This file is indexed.

/usr/share/gocode/src/github.com/klauspost/compress/flate/gen.go is in golang-github-klauspost-compress-dev 0.0~git20151221.0.2dd54ae-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright 2012 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build ignore

// This program generates fixedhuff.go
// Invoke as
//
//	go run gen.go -output fixedhuff.go

package main

import (
	"bytes"
	"flag"
	"fmt"
	"go/format"
	"io/ioutil"
	"log"
)

var filename = flag.String("output", "fixedhuff.go", "output file name")

const maxCodeLen = 16

// Note: the definition of the huffmanDecoder struct is copied from
// inflate.go, as it is private to the implementation.

// chunk & 15 is number of bits
// chunk >> 4 is value, including table link

const (
	huffmanChunkBits  = 9
	huffmanNumChunks  = 1 << huffmanChunkBits
	huffmanCountMask  = 15
	huffmanValueShift = 4
)

type huffmanDecoder struct {
	min      int                      // the minimum code length
	chunks   [huffmanNumChunks]uint32 // chunks as described above
	links    [][]uint32               // overflow links
	linkMask uint32                   // mask the width of the link table
}

// Initialize Huffman decoding tables from array of code lengths.
// Following this function, h is guaranteed to be initialized into a complete
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
// degenerate case where the tree has only a single symbol with length 1. Empty
// trees are permitted.
func (h *huffmanDecoder) init(bits []int) bool {
	// Sanity enables additional runtime tests during Huffman
	// table construction.  It's intended to be used during
	// development to supplement the currently ad-hoc unit tests.
	const sanity = false

	if h.min != 0 {
		*h = huffmanDecoder{}
	}

	// Count number of codes of each length,
	// compute min and max length.
	var count [maxCodeLen]int
	var min, max int
	for _, n := range bits {
		if n == 0 {
			continue
		}
		if min == 0 || n < min {
			min = n
		}
		if n > max {
			max = n
		}
		count[n]++
	}

	// Empty tree. The decompressor.huffSym function will fail later if the tree
	// is used. Technically, an empty tree is only valid for the HDIST tree and
	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
	// is guaranteed to fail since it will attempt to use the tree to decode the
	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
	// guaranteed to fail later since the compressed data section must be
	// composed of at least one symbol (the end-of-block marker).
	if max == 0 {
		return true
	}

	code := 0
	var nextcode [maxCodeLen]int
	for i := min; i <= max; i++ {
		code <<= 1
		nextcode[i] = code
		code += count[i]
	}

	// Check that the coding is complete (i.e., that we've
	// assigned all 2-to-the-max possible bit sequences).
	// Exception: To be compatible with zlib, we also need to
	// accept degenerate single-code codings.  See also
	// TestDegenerateHuffmanCoding.
	if code != 1<<uint(max) && !(code == 1 && max == 1) {
		return false
	}

	h.min = min
	if max > huffmanChunkBits {
		numLinks := 1 << (uint(max) - huffmanChunkBits)
		h.linkMask = uint32(numLinks - 1)

		// create link tables
		link := nextcode[huffmanChunkBits+1] >> 1
		h.links = make([][]uint32, huffmanNumChunks-link)
		for j := uint(link); j < huffmanNumChunks; j++ {
			reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
			reverse >>= uint(16 - huffmanChunkBits)
			off := j - uint(link)
			if sanity && h.chunks[reverse] != 0 {
				panic("impossible: overwriting existing chunk")
			}
			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
			h.links[off] = make([]uint32, numLinks)
		}
	}

	for i, n := range bits {
		if n == 0 {
			continue
		}
		code := nextcode[n]
		nextcode[n]++
		chunk := uint32(i<<huffmanValueShift | n)
		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
		reverse >>= uint(16 - n)
		if n <= huffmanChunkBits {
			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
				// We should never need to overwrite
				// an existing chunk.  Also, 0 is
				// never a valid chunk, because the
				// lower 4 "count" bits should be
				// between 1 and 15.
				if sanity && h.chunks[off] != 0 {
					panic("impossible: overwriting existing chunk")
				}
				h.chunks[off] = chunk
			}
		} else {
			j := reverse & (huffmanNumChunks - 1)
			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
				// Longer codes should have been
				// associated with a link table above.
				panic("impossible: not an indirect chunk")
			}
			value := h.chunks[j] >> huffmanValueShift
			linktab := h.links[value]
			reverse >>= huffmanChunkBits
			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
				if sanity && linktab[off] != 0 {
					panic("impossible: overwriting existing chunk")
				}
				linktab[off] = chunk
			}
		}
	}

	if sanity {
		// Above we've sanity checked that we never overwrote
		// an existing entry.  Here we additionally check that
		// we filled the tables completely.
		for i, chunk := range h.chunks {
			if chunk == 0 {
				// As an exception, in the degenerate
				// single-code case, we allow odd
				// chunks to be missing.
				if code == 1 && i%2 == 1 {
					continue
				}
				panic("impossible: missing chunk")
			}
		}
		for _, linktab := range h.links {
			for _, chunk := range linktab {
				if chunk == 0 {
					panic("impossible: missing chunk")
				}
			}
		}
	}

	return true
}

func main() {
	flag.Parse()

	var h huffmanDecoder
	var bits [288]int
	initReverseByte()
	for i := 0; i < 144; i++ {
		bits[i] = 8
	}
	for i := 144; i < 256; i++ {
		bits[i] = 9
	}
	for i := 256; i < 280; i++ {
		bits[i] = 7
	}
	for i := 280; i < 288; i++ {
		bits[i] = 8
	}
	h.init(bits[:])
	if h.links != nil {
		log.Fatal("Unexpected links table in fixed Huffman decoder")
	}

	var buf bytes.Buffer

	fmt.Fprintf(&buf, `// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.`+"\n\n")

	fmt.Fprintln(&buf, "package flate")
	fmt.Fprintln(&buf)
	fmt.Fprintln(&buf, "// autogenerated by go run gen.go -output fixedhuff.go, DO NOT EDIT")
	fmt.Fprintln(&buf)
	fmt.Fprintln(&buf, "var fixedHuffmanDecoder = huffmanDecoder{")
	fmt.Fprintf(&buf, "\t%d,\n", h.min)
	fmt.Fprintln(&buf, "\t[huffmanNumChunks]uint32{")
	for i := 0; i < huffmanNumChunks; i++ {
		if i&7 == 0 {
			fmt.Fprintf(&buf, "\t\t")
		} else {
			fmt.Fprintf(&buf, " ")
		}
		fmt.Fprintf(&buf, "0x%04x,", h.chunks[i])
		if i&7 == 7 {
			fmt.Fprintln(&buf)
		}
	}
	fmt.Fprintln(&buf, "\t},")
	fmt.Fprintln(&buf, "\tnil, 0,")
	fmt.Fprintln(&buf, "}")

	data, err := format.Source(buf.Bytes())
	if err != nil {
		log.Fatal(err)
	}
	err = ioutil.WriteFile(*filename, data, 0644)
	if err != nil {
		log.Fatal(err)
	}
}

var reverseByte [256]byte

func initReverseByte() {
	for x := 0; x < 256; x++ {
		var result byte
		for i := uint(0); i < 8; i++ {
			result |= byte(((x >> i) & 1) << (7 - i))
		}
		reverseByte[x] = result
	}
}