/usr/share/hol88-2.02.19940316/contrib/SECD/constraints.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | % SECD verification %
% %
% FILE: constraints.ml %
% %
% DESCRIPTION: Contains the constraint predicates that limit the %
% states that are subject to verification. %
% %
% USES FILES: rt_SYS.th, top_SECD.th %
% %
% Brian Graham 89.09.11 %
% %
% Modifications: %
% 90.03.08 - changed the valid_codes_constraint to 14 bit values %
% from 9 bit values. %
% 16.04.91 - BtG - updated to HOL12 %
% ================================================================= %
new_theory `constraints`;;
loadt `wordn`;;
load_library `integer`;;
map new_parent [`rt_SYS` ;
`top_SECD` ];;
load_theorem `interface` `ID_THM`;;
load_theorem `cu_types` `Word9_11`;;
load_theorem `more_arith` `AND_DIST_OR`;;
map (load_definition `dp_types`)
[ `atom_bits`
; `is_symbol`
; `is_cons`
];;
map (load_definition `rt_SECD`)
[`opcode_bits`
];;
map (load_theorem `dp_types`)
[`Bits28_Word28`
;`Word32_Induct`
;`bus32_symb_fields_lemma`
;`records_distinct`
;`rec_types_DISTINCT`
];;
load_definition `top_SECD` `nth`;;
load_definition `rt_SYS` `Store14`;;
letrec truncate i l =
if i=0 then [] else hd l.truncate(i-1)(tl l);;
letrec seg (m,n) l =
(if m<0 or n<m then fail
if m=0 then truncate ((n-m)+1) l
else seg (m-1,n-1) (tl l)
) ? failwith `seg`;;
% ================================================================= %
let mtime = ":num";;
let msig = ":^mtime->bool"
and w9_mvec = ":^mtime->word9"
and w14_mvec = ":^mtime->word14"
and w27_mvec = ":^mtime->word27"
and w32_mvec = ":^mtime->word32";;
let mem14_32 = ":word14->word32";;
let m14_32_mvec = ":^mtime->^mem14_32";;
let M = ":(word14,atom)mfsexp_mem";;
let M_mvec = ":^mtime->^M";;
let state = ":bool # bool";;
let state_msig = ":^mtime->^state";;
% ================================================================= %
let LD_instr9 = "#000000001"
and LD_instr28 = "#0000000000000000000000000001"
and LDC_instr9 = "#000000010"
and LDC_instr28 = "#0000000000000000000000000010"
and LDF_instr9 = "#000000011"
and LDF_instr28 = "#0000000000000000000000000011"
and AP_instr9 = "#000000100"
and AP_instr28 = "#0000000000000000000000000100"
and RTN_instr9 = "#000000101"
and RTN_instr28 = "#0000000000000000000000000101"
and DUM_instr9 = "#000000110"
and DUM_instr28 = "#0000000000000000000000000110"
and RAP_instr9 = "#000000111"
and RAP_instr28 = "#0000000000000000000000000111"
and SEL_instr9 = "#000001000"
and SEL_instr28 = "#0000000000000000000000001000"
and JOIN_instr9 = "#000001001"
and JOIN_instr28 = "#0000000000000000000000001001"
and CAR_instr9 = "#000001010"
and CAR_instr28 = "#0000000000000000000000001010"
and CDR_instr9 = "#000001011"
and CDR_instr28 = "#0000000000000000000000001011"
and ATOM_instr9 = "#000001100"
and ATOM_instr28 = "#0000000000000000000000001100"
and CONS_instr9 = "#000001101"
and CONS_instr28 = "#0000000000000000000000001101"
and EQ_instr9 = "#000001110"
and EQ_instr28 = "#0000000000000000000000001110"
and ADD_instr9 = "#000001111"
and ADD_instr28 = "#0000000000000000000000001111"
and SUB_instr9 = "#000010000"
and SUB_instr28 = "#0000000000000000000000010000"
and MUL_instr9 = "#000010001"
and MUL_instr28 = "#0000000000000000000000010001"
and DIV_instr9 = "#000010010"
and DIV_instr28 = "#0000000000000000000000010010"
and REM_instr9 = "#000010011"
and REM_instr28 = "#0000000000000000000000010011"
and LEQ_instr9 = "#000010100"
and LEQ_instr28 = "#0000000000000000000000010100"
and STOP_instr9 = "#000010101"
and STOP_instr28 = "#0000000000000000000000010101";;
timer true;;
% ================================================================= %
% Abstracting from the "state" of the rt level implementation to %
% the top level spec state concerns only the mpc contents. The %
% mapping is defined only for 4 mpc values, and is an arbitrary %
% value otherwise. %
% ================================================================= %
let state_abs = new_definition
(`state_abs`,
"state_abs mpc =
(mpc = #000010110) => idle | % 22 %
(mpc = #000011000) => error0 | % 24 %
(mpc = #000011010) => error1 | % 26 %
(mpc = #000101011) => top_of_cycle | % 43 %
(@stat.F)");;
let state_abs_thm = prove_thm
(`state_abs_thm`,
"(state_abs #000010110 = idle) /\
(state_abs #000011000 = error0) /\
(state_abs #000101011 = top_of_cycle) /\
(state_abs #000011010 = error1)",
rt[state_abs]
THEN in_conv_tac wordn_CONV
THEN rt[Word9_11; Bus_11; Wire_11]
);;
let is_major_state = new_definition
(`is_major_state`,
"is_major_state mpc (t:^mtime) =
(mpc t = #000010110) \/
(mpc t = #000011000) \/
(mpc t = #000101011) \/
(mpc t = #000011010)");;
let is_major_state_lemma = prove
("is_major_state mpc t ==>
(state_abs (mpc t) =
(mpc t = #000010110) => idle | % 22 %
(mpc t = #000011000) => error0 | % 24 %
(mpc t = #000011010) => error1 | % 26 %
% (mpc t = #000101011) => % top_of_cycle) " % 43 % ,
prt[is_major_state; state_abs]
THEN STRIP_TAC
THEN art[]
);;
%=================================================================%
% The system clock always cycles, never the shift register clock. %
%=================================================================%
let clock_constraint = new_definition
(`clock_constraint`,
"clock_constraint (SYS_Clocked:^msig) =
!t:^mtime. SYS_Clocked t"
);;
%=================================================================%
% 3 reserved words always contain the symbolic constants. %
%=================================================================%
let reserved_words_constraint = new_definition
(`reserved_words_constraint`,
"reserved_words_constraint (mpc:^w9_mvec) (memory:^m14_32_mvec)=
!t:^mtime. (state_abs (mpc t) = top_of_cycle) ==>
((memory t NIL_addr =
bus32_symb_append #0000000000000000000000000000) /\
(memory t T_addr =
bus32_symb_append #0000000000000000000000000001) /\
(memory t F_addr =
bus32_symb_append #0000000000000000000000000010))"
);;
% ================================================================= %
% A function to trace a car/cdr chain in a memory. %
% Note that we check that the cells are cons cells, otherwise the %
% path could take a 14 bit field of a symbol or number, %
% and end up in a meaningless memory location. %
% Note also that this function returns pointers to cells in memory, %
% not the cells themselves. %
% ================================================================= %
let path = new_list_rec_definition
(`path`,
"(path (mem:word14->word32) (v:word14) [] = v) /\
(path mem v (CONS l L) =
(is_cons (mem v))
=> l => (path mem(cdr_bits(mem v))L)
| (path mem(car_bits(mem v))L)
| v)
");;
% ================================================================= %
% Predicate for path args for cdr'ing through free list. %
% ================================================================= %
let all_cdr_path = new_list_rec_definition
(`all_cdr_path`,
"(all_cdr_path [] = T) /\
(all_cdr_path (CONS h tl) = h /\ (all_cdr_path tl))");;
% ================================================================= %
% free list is linear ending with NIL %
% ================================================================= %
let linear_free_list = new_definition
(`linear_free_list`,
"linear_free_list (mem:word14->word32) (free:word14) =
!l1 l2. (all_cdr_path l1) /\ (all_cdr_path l2) ==>
~(l1 = l2) ==>
(path mem free l1 = path mem free l2) ==>
(path mem free l1 = NIL_addr)"
);;
% ================================================================= %
% non intersection of cells reachable from v and those from free. %
% ================================================================= %
let nonintersecting = new_definition
(`nonintersecting`,
"nonintersecting (mem:word14->word32) (free:word14) (v:word14) =
(!l1 l2. (all_cdr_path l2) ==>
~(path mem free l2 = NIL_addr) ==>
~(path mem v l1 = path mem free l2))"
);;
% ================================================================= %
% a specific word is not in the free list. %
% ================================================================= %
let not_in_free_list = new_definition
(`not_in_free_list`,
"not_in_free_list (mem:word14->word32) (free:word14) (v:word14) =
!l. (all_cdr_path l) ==> ~(path mem free l = v)"
);;
% ================================================================= %
% Function to require n cells in the free list. %
% ================================================================= %
let n_cells_in_free_list = new_definition
(`n_cells_in_free_list`,
"n_cells_in_free_list (mem:word14->word32)(free:word14) n =
(!n':num. (n' < n) ==>
(is_cons (nth n' (mem o cdr_bits)(mem free))))"
);;
% ================================================================= %
% The well formed free list, when in top_of_cycle state: %
% - is nonempty, containing 4 cells minimum %
% - is a linear cdr-linked list %
% - does not intersect any cell in the s,e,c, or d data structures %
% - the head of the free list is not the reserved NUM_addr. %
% ================================================================= %
let well_formed_free_list = new_definition
(`well_formed_free_list`,
"well_formed_free_list (memory:^m14_32_mvec) (mpc:^w9_mvec)
(free:^w14_mvec) (s:^w14_mvec)
(e:^w14_mvec) (c:^w14_mvec) (d:^w14_mvec) =
!t:^mtime.
(state_abs (mpc t) = top_of_cycle) ==>
(n_cells_in_free_list (memory t) (free t) 4) /\
(linear_free_list (memory t) (free t)) /\
(let nonintersecting_with_free_list =
(nonintersecting (memory t) (free t))
in
(nonintersecting_with_free_list (s t) /\
nonintersecting_with_free_list (e t) /\
nonintersecting_with_free_list (c t) /\
nonintersecting_with_free_list (d t))) /\
(not_in_free_list (memory t) (free t) NUM_addr)"
);;
%=================================================================%
% Once initialized, there is always a valid program in memory. %
% Presently it is written to ensure that a valid instruction %
% opcode is in place. This will need revision to include a %
% requirement for valid arguments as well. %
% %
% | next_c %
% __ _v %
% c' -->|__|__|head_c %
% ____/ \__ __ %
% instr'|____| |__|__| %
% ____/ \__ __ %
% |____| |__|__| %
% / \... %
% %
% The complexity of this constraint requires some consideration. %
% Hardly any of the specific constraints here, aside from the %
% possible instruction bit values and the requirement that the %
% arguments to the LD instruction be a pair of positive integers %
% when abstracted from word32 to integer, apply to the proof of %
% the next state of the machine from the rtl view. %
% %
% The additional constraints on the type of records in memory %
% (for example, that the top of s is a cons cell for the CAR %
% instruction) are needed for the abstracted operation to %
% correspond to the top level description. Would it not be %
% better if the top level had these constraints, rather than %
% muddying the picture here? %
% %
% How can these constraints be introduced? %
% %
% 1. as part of the top level definition: i.e. the behaviour is %
% determined iff the constraint holds %
% 2. as a distinct constraint introduced in the correctness %
% statement: i.e. low level constraints ==> %
% ^SYS_imp ==> %
% high_level_constraints %
% (on abstracted signals) ==> %
% top_SECD %
% %
% The possible instruction codes are over constrained here. %
% The full 14 bit field is defined for each instruction, while the%
% machine will work perfectly well if the high order bits are not %
% all 0's. %
%=================================================================%
let valid_codes_constraint = new_definition
(`valid_codes_constraint`,
"valid_codes_constraint (memory:^m14_32_mvec) (mpc:^w9_mvec)
(c :^w14_mvec) =
!t:^mtime.
(state_abs (mpc t) = top_of_cycle) ==>
let head_c = memory t (c t)
in
let instr' = (memory t) (car_bits head_c)
and next_c = (cdr_bits head_c)
in
let instr = opcode_bits instr'
in
(((instr = ^LD_instr9) /\
let arg_cons_cell = memory t (car_bits (memory t next_c))
in
let m_cell = memory t (car_bits arg_cons_cell)
and n_cell = memory t (cdr_bits arg_cons_cell)
in
((is_number m_cell) /\
(is_number n_cell) /\
(~(NEG (iVal (Bits28 (atom_bits m_cell))))) /\
(~(NEG (iVal (Bits28 (atom_bits n_cell))))))
) \/
(instr = ^LDC_instr9) \/ (instr = ^LDF_instr9) \/
(instr = ^AP_instr9) \/ (instr = ^RTN_instr9) \/
(instr = ^DUM_instr9) \/ (instr = ^RAP_instr9) \/
(instr = ^SEL_instr9) \/ (instr = ^JOIN_instr9) \/
(instr = ^CAR_instr9) \/ (instr = ^CDR_instr9) \/
(instr = ^ATOM_instr9) \/ (instr = ^CONS_instr9) \/
(instr = ^EQ_instr9) \/ (instr = ^ADD_instr9) \/
(instr = ^SUB_instr9) \/
% (instr = ^MUL_instr9) \/ (instr = ^DIV_instr9) \/ %
% (instr = ^REM_instr9) \/ %
(instr = ^LEQ_instr9) \/ (instr = ^STOP_instr9))"
);;
% ================================================================= %
% valid_codes_lemma = %
% |- !memory mpc c . %
% valid_codes_constraint memory mpc c = %
% (!t. %
% (state_abs(mpc t) = top_of_cycle) ==> %
% (opcode_bits(memory t(car_bits(memory t(c t)))) %
% = #000000001) /\ %
% is_number (memory t(car_bits(memory t(car_bits(memory t %
% (cdr_bits(memory t(c t)))))))) /\ %
% is_number (memory t(cdr_bits(memory t(car_bits(memory t %
% (cdr_bits(memory t(c t)))))))) /\ %
% ~NEG(iVal(Bits28(atom_bits(memory t(car_bits(memory t %
% (car_bits(memory t(cdr_bits(memory t(c t))))))))))) /\ %
% ~NEG(iVal(Bits28(atom_bits(memory t(cdr_bits(memory t %
% (car_bits(memory t(cdr_bits(memory t(c t))))))))))) \/ %
% (opcode_bits(memory t(car_bits(memory t(c t)))) %
% = #000000010) \/ %
% (opcode_bits(memory t(car_bits(memory t(c t)))) %
% = #000000011) \/ %
% ... %
% (opcode_bits(memory t(car_bits(memory t(c t)))) %
% = #000010100) \/ %
% (opcode_bits(memory t(car_bits(memory t(c t)))) %
% = #000010101)) %
% ================================================================= %
let valid_codes_lemma = save_thm
(`valid_codes_lemma`,
( (in_conv_rule BETA_CONV)
o (prr[ID_THM])
o (in_conv_rule ETA_CONV)
o (prr[LET_DEF]))
valid_codes_constraint
);;
% ================================================================= %
% LD: has an argument in c consisting of the cons of 2 numbers, %
% should also have a constraint requiring there to be %
% long enough lists in the environment. %
% %
% LDC: has an atomic argument in c %
% %
% LDF: has an argument in c %
% %
% AP: closure & args on s : (car s ) and (cdr s ) %
% are both cons records %
% %
% RAP: same as AP, plus %
% NIL on top of e %
% %
% DUM: none %
% %
% RTN: only one arg on top of s , %
% d has s, e, c components, %
% nothing after RTN on c %
% %
% JOIN: d is a cons, %
% nothing after JOIN in c %
% %
% SEL: symbol on top of s %
% 2 args in c %
% %
% CAR, CDR: %
% a cons record on top of s %
% %
% ATOM: one arg on top of s %
% %
% CONS, EQ: %
% 2 args on top of s %
% %
% ADD, SUB, MUL, DIV, REM, LEQ: %
% 2 NUMERIC args on top of s %
% %
% STOP: last thing in control list, %
% s is a list %
% ================================================================= %
let valid_program_constraint = new_definition
(`valid_program_constraint`,
"valid_program_constraint
(memory:^m14_32_mvec) (mpc:^w9_mvec) (button_pin:^msig)
(s :^w14_mvec) (e :^w14_mvec) (c :^w14_mvec) (d :^w14_mvec) =
!t:^mtime.
(((state_abs (mpc t) = idle) /\ button_pin t) ==>
(is_cons (memory t NUM_addr)) /\
(is_cons (memory t (car_bits (memory t NUM_addr))))) /\
((state_abs (mpc t) = top_of_cycle) ==>
let head_c = memory t (c t)
in
((is_cons head_c) /\
let instr' = (memory t) (car_bits head_c)
and next_c = (cdr_bits head_c)
in
((is_number instr') /\
let instr = atom_bits instr'
in
(((instr = ^LD_instr28) /\
(is_cons (memory t next_c)) /\
let arg_cons_cell = memory t (car_bits (memory t next_c))
in
((is_cons arg_cons_cell) /\
let m_cell = memory t (car_bits arg_cons_cell)
and n_cell = memory t (cdr_bits arg_cons_cell)
in
((is_number m_cell) /\
(is_number n_cell) /\
let m = (iVal(Bits28(atom_bits m_cell)))
and n = (iVal(Bits28(atom_bits n_cell)))
in
((~NEG m) /\
(~NEG n) /\
(!m'. (m' <= (pos_num_of m)) ==>
(is_cons (nth m' ((memory t) o cdr_bits)
(memory t (e t))))) /\
(!n'. (n' <= (pos_num_of n)) ==>
(is_cons (nth n' ((memory t) o cdr_bits)
(memory t(car_bits
(nth (pos_num_of m)
((memory t) o cdr_bits)
(memory t (e t)))))))))))
) \/
((instr = ^LDC_instr28) /\
(is_cons (memory t next_c)) /\
(is_atom (memory t (car_bits (memory t next_c))))
) \/
((instr = ^LDF_instr28) /\
(is_cons (memory t next_c))
) \/
(((instr = ^AP_instr28) \/
((instr = ^RAP_instr28) /\
(is_cons (memory t (e t))) /\
(car_bits (memory t (e t)) = NIL_addr) /\
(e t = cdr_bits(memory t(car_bits(memory t(s t))))))) /\
(is_cons (memory t (s t))) /\
(is_cons (memory t (car_bits (memory t (s t))))) /\
(is_cons (memory t (cdr_bits (memory t (s t)))))
) \/
((instr = ^RTN_instr28) /\
(is_cons (memory t (d t))) /\
(is_cons (memory t (cdr_bits (memory t (d t))))) /\
(is_cons (memory t (cdr_bits (memory t
(cdr_bits (memory t (d t))))))) /\
(is_cons (memory t (s t))) /\
(next_c = NIL_addr)
) \/
(instr = ^DUM_instr28) \/
((instr = ^SEL_instr28) /\
(is_cons (memory t (s t))) /\
(is_symbol (memory t (car_bits (memory t (s t))))) /\
(is_cons (memory t next_c)) /\
(is_cons (memory t (cdr_bits (memory t next_c))))
) \/
((instr = ^JOIN_instr28) /\
(is_cons (memory t (d t))) /\
(next_c = NIL_addr)
) \/
(((instr = ^CAR_instr28) \/
(instr = ^CDR_instr28)) /\
(is_cons (memory t (s t))) /\
(is_cons (memory t (car_bits (memory t (s t)))))
) \/
((instr = ^ATOM_instr28) /\
(is_cons (memory t (s t)))
) \/
((instr = ^CONS_instr28) /\
(is_cons (memory t (s t))) /\
(is_cons (memory t (cdr_bits (memory t (s t)))))
) \/
((instr = ^EQ_instr28) /\
(is_cons (memory t (s t))) /\
(is_cons (memory t (cdr_bits (memory t (s t))))) /\
((is_atom (memory t (car_bits (memory t (s t))))) \/
(is_atom (memory t (car_bits (memory t (cdr_bits (memory t (s t))))))))
) \/
(((instr = ^ADD_instr28) \/
(instr = ^SUB_instr28) \/
% (instr = ^MUL_instr28) \/ %
% (instr = ^DIV_instr28) \/ %
% (instr = ^REM_instr28) \/ %
(instr = ^LEQ_instr28)) /\
(is_cons (memory t (s t))) /\
(is_cons (memory t (cdr_bits (memory t (s t))))) /\
(is_number (memory t (car_bits (memory t (s t))))) /\
(is_number (memory t (car_bits (memory t
(cdr_bits (memory t (s t)))))))
) \/
((instr = ^STOP_instr28) /\
(is_cons (memory t (s t))) /\
(next_c = NIL_addr))))))"
);;
let valid_program_lemma = save_thm
(`valid_program_lemma`,
( (in_conv_rule BETA_CONV)
o (in_conv_rule ETA_CONV)
o (prr[LET_DEF])
o (prr[porr[CONJ_SYM] AND_DIST_OR]))
valid_program_constraint
);;
% ================================================================= %
% If the larger atom_bits subfields are equal then the smaller %
% opcode_bits subfields are equal. %
% ================================================================= %
let EQ_atom_IMP_EQ_opcode = prove_thm
(`EQ_atom_IMP_EQ_opcode`,
"!w32.opcode_bits
(Word32(Bus F(Bus F(Bus T(Bus T(Bits28(atom_bits w32))))))) =
opcode_bits w32",
INDUCT_THEN Word32_Induct ASSUME_TAC
THEN REPEAT GEN_TAC
THEN port[atom_bits]
THEN port[Bits28_Word28]
THEN port[opcode_bits]
THEN REFL_TAC
);;
% ================================================================= %
% The weaker valid_codes_constraint is implied by the stronger %
% valid_programs_constraint. The distinct constraints are used %
% to explicitly minimize the constraints required for the %
% liveness of the chip, while the more extensive constraints %
% are needed in the proof of the correctness relating the rtl and %
% SYS_spec. %
% ================================================================= %
let valid_program_IMP_valid_codes = prove_thm
(`valid_program_IMP_valid_codes`,
"!memory mpc button_pin s e c d .
valid_program_constraint memory mpc button_pin s e c d ==>
valid_codes_constraint memory mpc c ",
REPEAT GEN_TAC
THEN SUBST_TAC
[SPEC_ALL valid_codes_lemma; SPEC_ALL valid_program_lemma]
THEN DISCH_THEN
(\th. GEN_TAC
THEN DISCH_THEN
(\th1. CONJUNCTS_THEN2
(K ALL_TAC)
(\th2. CONJUNCTS_THEN2
(K ALL_TAC)
(CONJUNCTS_THEN2
(K ALL_TAC)
(REPEAT_TCL
DISJ_CASES_THEN
(REPEAT_TCL STRIP_THM_THEN ASSUME_TAC)))
(MP th2 th1))
(SPEC_ALL th)))
THEN FIRST_ASSUM
(\th. is_eq (concl th)
=> type_of (fst (dest_eq (concl th))) = ":word28"
=>
(SUBST1_TAC o (porr[SYM(wordn_CONV
(mk_const(implode(`#`.(seg(20,28)(explode
(fst(dest_const(snd(dest_eq
(concl th)))))))),":word9")))])
o (porr[opcode_bits])
o (porr[Bits28_Word28])
o (in_conv_rule wordn_CONV)
o (porr [EQ_atom_IMP_EQ_opcode])
o (prr[o_THM])
o (AP_TERM "opcode_bits o Word32 o (Bus F) o (Bus F)
o (Bus T) o (Bus T) o Bits28")) th
| NO_TAC | NO_TAC )
THEN art[]
);;
% ================================================================= %
% The NIL reserved word is a symbol. %
% ================================================================= %
let NIL_is_symbol = prove
("(memory NIL_addr =
bus32_symb_append #0000000000000000000000000000) ==>
(is_symbol (memory NIL_addr))",
DISCH_THEN SUBST1_TAC
THEN port[is_symbol]
THEN port[bus32_symb_fields_lemma]
THEN REFL_TAC
);;
% ================================================================= %
% If NIL reserved word is in place, %
% then a cons cell address is distinct from NIL_addr. %
% ================================================================= %
let NIL_not_cons = prove_thm
(`NIL_not_cons`,
"(memory NIL_addr =
bus32_symb_append #0000000000000000000000000000) ==>
!free.
is_cons (memory free) ==>
~(free = NIL_addr)",
DISCH_THEN (ASSUME_TAC o (MATCH_MP NIL_is_symbol))
THEN GEN_TAC
THEN STRIP_TAC
THEN DISCH_THEN SUBST_ALL_TAC
THEN IMP_RES_TAC (records_distinct)
);;
% ================================================================= %
% Derive the meaning of the n_cells_in_free_list constraint at 4. %
% ================================================================= %
let n_cells_in_free_list_4_thm = prove_thm
(`n_cells_in_free_list_4_thm`,
"n_cells_in_free_list mem free 4 ==>
is_cons(mem free) /\
is_cons(mem(cdr_bits(mem free))) /\
is_cons(mem(cdr_bits(mem(cdr_bits(mem free))))) /\
is_cons(mem(cdr_bits(mem(cdr_bits(mem(cdr_bits(mem free)))))))",
port[n_cells_in_free_list]
THEN re_conv_tac num_CONV
THEN DISCH_THEN
(\th. MAP_EVERY
(\tm. port1
(rr[LESS_MONO_EQ; LESS_0; nth; o_THM]
(SPEC tm th)))
["0";"SUC 0";"SUC(SUC 0)";"SUC(SUC(SUC 0))"])
THEN rt[]
);;
% ================================================================= %
% ================================================================= %
let cons_cells_not_NIL = prove
("reserved_words_constraint mpc memory ==>
!t.
(state_abs(mpc t) = top_of_cycle) ==>
!v.
(is_cons(memory t v) ==> ~(v = NIL_addr))",
port[reserved_words_constraint]
THEN DISCH_THEN
(\th1. GEN_TAC
THEN DISCH_THEN
(\th2. (ASSUME_TAC
o (porr[SYM_RULE rec_types_DISTINCT])
o (porr[bus32_symb_fields_lemma])
o (porr[is_cons])
o (AP_TERM "is_cons")
o CONJUNCT1)
(MATCH_MP th1 th2)))
THEN port[is_cons]
THEN GEN_TAC
THEN STRIP_TAC
THEN DISCH_THEN SUBST_ALL_TAC
THEN RES_TAC
);;
% ================================================================= %
% To begin, a set of lemmas that constrain how much of memory is %
% affected by sequential Store14 operations, with parts of the %
% well_formed_free_list constraint in effect. %
% %
% If x is distinct from free list cells %
% and free list is linear, %
% then mem[n+1 writes] at x is unchanged from mem[n writes] at x, %
% for 0 <= n <= 3 %
% ================================================================= %
let Store14_1_lemma = prove_thm
(`Store14_1_lemma`,
"!x. ~(free = x) ==>
!z. memory x = Store14 free z memory x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN GEN_TAC
THEN port[Store14]
THEN in1_conv_tac BETA_CONV
THEN art[]
);;
let Store14_2_step_lemma = prove
("!x.
~(free = x) /\
~(cdr_bits(memory free) = x) ==>
!z zz.
Store14 free zz memory x =
% memory x = ****** equally provable ******* %
Store14 (cdr_bits(memory free)) z (Store14 free zz memory) x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN REPEAT GEN_TAC
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN art[]
);;
let Store14_3_step_lemma = prove
("!x.
~(free = x) /\
~(cdr_bits(memory free) = x) /\
~(cdr_bits(memory(cdr_bits(memory free))) = x) /\
~(free = cdr_bits(memory free))
==>
!z zz zzz.
Store14 (cdr_bits(memory free)) zz (Store14 free zzz memory) x =
Store14(cdr_bits(Store14 free zzz memory(cdr_bits(memory free))))
z
(Store14(cdr_bits(memory free))
zz
(Store14 free zzz memory))
x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN REPEAT GEN_TAC
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN art[]
);;
% ================================================================= %
% The similar versions that take the cell back to the original %
% memory, rather than just one step... %
% %
% If x is distinct from free list cells %
% and free list is linear, %
% then mem[n+1 writes] at x is unchanged from mem[0 writes] at x, %
% for 1 <= n <= 3 %
% ================================================================= %
let Store14_2_lemma = prove_thm
(`Store14_2_lemma`,
"!x.
~(free = x) /\
~(cdr_bits(memory free) = x) ==>
!z zz.
memory x =
Store14 (cdr_bits(memory free)) z (Store14 free zz memory) x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN REPEAT GEN_TAC
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN art[]
);;
let Store14_3_lemma = prove_thm
(`Store14_3_lemma`,
"!x.
~(free = x) /\
~(cdr_bits(memory free) = x) /\
~(cdr_bits(memory(cdr_bits(memory free))) = x) /\
~(free = cdr_bits(memory free))
==>
!z zz zzz.
memory x =
Store14(cdr_bits(Store14 free zzz memory(cdr_bits(memory free))))
z
(Store14(cdr_bits(memory free))
zz
(Store14 free zzz memory))
x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN REPEAT GEN_TAC
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN art[]
);;
% ================================================================= %
% Note : an error uncovered here on 90.08.29. There was an %
% incorrect 1st argument to the 2nd last Store14 %
% ================================================================= %
let Store14_4_lemma = prove_thm
(`Store14_4_lemma`,
"!x.
~(free = x) /\
~(cdr_bits(memory free) = x) /\
~(cdr_bits(memory(cdr_bits(memory free))) = x) /\
~(cdr_bits(memory(cdr_bits(memory(cdr_bits(memory free))))) = x) /\
~(free = cdr_bits(memory free)) /\
~(free = cdr_bits(memory(cdr_bits(memory free)))) /\
~(cdr_bits(memory free) =
cdr_bits(memory(cdr_bits(memory free)))) ==>
!z zz zzz zzzz.
memory x =
Store14(cdr_bits(Store14(cdr_bits(memory free))
zzz
(Store14 free zzzz memory)
(cdr_bits(Store14 free zzzz memory
(cdr_bits(memory free))))))
z
(Store14(cdr_bits(Store14 free zzzz memory
(cdr_bits(memory free))))
zz
(Store14(cdr_bits(memory free))
zzz
(Store14 free zzzz memory)))
x",
GEN_TAC
THEN DISCH_THEN (STRIP_ASSUME_TAC o SYM_RULE)
THEN REPEAT GEN_TAC
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN art[]
);;
% ================================================================= %
% Notice that for the 1st M_Cons, the precondition is an assumption.%
% %
% If free list is linear and next cell is a cons, %
% then it remains a cons after 2-4 writes. %
% ================================================================= %
let M_Cons_2_precond_lemma = prove_thm
(`M_Cons_2_precond_lemma`,
"~(free = (cdr_bits(memory free))) /\
is_cons(memory(cdr_bits(memory free))) ==>
!z. is_cons (Store14 free z memory(cdr_bits(memory free)))",
REPEAT STRIP_TAC
THEN IMP_RES_THEN (SUBST1_TAC o SYM o (SPEC "z:word32"))
(SPEC "cdr_bits(memory(free:word14))" Store14_1_lemma)
THEN art[]
);;
let M_Cons_3_precond_lemma = prove_thm
(`M_Cons_3_precond_lemma`,
"~(free = cdr_bits(memory free)) /\
~(free = cdr_bits(memory(cdr_bits(memory free)))) /\
~(cdr_bits(memory free) =
cdr_bits(memory(cdr_bits(memory free)))) /\
is_cons(memory(cdr_bits(memory(cdr_bits(memory free)))))
==>
!z zz.
is_cons(Store14(cdr_bits(memory free))
z
(Store14 free zz memory)
(cdr_bits(Store14 free zz memory
(cdr_bits(memory free)))))",
DISCH_THEN
\th.
(\[th1;th2;th3;th4].
REPEAT GEN_TAC
THEN SUBST1_TAC
(SYM_RULE
(SPEC "zz:word32"
(MP (SPEC "cdr_bits(memory(free:word14))"
Store14_1_lemma)
th1)))
THEN SUBST1_TAC
(SYM_RULE
(SPECL ["z:word32";"zz:word32"]
(MATCH_MP Store14_2_step_lemma (CONJ th2 th3))))
THEN SUBST1_TAC
(SYM_RULE
(SPEC "zz:word32"
(MP (SPEC "cdr_bits(memory(cdr_bits(memory free)))"
Store14_1_lemma)
th2)))
THEN port1 th4
) (CONJUNCTS th)
);;
let M_Cons_4_precond_lemma = prove_thm
(`M_Cons_4_precond_lemma`,
"~(free = cdr_bits(memory free)) /\
~(free = cdr_bits(memory(cdr_bits(memory free)))) /\
~(free =
cdr_bits(memory(cdr_bits(memory(cdr_bits(memory free)))))) /\
~(cdr_bits(memory free) =
cdr_bits(memory(cdr_bits(memory free)))) /\
~(cdr_bits(memory free) =
cdr_bits(memory(cdr_bits(memory(cdr_bits(memory free)))))) /\
~(cdr_bits(memory(cdr_bits(memory free))) =
cdr_bits(memory(cdr_bits(memory(cdr_bits(memory free)))))) /\
is_cons
(memory(cdr_bits(memory(cdr_bits(memory(cdr_bits(memory free)))))))
==>
!z zz zzz.
is_cons
(Store14
(cdr_bits(Store14 free zzz memory(cdr_bits(memory free))))
z
(Store14(cdr_bits(memory free))zz(Store14 free zzz memory))
(cdr_bits
(Store14
(cdr_bits(memory free))
zz
(Store14 free zzz memory)
(cdr_bits(Store14 free zzz memory(cdr_bits(memory free)))))))",
DISCH_THEN
(\th. let [th1;th2;th3;th4;th5;th6;th7] = CONJUNCTS th in
let thd = MATCH_MP Store14_2_step_lemma (CONJ th2 th4)
and thc = MATCH_MP Store14_2_step_lemma (CONJ th3 th5)
and tha = MATCH_MP Store14_3_step_lemma (LIST_CONJ [th3;th5;th6;th1]) in
REPEAT GEN_TAC
THEN
let thm1 =
(SYM(SPEC "zzz:word32"
(MP (SPEC "cdr_bits(memory (free:word14))"
Store14_1_lemma)
th1)))
in
(SUBST1_TAC thm1
THEN SUBST1_TAC (SYM (SPECL ["zz:word32";"zzz:word32"] thd))
THEN (SUBST1_TAC
o SYM
o (SPEC "zzz:word32"))
(MP (SPEC "cdr_bits(memory(cdr_bits(memory free)))"
Store14_1_lemma)
th2)
THEN SUBST1_TAC (SYM (SUBS[thm1](SPEC_ALL tha)))
THEN (SUBST1_TAC
o SYM
o (SPECL ["zz:word32";"zzz:word32"])) thc
THEN SUBST1_TAC
(SYM(SPEC "zzz:word32"
(MP (SPEC "cdr_bits(memory(cdr_bits(memory(cdr_bits(memory(free:word14))))))"
Store14_1_lemma)
th3)))
THEN port1 th7
)));;
% ================================================================= %
% ================================================================= %
% ================================================================= %
% The well formed free list constraint flattened somewhat. %
% %
% The first 4 conjuncts follow directly from %
% n_cells_in_free_list_4_thm above. %
% The remaining arise from the linear_free_list constraint, %
% and the reserved_words_constraint for NIL_addr. %
% By using cons_cells_not_NIL with the rhs of %
% n_cells_in_free_list_4_thm, we get inequalities of the cells %
% concerned and NIL_addr. %
% Next, we split into the 6 conjuncts, and specialize %
% linear_free_list with the appropriate path function arguments to %
% get the cells concerned. %
% Simplify the term by expanding definitions, and discharge. %
% Rewrite with the is_cons assumptions. %
% qed. %
% ================================================================= %
let well_formed_free_list_lemma = prove_thm
(`well_formed_free_list_lemma`,
"(reserved_words_constraint mpc memory /\
well_formed_free_list memory mpc free s e c d)==>
!t.
(state_abs(mpc t) = top_of_cycle) ==>
((is_cons(memory t(free t))) /\
(is_cons(memory t(cdr_bits(memory t(free t))))) /\
(is_cons(memory t(cdr_bits(memory t(cdr_bits(memory t(free t))))))) /\
(is_cons(memory t(cdr_bits(memory t(cdr_bits(memory t
(cdr_bits(memory t(free t))))))))) /\
(~(free t = cdr_bits(memory t(free t)))) /\
(~(free t = cdr_bits(memory t(cdr_bits(memory t(free t)))))) /\
(~(free t = cdr_bits(memory t(cdr_bits(memory t
(cdr_bits(memory t(free t)))))))) /\
(~(cdr_bits(memory t(free t)) =
cdr_bits(memory t(cdr_bits(memory t(free t)))))) /\
(~(cdr_bits(memory t(free t)) = cdr_bits(memory t(cdr_bits(memory t
(cdr_bits(memory t(free t)))))))) /\
(~(cdr_bits(memory t(cdr_bits(memory t(free t)))) = cdr_bits(memory t(cdr_bits(memory t
(cdr_bits(memory t(free t)))))))))",
DISCH_THEN
(\th1. GEN_TAC THEN DISCH_THEN
(\th2. (CONJUNCTS_THEN2
(\th3.ASSUME_TAC
(MATCH_MP(MATCH_MP cons_cells_not_NIL th3)th2))
(\th4.
(\[a;b;c;d].STRIP_ASSUME_TAC(MATCH_MP n_cells_in_free_list_4_thm a)
THEN art[] THEN RES_TAC THEN ASSUME_TAC b)
(CONJUNCTS(MATCH_MP(porr[well_formed_free_list]th4)th2)))
th1)))
THEN let th = ASSUME "linear_free_list(memory t)(free (t:num))" in
(REPEAT CONJ_TAC
THENL
(map
(\(a,b).
( (\th1. ASSUME_TAC th1 THEN (UNDISCH_TAC (concl th1)))
o (rr[all_cdr_path;CONS_11;NOT_NIL_CONS;path]))
(SPECL [a;b] (porr[linear_free_list]th)))
["[]:(bool)list","[T]"
;"[]:(bool)list","[T;T]"
;"[]:(bool)list","[T;T;T]"
;"[T]","[T;T]"
;"[T]","[T;T;T]"
;"[T;T]","[T;T;T]"
]))
THEN art[]
);;
% ================================================================= %
% This theorem gives the desired form for the proof function in %
% mu-prog_proof_fcn.ml, to replace the original general %
% free_list_constraint with the newer constraints. %
% This covers the maximum of 4 cons'es done by any sequence (AP). %
% ================================================================= %
let free_list_constraint_thm = prove_thm
(`free_list_constraint_thm`,
"(reserved_words_constraint mpc memory /\
well_formed_free_list memory mpc free s e c d) ==>
!t:num. (state_abs (mpc t) = top_of_cycle) ==>
(((free t) = NIL_addr) = F) /\
(((cdr_bits(memory t(free t))) = NIL_addr) = F) /\
(!c1.
(cdr_bits(Store14 (free t) c1
(memory t)
(cdr_bits(memory t(free t)))) =
NIL_addr) = F) /\
(!c1 c2.
(cdr_bits(Store14(cdr_bits(memory t(free t)))
c2
(Store14(free t)c1(memory t))
(cdr_bits(Store14 (free t) c1
(memory t)
(cdr_bits(memory t(free t))))
)) = NIL_addr) = F)",
STRIP_TAC THEN GEN_TAC
THEN STRIP_TAC
THEN IMP_RES_THEN (IMP_RES_THEN IMP_RES_TAC)
well_formed_free_list_lemma
THEN IMP_RES_THEN (IMP_RES_THEN IMP_RES_TAC)
cons_cells_not_NIL
THEN prt[Store14]
THEN in_conv_tac BETA_CONV
THEN REPEAT CONJ_TAC
THEN REPEAT GEN_TAC
THEN REPEAT (EVERY_ASSUM (port1 o SYM_RULE) THEN art[])
);;
% ================================================================= %
% Another derivation of properties of well_formed_free_list; this %
% time the nonintersection component is extracted. %
% ================================================================= %
let well_formed_free_list_nonintersection_lemma = prove_thm
(`well_formed_free_list_nonintersection_lemma`,
"well_formed_free_list memory mpc free s e c d ==>
(!t.
(state_abs(mpc t) = top_of_cycle) ==>
nonintersecting(memory t)(free t)(s t) /\
nonintersecting(memory t)(free t)(e t) /\
nonintersecting(memory t)(free t)(c t) /\
nonintersecting(memory t)(free t)(d t))",
port[well_formed_free_list]
THEN STRIP_TAC
THEN GEN_TAC
THEN DISCH_THEN
(ANTE_RES_THEN (port1 o (in_conv_rule BETA_CONV) o (porr[LET_DEF])))
THEN rt[]);;
timer false;;
close_theory ();;
print_theory `-`;;
|