/usr/share/hol88-2.02.19940316/contrib/SECD/liveness.ml is in hol88-contrib-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | % SECD verification %
% %
% FILE: liveness.ml %
% %
% DESCRIPTION: This file proves the liveness of the machine, %
% under the given constraints. %
% %
% USES FILES: proof_LD.th, ..., proof_STOP.th %
% %
% Brian Graham 90.04.18 %
% %
% Modifications: %
% 07.08.91 - updated to HOL2.0 %
%=================================================================%
new_theory `liveness`;;
map new_parent
[ `mu-prog_LD` ; `mu-prog_LDC` ; `mu-prog_LDF`
; `mu-prog_AP` ; `mu-prog_RTN` ; `mu-prog_DUM`
; `mu-prog_RAP` ; `mu-prog_SEL` ; `mu-prog_JOIN`
; `mu-prog_CAR` ; `mu-prog_CDR` ; `mu-prog_ATOM`
; `mu-prog_CONS` ; `mu-prog_EQ` ; `mu-prog_ADD`
; `mu-prog_SUB` ; `mu-prog_LEQ` ; `mu-prog_STOP`
; `mu-prog_proof0`
];;
map (uncurry load_theorem)
[ `mu-prog_LD` , `LD_Next`
; `mu-prog_LDC` , `LDC_Next`
; `mu-prog_LDF` , `LDF_Next`
; `mu-prog_AP` , `AP_Next`
; `mu-prog_RTN` , `RTN_Next`
; `mu-prog_DUM` , `DUM_Next`
; `mu-prog_RAP` , `RAP_Next`
; `mu-prog_SEL` , `SEL_Next`
; `mu-prog_JOIN` , `JOIN_Next`
; `mu-prog_CAR` , `CAR_Next`
; `mu-prog_CDR` , `CDR_Next`
; `mu-prog_ATOM` , `ATOM_Next`
; `mu-prog_CONS` , `CONS_Next`
; `mu-prog_EQ` , `EQ_Next`
; `mu-prog_ADD` , `ADD_Next`
; `mu-prog_SUB` , `SUB_Next`
; `mu-prog_LEQ` , `LEQ_Next`
; `mu-prog_STOP` , `STOP_Next`
; `mu-prog_proof0` , `lemma_state1`
; `mu-prog_init_proofs` , `idle_Next`
; `mu-prog_init_proofs` , `error0_Next`
; `mu-prog_init_proofs` , `error1_Next`
];;
map (load_definition `when`)
[ `Next`
; `Inf`
];;
map (load_definition `constraints`)
[ `is_major_state`
];;
map (load_theorem `constraints`)
[ `state_abs_thm`
; `valid_program_IMP_valid_codes`
; `valid_codes_lemma`
];;
%%
%=================================================================%
let mtime = ":num";;
let msig = ":^mtime->bool"
and w9_mvec = ":^mtime->word9"
and w14_mvec = ":^mtime->word14"
and w27_mvec = ":^mtime->word27"
and w32_mvec = ":^mtime->word32";;
let mem14_32 = ":word14->word32";;
let m14_32_mvec = ":^mtime->^mem14_32";;
let M = ":(word14,atom)mfsexp_mem";;
let M_mvec = ":^mtime->^M";;
let state = ":bool # bool";;
let state_msig = ":^mtime->^state";;
%=================================================================%
% Assumptions: %
% base_assumptions include: %
% - clock_constraint %
% - ^SYS_imp %
% - reserved_words_constraint %
% - well_formed_free_list %
%=================================================================%
let base_assumptions =
(rev o tl o tl o rev)(hyp STOP_Next);;
let valid_program_Constraint =
"valid_program_constraint memory mpc button_pin s e c d";;
let DEC28_assum1 =
"!w28. (POS (iVal (Bits28 w28)))==>
(PRE(pos_num_of(iVal(Bits28 w28))) =
pos_num_of(iVal(Bits28((atom_bits o DEC28) w28))))"
and DEC28_assum2 =
"!w28.(POS (iVal (Bits28 w28)))==>
~(NEG (iVal (Bits28 ((atom_bits o DEC28) w28))))";;
%%
% ================================================================= %
% Tactics and theorems used in the main proof. %
% ================================================================= %
% First, to discharge several assumptions: %
% ================================================================= %
letrec DISCHL l th =
(l = []) => th | DISCH (hd l) (DISCHL (tl l) th);;
timer true;;
% ================================================================= %
% The fact that Next holds gives the desired result for liveness. %
% ================================================================= %
let Next_exists_thm = TAC_PROOF
(([], "!t1 t2 f. Next t1 t2 f ==> (?t'. (t1 < t' /\ f t'))"),
REPEAT GEN_TAC
THEN port[Next]
THEN STRIP_TAC
THEN EXISTS_TAC "t2:num"
THEN art[]);;
% ================================================================= %
% Reduce proof obligation to initial state and cases that begin %
% in major states, rather than every possible starting state. %
% ================================================================= %
let Inf_thm = prove_thm
(`Inf_thm`,
"!f. (?t'. 0 < t' /\ f t') /\
(!t. f t ==> (?t'. t < t' /\ f t')) ==> Inf f",
GEN_TAC
THEN REPEAT STRIP_TAC
THEN port[Inf]
THEN INDUCT_THEN INDUCTION
(CHOOSE_THEN (CONJUNCTS_THEN2
((DISJ_CASES_THEN ASSUME_TAC)
o (porr[LESS_OR_EQ])
o (MATCH_MP LESS_OR))
ASSUME_TAC))
THENL
[ EXISTS_TAC "t':num"
THEN art[]
; EXISTS_TAC "t'':num" THEN art[]
; FIRST_ASSUM SUBST1_TAC
THEN FIRST_ASSUM (ANTE_RES_THEN MATCH_ACCEPT_TAC)
]);;
% ================================================================= %
% This tactic uses the *_Next theorems for each instruction %
% transition, and solves the liveness subgoal for each branch. %
% ================================================================= %
let instruction_tactic microprog_thm =
(is_cond (concl microprog_thm))
=> ((\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th)) microprog_thm
THEN COND_CASES_TAC
THEN MATCH_ACCEPT_TAC Next_exists_thm)
| (MATCH_ACCEPT_TAC (MATCH_MP Next_exists_thm microprog_thm));;
%%
% ================================================================= %
% The main theorem has all the standard assumptions. The goal is %
% split into the initial state, and times beginning in major states.%
% This is further split into 4 cases on the definition of %
% is_major_state. There are 2 branches for the idle and error %
% states, and the valid_program_constraint splits the top_of_cycle %
% state into 18 transitions, each solved by the instruction_tactic. %
% ================================================================= %
let liveness = save_thm
(`liveness`,
TAC_PROOF
((DEC28_assum2
. DEC28_assum1
. valid_program_Constraint
. base_assumptions
, "Inf (is_major_state mpc)"),
MATCH_MP_TAC Inf_thm
THEN CONJ_TAC
THENL
[ EXISTS_TAC "SUC 0"
THEN rt[LESS_0; lemma_state1]
; % reduce to cases where
"is_major_state mpc t" holds %
GEN_TAC
THEN DISCH_THEN ((REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC)
o (porr [is_major_state]))
THENL
[ IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
(DISCHL (filter (free_in "t:num") (hyp idle_Next)) idle_Next)
THEN COND_CASES_TAC
THEN MATCH_ACCEPT_TAC Next_exists_thm
; IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
(DISCHL (filter (free_in "t:num") (hyp error0_Next)) error0_Next)
THEN COND_CASES_TAC
THEN MATCH_ACCEPT_TAC Next_exists_thm
; FIRST_ASSUM (ASSUME_TAC o (porr[state_abs_thm]) o (AP_TERM "state_abs"))
THEN IMP_RES_THEN (IMP_RES_THEN
(REPEAT_TCL DISJ_CASES_THEN
(REPEAT_TCL CONJUNCTS_THEN
ASSUME_TAC))
o (porr[valid_codes_lemma]))
valid_program_IMP_valid_codes
THENL (map instruction_tactic
[ LD_Next
; LDC_Next
; LDF_Next
; AP_Next
; RTN_Next
; DUM_Next
; RAP_Next
; SEL_Next
; JOIN_Next
; CAR_Next
; CDR_Next
; ATOM_Next
; CONS_Next
; EQ_Next
; ADD_Next
; SUB_Next
; LEQ_Next
; STOP_Next
])
; IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
(DISCHL (filter (free_in "t:num") (hyp error1_Next)) error1_Next)
THEN COND_CASES_TAC
THEN MATCH_ACCEPT_TAC Next_exists_thm
]
]));;
timer false;;
close_theory ();;
print_theory `-`;;
|