !r.shutdown {
		close(r.shutdownCh)
		r.shutdown = true
		r.setState(Shutdown)
	}

	return &shutdownFuture{r}
}

// Snapshot is used to manually force Raft to take a snapshot.
// Returns a future that can be used to block until complete.
func (r *Raft) Snapshot() Future {
	snapFuture := &snapshotFuture{}
	snapFuture.init()
	select {
	case r.snapshotCh <- snapFuture:
		return snapFuture
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	}

}

// State is used to return the current raft state.
func (r *Raft) State() RaftState {
	return r.getState()
}

// LeaderCh is used to get a channel which delivers signals on
// acquiring or losing leadership. It sends true if we become
// the leader, and false if we lose it. The channel is not buffered,
// and does not block on writes.
func (r *Raft) LeaderCh() <-chan bool {
	return r.leaderCh
}

func (r *Raft) String() string {
	return fmt.Sprintf("Node at %s [%v]", r.localAddr, r.getState())
}

// LastContact returns the time of last contact by a leader.
// This only makes sense if we are currently a follower.
func (r *Raft) LastContact() time.Time {
	r.lastContactLock.RLock()
	last := r.lastContact
	r.lastContactLock.RUnlock()
	return last
}

// Stats is used to return a map of various internal stats. This should only
// be used for informative purposes or debugging.
func (r *Raft) Stats() map[string]string {
	toString := func(v uint64) string {
		return strconv.FormatUint(v, 10)
	}
	s := map[string]string{
		"state":               r.getState().String(),
		"term":                toString(r.getCurrentTerm()),
		"last_log_index":      toString(r.getLastLogIndex()),
		"last_log_term":       toString(r.getLastLogTerm()),
		"commit_index":        toString(r.getCommitIndex()),
		"applied_index":       toString(r.getLastApplied()),
		"fsm_pending":         toString(uint64(len(r.fsmCommitCh))),
		"last_snapshot_index": toString(r.getLastSnapshotIndex()),
		"last_snapshot_term":  toString(r.getLastSnapshotTerm()),
		"num_peers":           toString(uint64(len(r.peers))),
	}
	last := r.LastContact()
	if last.IsZero() {
		s["last_contact"] = "never"
	} else if r.getState() == Leader {
		s["last_contact"] = "0"
	} else {
		s["last_contact"] = fmt.Sprintf("%v", time.Now().Sub(last))
	}
	return s
}

// LastIndex returns the last index in stable storage,
// either from the last log or from the last snapshot.
func (r *Raft) LastIndex() uint64 {
	return r.getLastIndex()
}

// AppliedIndex returns the last index applied to the FSM.
// This is generally lagging behind the last index, especially
// for indexes that are persisted but have not yet been considered
// committed by the leader.
func (r *Raft) AppliedIndex() uint64 {
	return r.getLastApplied()
}

// runFSM is a long running goroutine responsible for applying logs
// to the FSM. This is done async of other logs since we don't want
// the FSM to block our internal operations.
func (r *Raft) runFSM() {
	var lastIndex, lastTerm uint64
	for {
		select {
		case req := <-r.fsmRestoreCh:
			// Open the snapshot
			meta, source, err := r.snapshots.Open(req.ID)
			if err != nil {
				req.respond(fmt.Errorf("failed to open snapshot %v: %v", req.ID, err))
				continue
			}

			// Attempt to restore
			start := time.Now()
			if err := r.fsm.Restore(source); err != nil {
				req.respond(fmt.Errorf("failed to restore snapshot %v: %v", req.ID, err))
				source.Close()
				continue
			}
			source.Close()
			metrics.MeasureSince([]string{"raft", "fsm", "restore"}, start)

			// Update the last index and term
			lastIndex = meta.Index
			lastTerm = meta.Term
			req.respond(nil)

		case req := <-r.fsmSnapshotCh:
			// Get our peers
			peers, err := r.peerStore.Peers()
			if err != nil {
				req.respond(err)
			}

			// Start a snapshot
			start := time.Now()
			snap, err := r.fsm.Snapshot()
			metrics.MeasureSince([]string{"raft", "fsm", "snapshot"}, start)

			// Respond to the request
			req.index = lastIndex
			req.term = lastTerm
			req.peers = peers
			req.snapshot = snap
			req.respond(err)

		case commitTuple := <-r.fsmCommitCh:
			// Apply the log if a command
			var resp interface{}
			if commitTuple.log.Type == LogCommand {
				start := time.Now()
				resp = r.fsm.Apply(commitTuple.log)
				metrics.MeasureSince([]string{"raft", "fsm", "apply"}, start)
			}

			// Update the indexes
			lastIndex = commitTuple.log.Index
			lastTerm = commitTuple.log.Term

			// Invoke the future if given
			if commitTuple.future != nil {
				commitTuple.future.response = resp
				commitTuple.future.respond(nil)
			}
		case <-r.shutdownCh:
			return
		}
	}
}

// run is a long running goroutine that runs the Raft FSM.
func (r *Raft) run() {
	for {
		// Check if we are doing a shutdown
		select {
		case <-r.shutdownCh:
			// Clear the leader to prevent forwarding
			r.setLeader("")
			return
		default:
		}

		// Enter into a sub-FSM
		switch r.getState() {
		case Follower:
			r.runFollower()
		case Candidate:
			r.runCandidate()
		case Leader:
			r.runLeader()
		}
	}
}

// runFollower runs the FSM for a follower.
func (r *Raft) runFollower() {
	didWarn := false
	r.logger.Printf("[INFO] raft: %v entering Follower state", r)
	heartbeatTimer := randomTimeout(r.conf.HeartbeatTimeout)
	for {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case a := <-r.applyCh:
			// Reject any operations since we are not the leader
			a.respond(ErrNotLeader)

		case v := <-r.verifyCh:
			// Reject any operations since we are not the leader
			v.respond(ErrNotLeader)

		case p := <-r.peerCh:
			// Set the peers
			r.peers = ExcludePeer(p.peers, r.localAddr)
			p.respond(r.peerStore.SetPeers(p.peers))

		case <-heartbeatTimer:
			// Restart the heartbeat timer
			heartbeatTimer = randomTimeout(r.conf.HeartbeatTimeout)

			// Check if we have had a successful contact
			lastContact := r.LastContact()
			if time.Now().Sub(lastContact) < r.conf.HeartbeatTimeout {
				continue
			}

			// Heartbeat failed! Transition to the candidate state
			r.setLeader("")
			if len(r.peers) == 0 && !r.conf.EnableSingleNode {
				if !didWarn {
					r.logger.Printf("[WARN] raft: EnableSingleNode disabled, and no known peers. Aborting election.")
					didWarn = true
				}
			} else {
				r.logger.Printf("[WARN] raft: Heartbeat timeout reached, starting election")
				r.setState(Candidate)
				return
			}

		case <-r.shutdownCh:
			return
		}
	}
}

// runCandidate runs the FSM for a candidate.
func (r *Raft) runCandidate() {
	r.logger.Printf("[INFO] raft: %v entering Candidate state", r)

	// Start vote for us, and set a timeout
	voteCh := r.electSelf()
	electionTimer := randomTimeout(r.conf.ElectionTimeout)

	// Tally the votes, need a simple majority
	grantedVotes := 0
	votesNeeded := r.quorumSize()
	r.logger.Printf("[DEBUG] raft: Votes needed: %d", votesNeeded)

	for r.getState() == Candidate {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case vote := <-voteCh:
			// Check if the term is greater than ours, bail
			if vote.Term > r.getCurrentTerm() {
				r.logger.Printf("[DEBUG] raft: Newer term discovered, fallback to follower")
				r.setState(Follower)
				r.setCurrentTerm(vote.Term)
				return
			}

			// Check if the vote is granted
			if vote.Granted {
				grantedVotes++
				r.logger.Printf("[DEBUG] raft: Vote granted. Tally: %d", grantedVotes)
			}

			// Check if we've become the leader
			if grantedVotes >= votesNeeded {
				r.logger.Printf("[INFO] raft: Election won. Tally: %d", grantedVotes)
				r.setState(Leader)
				r.setLeader(r.localAddr)
				return
			}

		case a := <-r.applyCh:
			// Reject any operations since we are not the leader
			a.respond(ErrNotLeader)

		case v := <-r.verifyCh:
			// Reject any operations since we are not the leader
			v.respond(ErrNotLeader)

		case p := <-r.peerCh:
			// Set the peers
			r.peers = ExcludePeer(p.peers, r.localAddr)
			p.respond(r.peerStore.SetPeers(p.peers))
			// Become a follower again
			r.setState(Follower)
			return

		case <-electionTimer:
			// Election failed! Restart the election. We simply return,
			// which will kick us back into runCandidate
			r.logger.Printf("[WARN] raft: Election timeout reached, restarting election")
			return

		case <-r.shutdownCh:
			return
		}
	}
}

// runLeader runs the FSM for a leader. Do the setup here and drop into
// the leaderLoop for the hot loop.
func (r *Raft) runLeader() {
	r.logger.Printf("[INFO] raft: %v entering Leader state", r)

	// Notify that we are the leader
	asyncNotifyBool(r.leaderCh, true)

	// Setup leader state
	r.leaderState.commitCh = make(chan struct{}, 1)
	r.leaderState.inflight = newInflight(r.leaderState.commitCh)
	r.leaderState.replState = make(map[string]*followerReplication)
	r.leaderState.notify = make(map[*verifyFuture]struct{})
	r.leaderState.stepDown = make(chan struct{}, 1)

	// Cleanup state on step down
	defer func() {
		// Stop replication
		for _, p := range r.leaderState.replState {
			close(p.stopCh)
		}

		// Cancel inflight requests
		r.leaderState.inflight.Cancel(ErrLeadershipLost)

		// Respond to any pending verify requests
		for future := range r.leaderState.notify {
			future.respond(ErrLeadershipLost)
		}

		// Clear all the state
		r.leaderState.commitCh = nil
		r.leaderState.inflight = nil
		r.leaderState.replState = nil
		r.leaderState.notify = nil
		r.leaderState.stepDown = nil

		// If we are stepping down for some reason, no known leader.
		// We may have stepped down due to an RPC call, which would
		// provide the leader, so we cannot always blank this out.
		r.leaderLock.Lock()
		if r.leader == r.localAddr {
			r.leader = ""
		}
		r.leaderLock.Unlock()

		// Notify that we are not the leader
		asyncNotifyBool(r.leaderCh, false)
	}()

	// Start a replication routine for each peer
	for _, peer := range r.peers {
		r.startReplication(peer)
	}

	// Dispatch a no-op log first. Instead of LogNoop,
	// we use a LogAddPeer with our peerset. This acts like
	// a no-op as well, but when doing an initial bootstrap, ensures
	// that all nodes share a common peerset.
	peerSet := append([]string{r.localAddr}, r.peers...)
	noop := &logFuture{
		log: Log{
			Type: LogAddPeer,
			Data: encodePeers(peerSet, r.trans),
		},
	}
	r.dispatchLogs([]*logFuture{noop})

	// Disable EnableSingleNode after we've been elected leader.
	// This is to prevent a split brain in the future, if we are removed
	// from the cluster and then elect ourself as leader.
	if r.conf.DisableBootstrapAfterElect && r.conf.EnableSingleNode {
		r.logger.Printf("[INFO] raft: Disabling EnableSingleNode (bootstrap)")
		r.conf.EnableSingleNode = false
	}

	// Sit in the leader loop until we step down
	r.leaderLoop()
}

// startReplication is a helper to setup state and start async replication to a peer.
func (r *Raft) startReplication(peer string) {
	lastIdx := r.getLastIndex()
	s := &followerReplication{
		peer:        peer,
		inflight:    r.leaderState.inflight,
		stopCh:      make(chan uint64, 1),
		triggerCh:   make(chan struct{}, 1),
		currentTerm: r.getCurrentTerm(),
		matchIndex:  0,
		nextIndex:   lastIdx + 1,
		lastContact: time.Now(),
		notifyCh:    make(chan struct{}, 1),
		stepDown:    r.leaderState.stepDown,
	}
	r.leaderState.replState[peer] = s
	r.goFunc(func() { r.replicate(s) })
	asyncNotifyCh(s.triggerCh)
}

// leaderLoop is the hot loop for a leader. It is invoked
// after all the various leader setup is done.
func (r *Raft) leaderLoop() {
	lease := time.After(r.conf.LeaderLeaseTimeout)
	for r.getState() == Leader {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case <-r.leaderState.stepDown:
			r.setState(Follower)

		case <-r.leaderState.commitCh:
			// Get the committed messages
			committed := r.leaderState.inflight.Committed()
			for e := committed.Front(); e != nil; e = e.Next() {
				// Measure the commit time
				commitLog := e.Value.(*logFuture)
				metrics.MeasureSince([]string{"raft", "commitTime"}, commitLog.dispatch)

				// Increment the commit index
				idx := commitLog.log.Index
				r.setCommitIndex(idx)
				r.processLogs(idx, commitLog)
			}

		case v := <-r.verifyCh:
			if v.quorumSize == 0 {
				// Just dispatched, start the verification
				r.verifyLeader(v)

			} else if v.votes < v.quorumSize {
				// Early return, means there must be a new leader
				r.logger.Printf("[WARN] raft: New leader elected, stepping down")
				r.setState(Follower)
				delete(r.leaderState.notify, v)
				v.respond(ErrNotLeader)

			} else {
				// Quorum of members agree, we are still leader
				delete(r.leaderState.notify, v)
				v.respond(nil)
			}

		case p := <-r.peerCh:
			p.respond(ErrLeader)

		case newLog := <-r.applyCh:
			// Group commit, gather all the ready commits
			ready := []*logFuture{newLog}
			for i := 0; i < r.conf.MaxAppendEntries; i++ {
				select {
				case newLog := <-r.applyCh:
					ready = append(ready, newLog)
				default:
					break
				}
			}

			// Handle any peer set changes
			n := len(ready)
			for i := 0; i < n; i++ {
				// Special case AddPeer and RemovePeer
				log := ready[i]
				if log.log.Type != LogAddPeer && log.log.Type != LogRemovePeer {
					continue
				}

				// Check if this log should be ignored
				if !r.preparePeerChange(log) {
					ready[i], ready[n-1] = ready[n-1], nil
					n--
					i--
					continue
				}

				// Apply peer set changes early
				r.processLog(&log.log, nil, true)
			}

			// Nothing to do if all logs are invalid
			if n == 0 {
				continue
			}

			// Dispatch the logs
			ready = ready[:n]
			r.dispatchLogs(ready)

		case <-lease:
			// Check if we've exceeded the lease, potentially stepping down
			maxDiff := r.checkLeaderLease()

			// Next check interval should adjust for the last node we've
			// contacted, without going negative
			checkInterval := r.conf.LeaderLeaseTimeout - maxDiff
			if checkInterval < minCheckInterval {
				checkInterval = minCheckInterval
			}

			// Renew the lease timer
			lease = time.After(checkInterval)

		case <-r.shutdownCh:
			return
		}
	}
}

// verifyLeader must be called from the main thread for safety.
// Causes the followers to attempt an immediate heartbeat.
func (r *Raft) verifyLeader(v *verifyFuture) {
	// Current leader always votes for self
	v.votes = 1

	// Set the quorum size, hot-path for single node
	v.quorumSize = r.quorumSize()
	if v.quorumSize == 1 {
		v.respond(nil)
		return
	}

	// Track this request
	v.notifyCh = r.verifyCh
	r.leaderState.notify[v] = struct{}{}

	// Trigger immediate heartbeats
	for _, repl := range r.leaderState.replState {
		repl.notifyLock.Lock()
		repl.notify = append(repl.notify, v)
		repl.notifyLock.Unlock()
		asyncNotifyCh(repl.notifyCh)
	}
}

// checkLeaderLease is used to check if we can contact a quorum of nodes
// within the last leader lease interval. If not, we need to step down,
// as we may have lost connectivity. Returns the maximum duration without
// contact.
func (r *Raft) checkLeaderLease() time.Duration {
	// Track contacted nodes, we can always contact ourself
	contacted := 1

	// Check each follower
	var maxDiff time.Duration
	now := time.Now()
	for peer, f := range r.leaderState.replState {
		diff := now.Sub(f.LastContact())
		if diff <= r.conf.LeaderLeaseTimeout {
			contacted++
			if diff > maxDiff {
				maxDiff = diff
			}
		} else {
			// Log at least once at high value, then debug. Otherwise it gets very verbose.
			if diff <= 3*r.conf.LeaderLeaseTimeout {
				r.logger.Printf("[WARN] raft: Failed to contact %v in %v", peer, diff)
			} else {
				r.logger.Printf("[DEBUG] raft: Failed to contact %v in %v", peer, diff)
			}
		}
		metrics.AddSample([]string{"raft", "leader", "lastContact"}, float32(diff/time.Millisecond))
	}

	// Verify we can contact a quorum
	quorum := r.quorumSize()
	if contacted < quorum {
		r.logger.Printf("[WARN] raft: Failed to contact quorum of nodes, stepping down")
		r.setState(Follower)
	}
	return maxDiff
}

// quorumSize is used to return the quorum size
func (r *Raft) quorumSize() int {
	return ((len(r.peers) + 1) / 2) + 1
}

// preparePeerChange checks if a LogAddPeer or LogRemovePeer should be performed,
// and properly formats the data field on the log before dispatching it.
func (r *Raft) preparePeerChange(l *logFuture) bool {
	// Check if this is a known peer
	p := l.log.peer
	knownPeer := PeerContained(r.peers, p) || r.localAddr == p

	// Ignore known peers on add
	if l.log.Type == LogAddPeer && knownPeer {
		l.respond(ErrKnownPeer)
		return false
	}

	// Ignore unknown peers on remove
	if l.log.Type == LogRemovePeer && !knownPeer {
		l.respond(ErrUnknownPeer)
		return false
	}

	// Construct the peer set
	var peerSet []string
	if l.log.Type == LogAddPeer {
		peerSet = append([]string{p, r.localAddr}, r.peers...)
	} else {
		peerSet = ExcludePeer(append([]string{r.localAddr}, r.peers...), p)
	}

	// Setup the log
	l.log.Data = encodePeers(peerSet, r.trans)
	return true
}

// dispatchLog is called to push a log to disk, mark it
// as inflight and begin replication of it.
func (r *Raft) dispatchLogs(applyLogs []*logFuture) {
	now := time.Now()
	defer metrics.MeasureSince([]string{"raft", "leader", "dispatchLog"}, now)

	term := r.getCurrentTerm()
	lastIndex := r.getLastIndex()
	logs := make([]*Log, len(applyLogs))

	for idx, applyLog := range applyLogs {
		applyLog.dispatch = now
		applyLog.log.Index = lastIndex + uint64(idx) + 1
		applyLog.log.Term = term
		applyLog.policy = newMajorityQuorum(len(r.peers) + 1)
		logs[idx] = &applyLog.log
	}

	// Write the log entry locally
	if err := r.logs.StoreLogs(logs); err != nil {
		r.logger.Printf("[ERR] raft: Failed to commit logs: %v", err)
		for _, applyLog := range applyLogs {
			applyLog.respond(err)
		}
		r.setState(Follower)
		return
	}

	// Add this to the inflight logs, commit
	r.leaderState.inflight.StartAll(applyLogs)

	// Update the last log since it's on disk now
	r.setLastLogIndex(lastIndex + uint64(len(applyLogs)))
	r.setLastLogTerm(term)

	// Notify the replicators of the new log
	for _, f := range r.leaderState.replState {
		asyncNotifyCh(f.triggerCh)
	}
}

// processLogs is used to process all the logs from the lastApplied
// up to the given index.
func (r *Raft) processLogs(index uint64, future *logFuture) {
	// Reject logs we've applied already
	lastApplied := r.getLastApplied()
	if index <= lastApplied {
		r.logger.Printf("[WARN] raft: Skipping application of old log: %d", index)
		return
	}

	// Apply all the preceding logs
	for idx := r.getLastApplied() + 1; idx <= index; idx++ {
		// Get the log, either from the future or from our log store
		if future != nil && future.log.Index == idx {
			r.processLog(&future.log, future, false)

		} else {
			l := new(Log)
			if err := r.logs.GetLog(idx, l); err != nil {
				r.logger.Printf("[ERR] raft: Failed to get log at %d: %v", idx, err)
				panic(err)
			}
			r.processLog(l, nil, false)
		}

		// Update the lastApplied index and term
		r.setLastApplied(idx)
	}
}

// processLog is invoked to process the application of a single committed log.
func (r *Raft) processLog(l *Log, future *logFuture, precommit bool) {
	switch l.Type {
	case LogBarrier:
		// Barrier is handled by the FSM
		fallthrough

	case LogCommand:
		// Forward to the fsm handler
		select {
		case r.fsmCommitCh <- commitTuple{l, future}:
		case <-r.shutdownCh:
			if future != nil {
				future.respond(ErrRaftShutdown)
			}
		}

		// Return so that the future is only responded to
		// by the FSM handler when the application is done
		return

	case LogAddPeer:
		fallthrough
	case LogRemovePeer:
		peers := decodePeers(l.Data, r.trans)
		r.logger.Printf("[DEBUG] raft: Node %v updated peer set (%v): %v", r.localAddr, l.Type, peers)

		// If the peer set does not include us, remove all other peers
		removeSelf := !PeerContained(peers, r.localAddr) && l.Type == LogRemovePeer
		if removeSelf {
			r.peers = nil
			r.peerStore.SetPeers([]string{r.localAddr})
		} else {
			r.peers = ExcludePeer(peers, r.localAddr)
			r.peerStore.SetPeers(peers)
		}

		// Handle replication if we are the leader
		if r.getState() == Leader {
			for _, p := range r.peers {
				if _, ok := r.leaderState.replState[p]; !ok {
					r.logger.Printf("[INFO] raft: Added peer %v, starting replication", p)
					r.startReplication(p)
				}
			}
		}

		// Stop replication for old nodes
		if r.getState() == Leader && !precommit {
			var toDelete []string
			for _, repl := range r.leaderState.replState {
				if !PeerContained(r.peers, repl.peer) {
					r.logger.Printf("[INFO] raft: Removed peer %v, stopping replication (Index: %d)", repl.peer, l.Index)

					// Replicate up to this index and stop
					repl.stopCh <- l.Index
					close(repl.stopCh)
					toDelete = append(toDelete, repl.peer)
				}
			}
			for _, name := range toDelete {
				delete(r.leaderState.replState, name)
			}
		}

		// Handle removing ourself
		if removeSelf && !precommit {
			if r.conf.ShutdownOnRemove {
				r.logger.Printf("[INFO] raft: Removed ourself, shutting down")
				r.Shutdown()
			} else {
				r.logger.Printf("[INFO] raft: Removed ourself, transitioning to follower")
				r.setState(Follower)
			}
		}

	case LogNoop:
		// Ignore the no-op
	default:
		r.logger.Printf("[ERR] raft: Got unrecognized log type: %#v", l)
	}

	// Invoke the future if given
	if future != nil && !precommit {
		future.respond(nil)
	}
}

// processRPC is called to handle an incoming RPC request.
func (r *Raft) processRPC(rpc RPC) {
	switch cmd := rpc.Command.(type) {
	case *AppendEntriesRequest:
		r.appendEntries(rpc, cmd)
	case *RequestVoteRequest:
		r.requestVote(rpc, cmd)
	case *InstallSnapshotRequest:
		r.installSnapshot(rpc, cmd)
	default:
		r.logger.Printf("[ERR] raft: Got unexpected command: %#v", rpc.Command)
		rpc.Respond(nil, fmt.Errorf("unexpected command"))
	}
}

// processHeartbeat is a special handler used just for heartbeat requests
// so that they can be fast-pathed if a transport supports it.
func (r *Raft) processHeartbeat(rpc RPC) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "processHeartbeat"}, time.Now())

	// Check if we are shutdown, just ignore the RPC
	select {
	case <-r.shutdownCh:
		return
	default:
	}

	// Ensure we are only handling a heartbeat
	switch cmd := rpc.Command.(type) {
	case *AppendEntriesRequest:
		r.appendEntries(rpc, cmd)
	default:
		r.logger.Printf("[ERR] raft: Expected heartbeat, got command: %#v", rpc.Command)
		rpc.Respond(nil, fmt.Errorf("unexpected command"))
	}
}

// appendEntries is invoked when we get an append entries RPC call.
func (r *Raft) appendEntries(rpc RPC, a *AppendEntriesRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "appendEntries"}, time.Now())
	// Setup a response
	resp := &AppendEntriesResponse{
		Term:    r.getCurrentTerm(),
		LastLog: r.getLastIndex(),
		Success: false,
	}
	var rpcErr error
	defer func() {
		rpc.Respond(resp, rpcErr)
	}()

	// Ignore an older term
	if a.Term < r.getCurrentTerm() {
		return
	}

	// Increase the term if we see a newer one, also transition to follower
	// if we ever get an appendEntries call
	if a.Term > r.getCurrentTerm() || r.getState() != Follower {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(a.Term)
		resp.Term = a.Term
	}

	// Save the current leader
	r.setLeader(r.trans.DecodePeer(a.Leader))

	// Verify the last log entry
	if a.PrevLogEntry > 0 {
		lastIdx, lastTerm := r.getLastEntry()

		var prevLogTerm uint64
		if a.PrevLogEntry == lastIdx {
			prevLogTerm = lastTerm

		} else {
			var prevLog Log
			if err := r.logs.GetLog(a.PrevLogEntry, &prevLog); err != nil {
				r.logger.Printf("[WARN] raft: Failed to get previous log: %d %v (last: %d)",
					a.PrevLogEntry, err, lastIdx)
				return
			}
			prevLogTerm = prevLog.Term
		}

		if a.PrevLogTerm != prevLogTerm {
			r.logger.Printf("[WARN] raft: Previous log term mis-match: ours: %d remote: %d",
				prevLogTerm, a.PrevLogTerm)
			return
		}
	}

	// Process any new entries
	if n := len(a.Entries); n > 0 {
		start := time.Now()
		first := a.Entries[0]
		last := a.Entries[n-1]

		// Delete any conflicting entries
		lastLogIdx := r.getLastLogIndex()
		if first.Index <= lastLogIdx {
			r.logger.Printf("[WARN] raft: Clearing log suffix from %d to %d", first.Index, lastLogIdx)
			if err := r.logs.DeleteRange(first.Index, lastLogIdx); err != nil {
				r.logger.Printf("[ERR] raft: Failed to clear log suffix: %v", err)
				return
			}
		}

		// Append the entry
		if err := r.logs.StoreLogs(a.Entries); err != nil {
			r.logger.Printf("[ERR] raft: Failed to append to logs: %v", err)
			return
		}

		// Update the lastLog
		r.setLastLogIndex(last.Index)
		r.setLastLogTerm(last.Term)
		metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "storeLogs"}, start)
	}

	// Update the commit index
	if a.LeaderCommitIndex > 0 && a.LeaderCommitIndex > r.getCommitIndex() {
		start := time.Now()
		idx := min(a.LeaderCommitIndex, r.getLastIndex())
		r.setCommitIndex(idx)
		r.processLogs(idx, nil)
		metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "processLogs"}, start)
	}

	// Everything went well, set success
	resp.Success = true
	r.lastContactLock.Lock()
	r.lastContact = time.Now()
	r.lastContactLock.Unlock()
	return
}

// requestVote is invoked when we get an request vote RPC call.
func (r *Raft) requestVote(rpc RPC, req *RequestVoteRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "requestVote"}, time.Now())
	// Setup a response
	resp := &RequestVoteResponse{
		Term:    r.getCurrentTerm(),
		Peers:   encodePeers(r.peers, r.trans),
		Granted: false,
	}
	var rpcErr error
	defer func() {
		rpc.Respond(resp, rpcErr)
	}()

	// Check if we have an existing leader
	if leader := r.Leader(); leader != "" {
		r.logger.Printf("[WARN] raft: Rejecting vote from %v since we have a leader: %v",
			r.trans.DecodePeer(req.Candidate), leader)
		return
	}

	// Ignore an older term
	if req.Term < r.getCurrentTerm() {
		return
	}

	// Increase the term if we see a newer one
	if req.Term > r.getCurrentTerm() {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(req.Term)
		resp.Term = req.Term
	}

	// Check if we have voted yet
	lastVoteTerm, err := r.stable.GetUint64(keyLastVoteTerm)
	if err != nil && err.Error() != "not found" {
		r.logger.Printf("[ERR] raft: Failed to get last vote term: %v", err)
		return
	}
	lastVoteCandBytes, err := r.stable.Get(keyLastVoteCand)
	if err != nil && err.Error() != "not found" {
		r.logger.Printf("[ERR] raft: Failed to get last vote candidate: %v", err)
		return
	}

	// Check if we've voted in this election before
	if lastVoteTerm == req.Term && lastVoteCandBytes != nil {
		r.logger.Printf("[INFO] raft: Duplicate RequestVote for same term: %d", req.Term)
		if bytes.Compare(lastVoteCandBytes, req.Candidate) == 0 {
			r.logger.Printf("[WARN] raft: Duplicate RequestVote from candidate: %s", req.Candidate)
			resp.Granted = true
		}
		return
	}

	// Reject if their term is older
	lastIdx, lastTerm := r.getLastEntry()
	if lastTerm > req.LastLogTerm {
		r.logger.Printf("[WARN] raft: Rejecting vote from %v since our last term is greater (%d, %d)",
			r.trans.DecodePeer(req.Candidate), lastTerm, req.LastLogTerm)
		return
	}

	if lastIdx > req.LastLogIndex {
		r.logger.Printf("[WARN] raft: Rejecting vote from %v since our last index is greater (%d, %d)",
			r.trans.DecodePeer(req.Candidate), lastIdx, req.LastLogIndex)
		return
	}

	// Persist a vote for safety
	if err := r.persistVote(req.Term, req.Candidate); err != nil {
		r.logger.Printf("[ERR] raft: Failed to persist vote: %v", err)
		return
	}

	resp.Granted = true
	return
}

// installSnapshot is invoked when we get a InstallSnapshot RPC call.
// We must be in the follower state for this, since it means we are
// too far behind a leader for log replay.
func (r *Raft) installSnapshot(rpc RPC, req *InstallSnapshotRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "installSnapshot"}, time.Now())
	// Setup a response
	resp := &InstallSnapshotResponse{
		Term:    r.getCurrentTerm(),
		Success: false,
	}
	var rpcErr error
	defer func() {
		rpc.Respond(resp, rpcErr)
	}()

	// Ignore an older term
	if req.Term < r.getCurrentTerm() {
		return
	}

	// Increase the term if we see a newer one
	if req.Term > r.getCurrentTerm() {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(req.Term)
		resp.Term = req.Term
	}

	// Save the current leader
	r.setLeader(r.trans.DecodePeer(req.Leader))

	// Create a new snapshot
	sink, err := r.snapshots.Create(req.LastLogIndex, req.LastLogTerm, req.Peers)
	if err != nil {
		r.logger.Printf("[ERR] raft: Failed to create snapshot to install: %v", err)
		rpcErr = fmt.Errorf("failed to create snapshot: %v", err)
		return
	}

	// Spill the remote snapshot to disk
	n, err := io.Copy(sink, rpc.Reader)
	if err != nil {
		sink.Cancel()
		r.logger.Printf("[ERR] raft: Failed to copy snapshot: %v", err)
		rpcErr = err
		return
	}

	// Check that we received it all
	if n != req.Size {
		sink.Cancel()
		r.logger.Printf("[ERR] raft: Failed to receive whole snapshot: %d / %d", n, req.Size)
		rpcErr = fmt.Errorf("short read")
		return
	}

	// Finalize the snapshot
	if err := sink.Close(); err != nil {
		r.logger.Printf("[ERR] raft: Failed to finalize snapshot: %v", err)
		rpcErr = err
		return
	}
	r.logger.Printf("[INFO] raft: Copied %d bytes to local snapshot", n)

	// Restore snapshot
	future := &restoreFuture{ID: sink.ID()}
	future.init()
	select {
	case r.fsmRestoreCh <- future:
	case <-r.shutdownCh:
		future.respond(ErrRaftShutdown)
		return
	}

	// Wait for the restore to happen
	if err := future.Error(); err != nil {
		r.logger.Printf("[ERR] raft: Failed to restore snapshot: %v", err)
		rpcErr = err
		return
	}

	// Update the lastApplied so we don't replay old logs
	r.setLastApplied(req.LastLogIndex)

	// Update the last stable snapshot info
	r.setLastSnapshotIndex(req.LastLogIndex)
	r.setLastSnapshotTerm(req.LastLogTerm)

	// Restore the peer set
	peers := decodePeers(req.Peers, r.trans)
	r.peers = ExcludePeer(peers, r.localAddr)
	r.peerStore.SetPeers(peers)

	// Compact logs, continue even if this fails
	if err := r.compactLogs(req.LastLogIndex); err != nil {
		r.logger.Printf("[ERR] raft: Failed to compact logs: %v", err)
	}

	r.logger.Printf("[INFO] raft: Installed remote snapshot")
	resp.Success = true
	r.lastContactLock.Lock()
	r.lastContact = time.Now()
	r.lastContactLock.Unlock()
	return
}

// electSelf is used to send a RequestVote RPC to all peers,
// and vote for ourself. This has the side affecting of incrementing
// the current term. The response channel returned is used to wait
// for all the responses (including a vote for ourself).
func (r *Raft) electSelf() <-chan *RequestVoteResponse {
	// Create a response channel
	respCh := make(chan *RequestVoteResponse, len(r.peers)+1)

	// Increment the term
	r.setCurrentTerm(r.getCurrentTerm() + 1)

	// Construct the request
	lastIdx, lastTerm := r.getLastEntry()
	req := &RequestVoteRequest{
		Term:         r.getCurrentTerm(),
		Candidate:    r.trans.EncodePeer(r.localAddr),
		LastLogIndex: lastIdx,
		LastLogTerm:  lastTerm,
	}

	// Construct a function to ask for a vote
	askPeer := func(peer string) {
		r.goFunc(func() {
			defer metrics.MeasureSince([]string{"raft", "candidate", "electSelf"}, time.Now())
			resp := new(RequestVoteResponse)
			err := r.trans.RequestVote(peer, req, resp)
			if err != nil {
				r.logger.Printf("[ERR] raft: Failed to make RequestVote RPC to %v: %v", peer, err)
				resp.Term = req.Term
				resp.Granted = false
			}

			// If we are not a peer, we could have been removed but failed
			// to receive the log message. OR it could mean an improperly configured
			// cluster. Either way, we should warn
			if err == nil {
				peerSet := decodePeers(resp.Peers, r.trans)
				if !PeerContained(peerSet, r.localAddr) {
					r.logger.Printf("[WARN] raft: Remote peer %v does not have local node %v as a peer",
						peer, r.localAddr)
				}
			}

			respCh <- resp
		})
	}

	// For each peer, request a vote
	for _, peer := range r.peers {
		askPeer(peer)
	}

	// Persist a vote for ourselves
	if err := r.persistVote(req.Term, req.Candidate); err != nil {
		r.logger.Printf("[ERR] raft: Failed to persist vote : %v", err)
		return nil
	}

	// Include our own vote
	respCh <- &RequestVoteResponse{
		Term:    req.Term,
		Granted: true,
	}
	return respCh
}

// persistVote is used to persist our vote for safety.
func (r *Raft) persistVote(term uint64, candidate []byte) error {
	if err := r.stable.SetUint64(keyLastVoteTerm, term); err != nil {
		return err
	}
	if err := r.stable.Set(keyLastVoteCand, candidate); err != nil {
		return err
	}
	return nil
}

// setCurrentTerm is used to set the current term in a durable manner.
func (r *Raft) setCurrentTerm(t uint64) {
	// Persist to disk first
	if err := r.stable.SetUint64(keyCurrentTerm, t); err != nil {
		panic(fmt.Errorf("failed to save current term: %v", err))
	}
	r.raftState.setCurrentTerm(t)
}

// setState is used to update the current state. Any state
// transition causes the known leader to be cleared. This means
// that leader should be set only after updating the state.
func (r *Raft) setState(state RaftState) {
	r.setLeader("")
	r.raftState.setState(state)
}

// runSnapshots is a long running goroutine used to manage taking
// new snapshots of the FSM. It runs in parallel to the FSM and
// main goroutines, so that snapshots do not block normal operation.
func (r *Raft) runSnapshots() {
	for {
		select {
		case <-randomTimeout(r.conf.SnapshotInterval):
			// Check if we should snapshot
			if !r.shouldSnapshot() {
				continue
			}

			// Trigger a snapshot
			if err := r.takeSnapshot(); err != nil {
				r.logger.Printf("[ERR] raft: Failed to take snapshot: %v", err)
			}

		case future := <-r.snapshotCh:
			// User-triggered, run immediately
			err := r.takeSnapshot()
			if err != nil {
				r.logger.Printf("[ERR] raft: Failed to take snapshot: %v", err)
			}
			future.respond(err)

		case <-r.shutdownCh:
			return
		}
	}
}

// shouldSnapshot checks if we meet the conditions to take
// a new snapshot.
func (r *Raft) shouldSnapshot() bool {
	// Check the last snapshot index
	lastSnap := r.getLastSnapshotIndex()

	// Check the last log index
	lastIdx, err := r.logs.LastIndex()
	if err != nil {
		r.logger.Printf("[ERR] raft: Failed to get last log index: %v", err)
		return false
	}

	// Compare the delta to the threshold
	delta := lastIdx - lastSnap
	return delta >= r.conf.SnapshotThreshold
}

// takeSnapshot is used to take a new snapshot.
func (r *Raft) takeSnapshot() error {
	defer metrics.MeasureSince([]string{"raft", "snapshot", "takeSnapshot"}, time.Now())
	// Create a snapshot request
	req := &reqSnapshotFuture{}
	req.init()

	// Wait for dispatch or shutdown
	select {
	case r.fsmSnapshotCh <- req:
	case <-r.shutdownCh:
		return ErrRaftShutdown
	}

	// Wait until we get a response
	if err := req.Error(); err != nil {
		return fmt.Errorf("failed to start snapshot: %v", err)
	}
	defer req.snapshot.Release()

	// Log that we are starting the snapshot
	r.logger.Printf("[INFO] raft: Starting snapshot up to %d", req.index)

	// Encode the peerset
	peerSet := encodePeers(req.peers, r.trans)

	// Create a new snapshot
	start := time.Now()
	sink, err := r.snapshots.Create(req.index, req.term, peerSet)
	if err != nil {
		return fmt.Errorf("failed to create snapshot: %v", err)
	}
	metrics.MeasureSince([]string{"raft", "snapshot", "create"}, start)

	// Try to persist the snapshot
	start = time.Now()
	if err := req.snapshot.Persist(sink); err != nil {
		sink.Cancel()
		return fmt.Errorf("failed to persist snapshot: %v", err)
	}
	metrics.MeasureSince([]string{"raft", "snapshot", "persist"}, start)

	// Close and check for error
	if err := sink.Close(); err != nil {
		return fmt.Errorf("failed to close snapshot: %v", err)
	}

	// Update the last stable snapshot info
	r.setLastSnapshotIndex(req.index)
	r.setLastSnapshotTerm(req.term)

	// Compact the logs
	if err := r.compactLogs(req.index); err != nil {
		return err
	}

	// Log completion
	r.logger.Printf("[INFO] raft: Snapshot to %d complete", req.index)
	return nil
}

// compactLogs takes the last inclusive index of a snapshot
// and trims the logs that are no longer needed.
func (r *Raft) compactLogs(snapIdx uint64) error {
	defer metrics.MeasureSince([]string{"raft", "compactLogs"}, time.Now())
	// Determine log ranges to compact
	minLog, err := r.logs.FirstIndex()
	if err != nil {
		return fmt.Errorf("failed to get first log index: %v", err)
	}

	// Check if we have enough logs to truncate
	if r.getLastLogIndex() <= r.conf.TrailingLogs {
		return nil
	}

	// Truncate up to the end of the snapshot, or `TrailingLogs`
	// back from the head, which ever is further back. This ensures
	// at least `TrailingLogs` entries, but does not allow logs
	// after the snapshot to be removed.
	maxLog := min(snapIdx, r.getLastLogIndex()-r.conf.TrailingLogs)

	// Log this
	r.logger.Printf("[INFO] raft: Compacting logs from %d to %d", minLog, maxLog)

	// Compact the logs
	if err := r.logs.DeleteRange(minLog, maxLog); err != nil {
		return fmt.Errorf("log compaction failed: %v", err)
	}
	return nil
}

// restoreSnapshot attempts to restore the latest snapshots, and fails
// if none of them can be restored. This is called at initialization time,
// and is completely unsafe to call at any other time.
func (r *Raft) restoreSnapshot() error {
	snapshots, err := r.snapshots.List()
	if err != nil {
		r.logger.Printf("[ERR] raft: Failed to list snapshots: %v", err)
		return err
	}

	// Try to load in order of newest to oldest
	for _, snapshot := range snapshots {
		_, source, err := r.snapshots.Open(snapshot.ID)
		if err != nil {
			r.logger.Printf("[ERR] raft: Failed to open snapshot %v: %v", snapshot.ID, err)
			continue
		}
		defer source.Close()

		if err := r.fsm.Restore(source); err != nil {
			r.logger.Printf("[ERR] raft: Failed to restore snapshot %v: %v", snapshot.ID, err)
			continue
		}

		// Log success
		r.logger.Printf("[INFO] raft: Restored from snapshot %v", snapshot.ID)

		// Update the lastApplied so we don't replay old logs
		r.setLastApplied(snapshot.Index)

		// Update the last stable snapshot info
		r.setLastSnapshotIndex(snapshot.Index)
		r.setLastSnapshotTerm(snapshot.Term)

		// Success!
		return nil
	}

	// If we had snapshots and failed to load them, its an error
	if len(snapshots) > 0 {
		return fmt.Errorf("failed to load any existing snapshots")
	}
	return nil
}