This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/SECD/liveness.ml is in hol88-contrib-source 2.02.19940316-31.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
% SECD verification                                               %
%                                                                 %
% FILE:                liveness.ml                                %
%                                                                 %
% DESCRIPTION:  This file proves the liveness of the machine,     %
%               under the given constraints.                      %
%                                                                 %
% USES FILES:   proof_LD.th, ..., proof_STOP.th                   %
%                                                                 %
% Brian Graham 90.04.18                                           %
%                                                                 %
% Modifications:                                                  %
% 07.08.91 - updated to HOL2.0                                    %
%=================================================================%
new_theory `liveness`;;

map new_parent
 [ `mu-prog_LD`           ; `mu-prog_LDC`          ; `mu-prog_LDF`         
 ; `mu-prog_AP`           ; `mu-prog_RTN`          ; `mu-prog_DUM`
 ; `mu-prog_RAP`          ; `mu-prog_SEL`          ; `mu-prog_JOIN`        
 ; `mu-prog_CAR`          ; `mu-prog_CDR`          ; `mu-prog_ATOM`
 ; `mu-prog_CONS`         ; `mu-prog_EQ`           ; `mu-prog_ADD`
 ; `mu-prog_SUB`          ; `mu-prog_LEQ`          ; `mu-prog_STOP`
 ; `mu-prog_proof0`
 ];;
map (uncurry load_theorem)
 [ `mu-prog_LD`		, `LD_Next`
 ; `mu-prog_LDC`	, `LDC_Next`
 ; `mu-prog_LDF`	, `LDF_Next`
 ; `mu-prog_AP`		, `AP_Next`
 ; `mu-prog_RTN`	, `RTN_Next`
 ; `mu-prog_DUM`	, `DUM_Next`
 ; `mu-prog_RAP`	, `RAP_Next`
 ; `mu-prog_SEL`	, `SEL_Next`
 ; `mu-prog_JOIN`	, `JOIN_Next`
 ; `mu-prog_CAR`	, `CAR_Next`
 ; `mu-prog_CDR`	, `CDR_Next`
 ; `mu-prog_ATOM`	, `ATOM_Next`
 ; `mu-prog_CONS`	, `CONS_Next`
 ; `mu-prog_EQ`		, `EQ_Next`
 ; `mu-prog_ADD`	, `ADD_Next`
 ; `mu-prog_SUB`	, `SUB_Next`
 ; `mu-prog_LEQ`	, `LEQ_Next`
 ; `mu-prog_STOP`	, `STOP_Next`
 ; `mu-prog_proof0`	, `lemma_state1`
 ; `mu-prog_init_proofs`	, `idle_Next`
 ; `mu-prog_init_proofs`	, `error0_Next`
 ; `mu-prog_init_proofs`	, `error1_Next`
 ];;

map (load_definition `when`)
    [ `Next`
    ; `Inf`
    ];;
map (load_definition `constraints`)
    [ `is_major_state`
    ];;
map (load_theorem `constraints`)
    [ `state_abs_thm`
    ; `valid_program_IMP_valid_codes`
    ; `valid_codes_lemma`
    ];;
%%
%=================================================================%
let mtime = ":num";;

let msig = ":^mtime->bool"
and w9_mvec = ":^mtime->word9"
and w14_mvec = ":^mtime->word14"
and w27_mvec = ":^mtime->word27"
and w32_mvec = ":^mtime->word32";;

let mem14_32 = ":word14->word32";;
let m14_32_mvec = ":^mtime->^mem14_32";;
let M = ":(word14,atom)mfsexp_mem";;
let M_mvec = ":^mtime->^M";;

let state = ":bool # bool";;
let state_msig = ":^mtime->^state";;

%=================================================================%
% Assumptions:                                                    %
% base_assumptions include:                                       %
%  - clock_constraint                                             %
%  - ^SYS_imp                                                     %
%  - reserved_words_constraint                                    %
%  - well_formed_free_list                                        %
%=================================================================%
let base_assumptions =
 (rev o tl o tl o rev)(hyp STOP_Next);;

let valid_program_Constraint =
   "valid_program_constraint memory mpc button_pin s e c d";;

let DEC28_assum1 =
"!w28. (POS (iVal (Bits28 w28)))==>
        (PRE(pos_num_of(iVal(Bits28 w28))) =
           pos_num_of(iVal(Bits28((atom_bits o DEC28) w28))))"
and DEC28_assum2 =
"!w28.(POS (iVal (Bits28 w28)))==>
     ~(NEG (iVal (Bits28 ((atom_bits o DEC28) w28))))";;
%%
% ================================================================= %
% Tactics and theorems used in the main proof.                      %
% ================================================================= %
% First, to discharge several assumptions:                          %
% ================================================================= %
letrec DISCHL l th =
  (l = []) => th | DISCH (hd l) (DISCHL (tl l) th);;


timer true;;
% ================================================================= %
% The fact that Next holds gives the desired result for liveness.   %
% ================================================================= %
let Next_exists_thm = TAC_PROOF
(([], "!t1 t2 f. Next t1 t2 f ==> (?t'. (t1 < t' /\ f t'))"),
  REPEAT GEN_TAC
  THEN port[Next]
  THEN STRIP_TAC
  THEN EXISTS_TAC "t2:num"
  THEN art[]);;

% ================================================================= %
% Reduce proof obligation to initial state and cases that begin     %
% in major states, rather than every possible starting state.       %
% ================================================================= %
let Inf_thm = prove_thm
(`Inf_thm`,
 "!f. (?t'. 0 < t' /\ f t') /\
     (!t. f t ==> (?t'. t < t' /\ f t'))  ==> Inf f",
 GEN_TAC
 THEN REPEAT STRIP_TAC
 THEN port[Inf]
 THEN INDUCT_THEN INDUCTION
                  (CHOOSE_THEN (CONJUNCTS_THEN2
				((DISJ_CASES_THEN ASSUME_TAC)
				 o (porr[LESS_OR_EQ])
				 o (MATCH_MP LESS_OR))
				ASSUME_TAC))
 THENL
 [ EXISTS_TAC "t':num"
   THEN art[]
 ; EXISTS_TAC "t'':num" THEN art[]
 ; FIRST_ASSUM SUBST1_TAC
   THEN FIRST_ASSUM (ANTE_RES_THEN MATCH_ACCEPT_TAC)
 ]);;


% ================================================================= %
% This tactic uses the *_Next theorems for each instruction         %
% transition, and solves the liveness subgoal for each branch.      %
% ================================================================= %
let instruction_tactic microprog_thm =
 (is_cond (concl microprog_thm))
 => ((\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th)) microprog_thm
     THEN COND_CASES_TAC
     THEN MATCH_ACCEPT_TAC Next_exists_thm)
  | (MATCH_ACCEPT_TAC (MATCH_MP Next_exists_thm microprog_thm));;

%%
% ================================================================= %
% The main theorem has all the standard assumptions.  The goal is   %
% split into the initial state, and times beginning in major states.%
% This is further split into 4 cases on the definition of           %
% is_major_state.  There are 2 branches for the idle and error      %
% states, and the valid_program_constraint splits the top_of_cycle  %
% state into 18 transitions, each solved by the instruction_tactic. %
% ================================================================= %
let liveness = save_thm
(`liveness`,
 TAC_PROOF
 ((DEC28_assum2
   . DEC28_assum1
   . valid_program_Constraint
   . base_assumptions
   , "Inf (is_major_state mpc)"),
 MATCH_MP_TAC Inf_thm
 THEN CONJ_TAC
 THENL
 [ EXISTS_TAC "SUC 0"
   THEN rt[LESS_0; lemma_state1]
 ; 				% reduce to cases where
   				  "is_major_state mpc t" holds %
   GEN_TAC
   THEN DISCH_THEN ((REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC)
		    o (porr [is_major_state]))
   THENL
   [ IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
     (DISCHL (filter (free_in "t:num") (hyp idle_Next)) idle_Next)
     THEN COND_CASES_TAC
     THEN MATCH_ACCEPT_TAC Next_exists_thm
   ; IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
       (DISCHL (filter (free_in "t:num") (hyp error0_Next)) error0_Next)
     THEN COND_CASES_TAC
     THEN MATCH_ACCEPT_TAC Next_exists_thm

   ; FIRST_ASSUM (ASSUME_TAC o (porr[state_abs_thm]) o (AP_TERM "state_abs"))  
     THEN IMP_RES_THEN (IMP_RES_THEN
		        (REPEAT_TCL DISJ_CASES_THEN
			            (REPEAT_TCL CONJUNCTS_THEN
						ASSUME_TAC))
			  o (porr[valid_codes_lemma]))
                         valid_program_IMP_valid_codes
       THENL (map instruction_tactic
	    [ LD_Next
	    ; LDC_Next
	    ; LDF_Next
	    ; AP_Next
	    ; RTN_Next
	    ; DUM_Next
	    ; RAP_Next
	    ; SEL_Next
	    ; JOIN_Next
	    ; CAR_Next
	    ; CDR_Next
	    ; ATOM_Next
	    ; CONS_Next
	    ; EQ_Next
	    ; ADD_Next
	    ; SUB_Next
	    ; LEQ_Next
	    ; STOP_Next
	    ])
   ; IMP_RES_THEN (\th. ASSUME_TAC th THEN UNDISCH_TAC(concl th))
      (DISCHL (filter (free_in "t:num") (hyp error1_Next)) error1_Next)
     THEN COND_CASES_TAC
     THEN MATCH_ACCEPT_TAC Next_exists_thm
   ]
 ]));;

timer false;;
close_theory ();;
print_theory `-`;;