This file is indexed.

/usr/share/gocode/src/github.com/influxdb/influxdb/tsdb/shard.go is in golang-github-influxdb-influxdb-dev 0.10.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
package tsdb

import (
	"encoding/binary"
	"encoding/json"
	"errors"
	"expvar"
	"fmt"
	"io"
	"math"
	"os"
	"sync"

	"github.com/influxdb/influxdb"
	"github.com/influxdb/influxdb/influxql"
	"github.com/influxdb/influxdb/models"
	"github.com/influxdb/influxdb/tsdb/internal"

	"github.com/gogo/protobuf/proto"
)

const (
	statWriteReq        = "writeReq"
	statSeriesCreate    = "seriesCreate"
	statFieldsCreate    = "fieldsCreate"
	statWritePointsFail = "writePointsFail"
	statWritePointsOK   = "writePointsOk"
	statWriteBytes      = "writeBytes"
)

var (
	// ErrFieldOverflow is returned when too many fields are created on a measurement.
	ErrFieldOverflow = errors.New("field overflow")

	// ErrFieldTypeConflict is returned when a new field already exists with a different type.
	ErrFieldTypeConflict = errors.New("field type conflict")

	// ErrFieldNotFound is returned when a field cannot be found.
	ErrFieldNotFound = errors.New("field not found")

	// ErrFieldUnmappedID is returned when the system is presented, during decode, with a field ID
	// there is no mapping for.
	ErrFieldUnmappedID = errors.New("field ID not mapped")
)

// Shard represents a self-contained time series database. An inverted index of
// the measurement and tag data is kept along with the raw time series data.
// Data can be split across many shards. The query engine in TSDB is responsible
// for combining the output of many shards into a single query result.
type Shard struct {
	index   *DatabaseIndex
	path    string
	walPath string
	id      uint64

	engine  Engine
	options EngineOptions

	mu                sync.RWMutex
	measurementFields map[string]*MeasurementFields // measurement name to their fields

	// expvar-based stats.
	statMap *expvar.Map

	// The writer used by the logger.
	LogOutput io.Writer
}

// NewShard returns a new initialized Shard. walPath doesn't apply to the b1 type index
func NewShard(id uint64, index *DatabaseIndex, path string, walPath string, options EngineOptions) *Shard {
	// Configure statistics collection.
	key := fmt.Sprintf("shard:%s:%d", path, id)
	tags := map[string]string{"path": path, "id": fmt.Sprintf("%d", id), "engine": options.EngineVersion}
	statMap := influxdb.NewStatistics(key, "shard", tags)

	return &Shard{
		index:             index,
		path:              path,
		walPath:           walPath,
		id:                id,
		options:           options,
		measurementFields: make(map[string]*MeasurementFields),

		statMap:   statMap,
		LogOutput: os.Stderr,
	}
}

// Path returns the path set on the shard when it was created.
func (s *Shard) Path() string { return s.path }

// PerformMaintenance gets called periodically to have the engine perform
// any maintenance tasks like WAL flushing and compaction
func (s *Shard) PerformMaintenance() {
	s.engine.PerformMaintenance()
}

// open initializes and opens the shard's store.
func (s *Shard) Open() error {
	if err := func() error {
		s.mu.Lock()
		defer s.mu.Unlock()

		s.index.mu.Lock()
		defer s.index.mu.Unlock()

		// Return if the shard is already open
		if s.engine != nil {
			return nil
		}

		// Initialize underlying engine.
		e, err := NewEngine(s.path, s.walPath, s.options)
		if err != nil {
			return fmt.Errorf("new engine: %s", err)
		}
		s.engine = e

		// Set log output on the engine.
		s.engine.SetLogOutput(s.LogOutput)

		// Open engine.
		if err := s.engine.Open(); err != nil {
			return fmt.Errorf("open engine: %s", err)
		}

		// Load metadata index.
		if err := s.engine.LoadMetadataIndex(s, s.index, s.measurementFields); err != nil {
			return fmt.Errorf("load metadata index: %s", err)
		}

		return nil
	}(); err != nil {
		s.close()
		return err
	}

	return nil
}

// Close shuts down the shard's store.
func (s *Shard) Close() error {
	s.mu.Lock()
	defer s.mu.Unlock()
	return s.close()
}

func (s *Shard) close() error {
	if s.engine != nil {
		return s.engine.Close()
	}
	return nil
}

// DiskSize returns the size on disk of this shard
func (s *Shard) DiskSize() (int64, error) {
	s.mu.RLock()
	defer s.mu.RUnlock()
	stats, err := os.Stat(s.path)
	var size int64
	if err != nil {
		return 0, err
	}
	size += stats.Size()
	return size, nil
}

// ReadOnlyTx returns a read-only transaction for the shard.  The transaction must be rolled back to
// release resources.
func (s *Shard) ReadOnlyTx() (Tx, error) {
	return s.engine.Begin(false)
}

// TODO: this is temporarily exported to make tx.go work. When the query engine gets refactored
// into the tsdb package this should be removed. No one outside tsdb should know the underlying field encoding scheme.
func (s *Shard) FieldCodec(measurementName string) *FieldCodec {
	s.mu.RLock()
	defer s.mu.RUnlock()
	m := s.measurementFields[measurementName]
	if m == nil {
		return NewFieldCodec(nil)
	}
	return m.Codec
}

// struct to hold information for a field to create on a measurement
type FieldCreate struct {
	Measurement string
	Field       *Field
}

// struct to hold information for a series to create
type SeriesCreate struct {
	Measurement string
	Series      *Series
}

// WritePoints will write the raw data points and any new metadata to the index in the shard
func (s *Shard) WritePoints(points []models.Point) error {
	s.statMap.Add(statWriteReq, 1)

	seriesToCreate, fieldsToCreate, seriesToAddShardTo, err := s.validateSeriesAndFields(points)
	if err != nil {
		return err
	}
	s.statMap.Add(statSeriesCreate, int64(len(seriesToCreate)))
	s.statMap.Add(statFieldsCreate, int64(len(fieldsToCreate)))

	// add any new series to the in-memory index
	if len(seriesToCreate) > 0 {
		s.index.mu.Lock()
		for _, ss := range seriesToCreate {
			s.index.CreateSeriesIndexIfNotExists(ss.Measurement, ss.Series)
		}
		s.index.mu.Unlock()
	}

	if len(seriesToAddShardTo) > 0 {
		s.index.mu.Lock()
		for _, k := range seriesToAddShardTo {
			ss := s.index.series[k]
			if ss != nil {
				ss.shardIDs[s.id] = true
			}
		}
		s.index.mu.Unlock()
	}

	// add any new fields and keep track of what needs to be saved
	measurementFieldsToSave, err := s.createFieldsAndMeasurements(fieldsToCreate)
	if err != nil {
		return err
	}

	// make sure all data is encoded before attempting to save to bolt
	// only required for the b1 and bz1 formats
	if s.engine.Format() != TSM1Format {
		for _, p := range points {
			// Ignore if raw data has already been marshaled.
			if p.Data() != nil {
				continue
			}

			// This was populated earlier, don't need to validate that it's there.
			s.mu.RLock()
			mf := s.measurementFields[p.Name()]
			s.mu.RUnlock()

			// If a measurement is dropped while writes for it are in progress, this could be nil
			if mf == nil {
				return ErrFieldNotFound
			}

			data, err := mf.Codec.EncodeFields(p.Fields())
			if err != nil {
				return err
			}
			p.SetData(data)
		}
	}

	// Write to the engine.
	if err := s.engine.WritePoints(points, measurementFieldsToSave, seriesToCreate); err != nil {
		s.statMap.Add(statWritePointsFail, 1)
		return fmt.Errorf("engine: %s", err)
	}
	s.statMap.Add(statWritePointsOK, int64(len(points)))

	return nil
}

func (s *Shard) ValidateAggregateFieldsInStatement(measurementName string, stmt *influxql.SelectStatement) error {
	s.mu.RLock()
	defer s.mu.RUnlock()

	validateType := func(aname, fname string, t influxql.DataType) error {
		if t != influxql.Float && t != influxql.Integer {
			return fmt.Errorf("aggregate '%s' requires numerical field values. Field '%s' is of type %s",
				aname, fname, t)
		}
		return nil
	}

	m := s.measurementFields[measurementName]
	if m == nil {
		return fmt.Errorf("measurement not found: %s", measurementName)
	}

	// If a numerical aggregate is requested, ensure it is only performed on numeric data or on a
	// nested aggregate on numeric data.
	for _, a := range stmt.FunctionCalls() {
		// Check for fields like `derivative(mean(value), 1d)`
		var nested *influxql.Call = a
		if fn, ok := nested.Args[0].(*influxql.Call); ok {
			nested = fn
		}

		switch lit := nested.Args[0].(type) {
		case *influxql.VarRef:
			if IsNumeric(nested) {
				f := m.Fields[lit.Val]
				if err := validateType(a.Name, f.Name, f.Type); err != nil {
					return err
				}
			}
		case *influxql.Distinct:
			if nested.Name != "count" {
				return fmt.Errorf("aggregate call didn't contain a field %s", a.String())
			}
			if IsNumeric(nested) {
				f := m.Fields[lit.Val]
				if err := validateType(a.Name, f.Name, f.Type); err != nil {
					return err
				}
			}
		default:
			return fmt.Errorf("aggregate call didn't contain a field %s", a.String())
		}
	}

	return nil
}

// DeleteSeries deletes a list of series.
func (s *Shard) DeleteSeries(keys []string) error {
	return s.engine.DeleteSeries(keys)
}

// DeleteMeasurement deletes a measurement and all underlying series.
func (s *Shard) DeleteMeasurement(name string, seriesKeys []string) error {
	s.mu.Lock()
	defer s.mu.Unlock()

	if err := s.engine.DeleteMeasurement(name, seriesKeys); err != nil {
		return err
	}

	// Remove entry from shard index.
	delete(s.measurementFields, name)

	return nil
}

func (s *Shard) createFieldsAndMeasurements(fieldsToCreate []*FieldCreate) (map[string]*MeasurementFields, error) {
	if len(fieldsToCreate) == 0 {
		return nil, nil
	}

	s.index.mu.Lock()
	s.mu.Lock()
	defer s.index.mu.Unlock()
	defer s.mu.Unlock()

	// add fields
	measurementsToSave := make(map[string]*MeasurementFields)
	for _, f := range fieldsToCreate {

		m := s.measurementFields[f.Measurement]
		if m == nil {
			m = measurementsToSave[f.Measurement]
			if m == nil {
				m = &MeasurementFields{Fields: make(map[string]*Field)}
			}
			s.measurementFields[f.Measurement] = m
		}

		measurementsToSave[f.Measurement] = m

		// add the field to the in memory index
		// only limit the field count for non-tsm eninges
		limitFieldCount := s.engine.Format() == B1Format || s.engine.Format() == BZ1Format
		if err := m.CreateFieldIfNotExists(f.Field.Name, f.Field.Type, limitFieldCount); err != nil {
			return nil, err
		}

		// ensure the measurement is in the index and the field is there
		measurement := s.index.CreateMeasurementIndexIfNotExists(f.Measurement)
		measurement.SetFieldName(f.Field.Name)
	}

	return measurementsToSave, nil
}

// validateSeriesAndFields checks which series and fields are new and whose metadata should be saved and indexed
func (s *Shard) validateSeriesAndFields(points []models.Point) ([]*SeriesCreate, []*FieldCreate, []string, error) {
	var seriesToCreate []*SeriesCreate
	var fieldsToCreate []*FieldCreate
	var seriesToAddShardTo []string

	// get the mutex for the in memory index, which is shared across shards
	s.index.mu.RLock()
	defer s.index.mu.RUnlock()

	// get the shard mutex for locally defined fields
	s.mu.RLock()
	defer s.mu.RUnlock()

	for _, p := range points {
		// see if the series should be added to the index
		if ss := s.index.series[string(p.Key())]; ss == nil {
			series := NewSeries(string(p.Key()), p.Tags())
			seriesToCreate = append(seriesToCreate, &SeriesCreate{p.Name(), series})
			seriesToAddShardTo = append(seriesToAddShardTo, series.Key)
		} else if !ss.shardIDs[s.id] {
			// this is the first time this series is being written into this shard, persist it
			seriesToCreate = append(seriesToCreate, &SeriesCreate{p.Name(), ss})
			seriesToAddShardTo = append(seriesToAddShardTo, ss.Key)
		}

		// see if the field definitions need to be saved to the shard
		mf := s.measurementFields[p.Name()]
		if mf == nil {
			for name, value := range p.Fields() {
				fieldsToCreate = append(fieldsToCreate, &FieldCreate{p.Name(), &Field{Name: name, Type: influxql.InspectDataType(value)}})
			}
			continue // skip validation since all fields are new
		}

		// validate field types and encode data
		for name, value := range p.Fields() {
			if f := mf.Fields[name]; f != nil {
				// Field present in shard metadata, make sure there is no type conflict.
				if f.Type != influxql.InspectDataType(value) {
					return nil, nil, nil, fmt.Errorf("field type conflict: input field \"%s\" on measurement \"%s\" is type %T, already exists as type %s", name, p.Name(), value, f.Type)
				}

				continue // Field is present, and it's of the same type. Nothing more to do.
			}

			fieldsToCreate = append(fieldsToCreate, &FieldCreate{p.Name(), &Field{Name: name, Type: influxql.InspectDataType(value)}})
		}
	}

	return seriesToCreate, fieldsToCreate, seriesToAddShardTo, nil
}

// SeriesCount returns the number of series buckets on the shard.
func (s *Shard) SeriesCount() (int, error) { return s.engine.SeriesCount() }

// WriteTo writes the shard's data to w.
func (s *Shard) WriteTo(w io.Writer) (int64, error) {
	n, err := s.engine.WriteTo(w)
	s.statMap.Add(statWriteBytes, int64(n))
	return n, err
}

type MeasurementFields struct {
	Fields map[string]*Field `json:"fields"`
	Codec  *FieldCodec
}

// MarshalBinary encodes the object to a binary format.
func (m *MeasurementFields) MarshalBinary() ([]byte, error) {
	var pb internal.MeasurementFields
	for _, f := range m.Fields {
		id := int32(f.ID)
		name := f.Name
		t := int32(f.Type)
		pb.Fields = append(pb.Fields, &internal.Field{ID: &id, Name: &name, Type: &t})
	}
	return proto.Marshal(&pb)
}

// UnmarshalBinary decodes the object from a binary format.
func (m *MeasurementFields) UnmarshalBinary(buf []byte) error {
	var pb internal.MeasurementFields
	if err := proto.Unmarshal(buf, &pb); err != nil {
		return err
	}
	m.Fields = make(map[string]*Field)
	for _, f := range pb.Fields {
		m.Fields[f.GetName()] = &Field{ID: uint8(f.GetID()), Name: f.GetName(), Type: influxql.DataType(f.GetType())}
	}
	return nil
}

// CreateFieldIfNotExists creates a new field with an autoincrementing ID.
// Returns an error if 255 fields have already been created on the measurement or
// the fields already exists with a different type.
func (m *MeasurementFields) CreateFieldIfNotExists(name string, typ influxql.DataType, limitCount bool) error {
	// Ignore if the field already exists.
	if f := m.Fields[name]; f != nil {
		if f.Type != typ {
			return ErrFieldTypeConflict
		}
		return nil
	}

	// If we're supposed to limit the number of fields, only 255 are allowed. If we go over that then return an error.
	if len(m.Fields)+1 > math.MaxUint8 && limitCount {
		return ErrFieldOverflow
	}

	// Create and append a new field.
	f := &Field{
		ID:   uint8(len(m.Fields) + 1),
		Name: name,
		Type: typ,
	}
	m.Fields[name] = f
	m.Codec = NewFieldCodec(m.Fields)

	return nil
}

// Field represents a series field.
type Field struct {
	ID   uint8             `json:"id,omitempty"`
	Name string            `json:"name,omitempty"`
	Type influxql.DataType `json:"type,omitempty"`
}

// FieldCodec provides encoding and decoding functionality for the fields of a given
// Measurement. It is a distinct type to avoid locking writes on this node while
// potentially long-running queries are executing.
//
// It is not affected by changes to the Measurement object after codec creation.
// TODO: this shouldn't be exported. nothing outside the shard should know about field encodings.
//       However, this is here until tx.go and the engine get refactored into tsdb.
type FieldCodec struct {
	fieldsByID   map[uint8]*Field
	fieldsByName map[string]*Field
}

// NewFieldCodec returns a FieldCodec for the given Measurement. Must be called with
// a RLock that protects the Measurement.
func NewFieldCodec(fields map[string]*Field) *FieldCodec {
	fieldsByID := make(map[uint8]*Field, len(fields))
	fieldsByName := make(map[string]*Field, len(fields))
	for _, f := range fields {
		fieldsByID[f.ID] = f
		fieldsByName[f.Name] = f
	}
	return &FieldCodec{fieldsByID: fieldsByID, fieldsByName: fieldsByName}
}

// EncodeFields converts a map of values with string keys to a byte slice of field
// IDs and values.
//
// If a field exists in the codec, but its type is different, an error is returned. If
// a field is not present in the codec, the system panics.
func (f *FieldCodec) EncodeFields(values map[string]interface{}) ([]byte, error) {
	// Allocate byte slice
	b := make([]byte, 0, 10)

	for k, v := range values {
		field := f.fieldsByName[k]
		if field == nil {
			panic(fmt.Sprintf("field does not exist for %s", k))
		} else if influxql.InspectDataType(v) != field.Type {
			return nil, fmt.Errorf("field \"%s\" is type %T, mapped as type %s", k, v, field.Type)
		}

		var buf []byte

		switch field.Type {
		case influxql.Float:
			value := v.(float64)
			buf = make([]byte, 9)
			binary.BigEndian.PutUint64(buf[1:9], math.Float64bits(value))
		case influxql.Integer:
			var value uint64
			switch v.(type) {
			case int:
				value = uint64(v.(int))
			case int32:
				value = uint64(v.(int32))
			case int64:
				value = uint64(v.(int64))
			default:
				panic(fmt.Sprintf("invalid integer type: %T", v))
			}
			buf = make([]byte, 9)
			binary.BigEndian.PutUint64(buf[1:9], value)
		case influxql.Boolean:
			value := v.(bool)

			// Only 1 byte need for a boolean.
			buf = make([]byte, 2)
			if value {
				buf[1] = byte(1)
			}
		case influxql.String:
			value := v.(string)
			if len(value) > maxStringLength {
				value = value[:maxStringLength]
			}
			// Make a buffer for field ID (1 bytes), the string length (2 bytes), and the string.
			buf = make([]byte, len(value)+3)

			// Set the string length, then copy the string itself.
			binary.BigEndian.PutUint16(buf[1:3], uint16(len(value)))
			for i, c := range []byte(value) {
				buf[i+3] = byte(c)
			}
		default:
			panic(fmt.Sprintf("unsupported value type during encode fields: %T", v))
		}

		// Always set the field ID as the leading byte.
		buf[0] = field.ID

		// Append temp buffer to the end.
		b = append(b, buf...)
	}

	return b, nil
}

// TODO: this shouldn't be exported. remove when tx.go and engine.go get refactored into tsdb
func (f *FieldCodec) FieldIDByName(s string) (uint8, error) {
	fi := f.fieldsByName[s]
	if fi == nil {
		return 0, ErrFieldNotFound
	}
	return fi.ID, nil
}

// DecodeFields decodes a byte slice into a set of field ids and values.
func (f *FieldCodec) DecodeFields(b []byte) (map[uint8]interface{}, error) {
	if len(b) == 0 {
		return nil, nil
	}

	// Create a map to hold the decoded data.
	values := make(map[uint8]interface{}, 0)

	for {
		if len(b) < 1 {
			// No more bytes.
			break
		}

		// First byte is the field identifier.
		fieldID := b[0]
		field := f.fieldsByID[fieldID]
		if field == nil {
			// See note in DecodeByID() regarding field-mapping failures.
			return nil, ErrFieldUnmappedID
		}

		var value interface{}
		switch field.Type {
		case influxql.Float:
			value = math.Float64frombits(binary.BigEndian.Uint64(b[1:9]))
			// Move bytes forward.
			b = b[9:]
		case influxql.Integer:
			value = int64(binary.BigEndian.Uint64(b[1:9]))
			// Move bytes forward.
			b = b[9:]
		case influxql.Boolean:
			if b[1] == 1 {
				value = true
			} else {
				value = false
			}
			// Move bytes forward.
			b = b[2:]
		case influxql.String:
			size := binary.BigEndian.Uint16(b[1:3])
			value = string(b[3 : size+3])
			// Move bytes forward.
			b = b[size+3:]
		default:
			panic(fmt.Sprintf("unsupported value type during decode fields: %T", f.fieldsByID[fieldID]))
		}

		values[fieldID] = value

	}

	return values, nil
}

// DecodeFieldsWithNames decodes a byte slice into a set of field names and values
// TODO: shouldn't be exported. refactor engine
func (f *FieldCodec) DecodeFieldsWithNames(b []byte) (map[string]interface{}, error) {
	fields, err := f.DecodeFields(b)
	if err != nil {
		return nil, err
	}
	m := make(map[string]interface{})
	for id, v := range fields {
		field := f.fieldsByID[id]
		if field != nil {
			m[field.Name] = v
		}
	}
	return m, nil
}

// DecodeByID scans a byte slice for a field with the given ID, converts it to its
// expected type, and return that value.
// TODO: shouldn't be exported. refactor engine
func (f *FieldCodec) DecodeByID(targetID uint8, b []byte) (interface{}, error) {
	if len(b) == 0 {
		return 0, ErrFieldNotFound
	}

	for {
		if len(b) < 1 {
			// No more bytes.
			break
		}
		field, ok := f.fieldsByID[b[0]]
		if !ok {
			// This can happen, though is very unlikely. If this node receives encoded data, to be written
			// to disk, and is queried for that data before its metastore is updated, there will be no field
			// mapping for the data during decode. All this can happen because data is encoded by the node
			// that first received the write request, not the node that actually writes the data to disk.
			// So if this happens, the read must be aborted.
			return 0, ErrFieldUnmappedID
		}

		var value interface{}
		switch field.Type {
		case influxql.Float:
			// Move bytes forward.
			value = math.Float64frombits(binary.BigEndian.Uint64(b[1:9]))
			b = b[9:]
		case influxql.Integer:
			value = int64(binary.BigEndian.Uint64(b[1:9]))
			b = b[9:]
		case influxql.Boolean:
			if b[1] == 1 {
				value = true
			} else {
				value = false
			}
			// Move bytes forward.
			b = b[2:]
		case influxql.String:
			size := binary.BigEndian.Uint16(b[1:3])
			value = string(b[3 : 3+size])
			// Move bytes forward.
			b = b[size+3:]
		default:
			panic(fmt.Sprintf("unsupported value type during decode by id: %T", field.Type))
		}

		if field.ID == targetID {
			return value, nil
		}
	}

	return 0, ErrFieldNotFound
}

// DecodeByName scans a byte slice for a field with the given name, converts it to its
// expected type, and return that value.
func (f *FieldCodec) DecodeByName(name string, b []byte) (interface{}, error) {
	fi := f.FieldByName(name)
	if fi == nil {
		return 0, ErrFieldNotFound
	}
	return f.DecodeByID(fi.ID, b)
}

func (f *FieldCodec) Fields() (a []*Field) {
	for _, f := range f.fieldsByID {
		a = append(a, f)
	}
	return
}

// FieldByName returns the field by its name. It will return a nil if not found
func (f *FieldCodec) FieldByName(name string) *Field {
	return f.fieldsByName[name]
}

// mustMarshal encodes a value to JSON.
// This will panic if an error occurs. This should only be used internally when
// an invalid marshal will cause corruption and a panic is appropriate.
func mustMarshalJSON(v interface{}) []byte {
	b, err := json.Marshal(v)
	if err != nil {
		panic("marshal: " + err.Error())
	}
	return b
}

// mustUnmarshalJSON decodes a value from JSON.
// This will panic if an error occurs. This should only be used internally when
// an invalid unmarshal will cause corruption and a panic is appropriate.
func mustUnmarshalJSON(b []byte, v interface{}) {
	if err := json.Unmarshal(b, v); err != nil {
		panic("unmarshal: " + err.Error())
	}
}

// u64tob converts a uint64 into an 8-byte slice.
func u64tob(v uint64) []byte {
	b := make([]byte, 8)
	binary.BigEndian.PutUint64(b, v)
	return b
}