This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/SECD/microcode.ml is in hol88-contrib-source 2.02.19940316-31.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
% SECD verification                                                 %
%                                                                   %
% FILE:         microcode.ml                                        %
%                                                                   %
% DESCRIPTION: This file reads the intermediate form of the         %
%              secd microcode and defines the ROM device function.  %
%                                                                   %
% USES FILES:  cu_types                                             %
%                                                                   %
% Brian Graham 06.11.90                                             %
%                                                                   %
% Modifications:                                                    %
% 15.11.90 - BtG - Completed revision so that the constant          %
%                  ROM_fun is introduced using new_specification,   %
%                  and is a partially defined function.  As a       %
%                  result, mk_thm is no longer used in this file.   %
% 16.04.91 - BtG - updated to HOL12                                 %
% 27.08.91 - BtG - fixed to run under AKCL-loop replaced recursion. %
% ================================================================= %
new_theory `microcode`;;

% ================================================================= %
% Thanks to jvt: this should compile the files building the large   %
% data structures, so they should run much faster.  27.08.91.       %
% ================================================================= %
set_flag (`compile_on_the_fly`, true);;

loadt `wordn`;;
new_parent `cu_types`;;
% ================================================================= %
% load some i/o routines ...                                        %
% note that we will only read integers in this theory, so           %
% that applying int_of_string to whatever is read will not          %
% blow up.                                                          %
% ================================================================= %
loadt `io`;;

let ratom = int_of_string o read_atom;;

timer true;;
% ================================================================= %
% Processing routines for the input:                                %
% **********************************                                %
% ================================================================= %

% ================================================================= %
% Convert a num to a boolean list (1's and 0's).                    %
%                                                                   %
% Functions:                                                        %
%   mk_bit_list (num,size) res                                      %
%       returns a list of strings of 1's and 0's,                   %
%       of length size.                                             %
%   example : #mk_bit_list (3,4)[];;                                %
%             [`0`; `0`; `1`; `1`] : string list                    %
%                                                                   %
%   mk_bit_list_list pairl                                          %
%       returns a list of all the string representations of         %
%       the number,size pairs, appended into one list.              %
%       Note that only CONS is used, not append.                    %
%       Also, the list keeps the same order.                        %
%   example : mk_bit_list_list [3,3;2,3];;                          %
%             [`0`; `1`; `1`; `0`; `1`; `0`] : string list          %
% ================================================================= %
let rem2 x = x-(2*(x/2));;

letrec mk_bit_list (num, size) res =
   (size = 0) => res |
                 (mk_bit_list ((num/2), (size-1)) 
                   (((string_of_int o rem2) num) . res));;

letrec mk_bit_list_list pairl =
   (pairl = []) => [] |
                  mk_bit_list (hd pairl)
                   (mk_bit_list_list (tl pairl));;
% ================================================================= %
% Two functions for creating constants.                             %
% These 2 functions return the appropriate wordn object, from       %
% a pair or list of pairs.                                          %
% ================================================================= %
let mk_word9_from_num n =
	mk_const
           (implode (`#` . (mk_bit_list (n,9) ([]:(string)list))),
           ":word9");;

let mk_word27_from_list l =
	mk_const (implode (`#` . (mk_bit_list_list l)), ":word27");;
		  
% ================================================================= %
% Process one address: read in the microcode intermediate           %
% form, and convert it to a pair: (address, code):word9#word27.     %
% ================================================================= %
let mk_micro_instr in_file =
  let addr = ratom in_file
  and status = ratom in_file
  and read = ratom in_file
  and write = ratom in_file
  and alu = ratom in_file
  and test = ratom in_file
  and A = ratom in_file
 in
 let field_list = [A,9; test,4; alu,4; write,5; read,5]
 in
 (mk_word9_from_num addr, mk_word27_from_list field_list) ;;

let make_instr_list limit in_file llst =
  letref count,accum = limit,[]
  in
  if (count = 0)
  then rev accum
  loop (count := count-1; accum := ((mk_micro_instr in_file).accum));;
% ================================================================= %
% Open up the file and get the raw data...                          %
%                                                                   %
% We start with a list of word9#word27 constants, so these          %
% should only be created once.                                      %
% ================================================================= %
let in_file = open_file `in` `intermediate`;;

let instr_list = make_instr_list (ratom in_file) in_file [];;

close_file in_file;;
% ================================================================= %
letrec exp n m =
  (m=0) => 1
         | n * (exp n (m-1));;

% ================================================================= %
% Build the required data structures first                          %
%                                                                   %
% micro_f is the microcode property of a function "f"               %
% ================================================================= %
let micro_f = list_mk_conj (map (\(a,b). "(f:word9->word27)^a = ^b") instr_list);;

% ================================================================= %
% Build a decision tree for the instructions set, using arbitrary   %
% values on unused branches.                                        %
% ================================================================= %
letrec fill_tree n limit l =
  ((n = 0)
   => (snd(hd l),(tl l))
    | let full_half = exp 2 (n-1)
      in
      (full_half < limit)
      => (let (rtree,ll) = fill_tree (n-1) full_half l
         in
	 let (ltree,lll) = fill_tree (n-1) (limit-full_half) ll
	 in
	 ("^(mk_v n) => ^ltree | ^rtree",lll))
       | let tr,ll = (fill_tree (n-1) limit l)
         in
         ("^(mk_v n) => (@w27.F)| ^tr", ll))
where
 mk_v n = mk_var(`b`^(string_of_int n),":bool")
;;

let mtree = fst (fill_tree 9 (length instr_list) instr_list);;

% ================================================================= %
% Define a function as the decision tree.                           %
%                                                                   %
% This definition is introduced simply to reduce the term size in   %
% the theorems which evaluate the decision tree at specific         %
% addresses.  It is unnecessary otherwise.                          %
% ================================================================= %
let w9 = "Word9 (Bus b9 (Bus b8 (Bus b7 (Bus b6  (Bus b5
                (Bus b4 (Bus b3 (Bus b2 (Wire (b1:bool)
                )))))))))";;

let partial_mfunc = new_recursive_definition
    false
    (theorem `cu_types` `Word9`)
    `partial_mfunc`
    "partial_mfunc ^w9 = ^mtree";;

% ================================================================= %
% Prove the result of evaluating "partial_mfunc" applied to all 399 %
% microcode addresses.                                              %
% ================================================================= %
let bools_of_wordn a =
 map (\x. (x = `0`) => "F" | "T")
     ((tl o explode o fst o dest_const) a);;

let micro_proof_fcn (a,v) = TAC_PROOF
(([],mk_eq(mk_comb("partial_mfunc",a), v)),
 SUBST1_TAC(wordn_CONV a)
 THEN SUBST1_TAC (SPECL (bools_of_wordn a) partial_mfunc)
 THEN prt[COND_CLAUSES]
 THEN REFL_TAC);;

% for some unknown reason, the following is marginally less efficient...
let micro_proof_fcn'' (a,v) =
 ( (prr[COND_CLAUSES])
 o (SUBS [SYM(wordn_CONV a)])
 o (SPECL (bools_of_wordn a)))partial_mfunc;;
%

let partial_mfunc_proof_fcn l =
  letref inlist,outlist = l,[]
  in
  if (inlist=[])
  then rev outlist
  loop
  ( tty_write(`proving partial_mfunc_`^
	      (implode(tl(explode(fst(dest_const(fst(hd inlist)))))))^`
`);
	 outlist := (micro_proof_fcn (hd inlist)).outlist ;
	 inlist := tl inlist
       );;

let thmlist = partial_mfunc_proof_fcn instr_list;;
%
puffin.cl.cam.ac.uk  Spark IPC with 16meg:

Run time: 2408.7s
Garbage collection time: 1025.4s
Intermediate theorems generated: 32718

gj.cpsc.ucalgary.ca  Spark2 with 48meg  27.08.91:

Run time: 532.4s
Intermediate theorems generated: 24339
%

% ================================================================= %
% Use the previous theorems to prove the existance of a function    %
% as described by micro_f.                                          %
% Use the existence theorem to define a new constant with the       %
% property given by micro_f.                                        %
% ================================================================= %
let exists_thm = TAC_PROOF
(([],"?f:word9->word27. ^micro_f"),
 EXISTS_TAC "partial_mfunc"
 THEN MATCH_ACCEPT_TAC (LIST_CONJ thmlist));;

let ROM_fun_thm = new_specification
  `ROM_fun_thm`
  [`constant`,`ROM_fun`]
  exists_thm;;

% ================================================================= %
% Write out each conjunct as a separate theorem.                    %
% ================================================================= %
letrec write_out n th =
  (is_conj (concl th))
   => ( save_thm(`ROM_fun_`^(string_of_int n),(CONJUNCT1 th))
      ; tty_write(`theorem ROM_fun_`^(string_of_int n)^` written
`)
      ; write_out (n+1)(CONJUNCT2 th))
    | save_thm(`ROM_fun_`^(string_of_int n), th);;

write_out 0 ROM_fun_thm;;
% ================================================================= %

timer false;;
close_theory ();;
print_theory `-`;;