This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/knuth-bendix/lib.ml is in hol88-contrib-source 2.02.19940316-31.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
% lib.ml --- Some utility functions
%
let merge_sort p =
   letrec merge list1 list2 = 
      if (null list1)
      then list2
      else if (null list2)
           then list1
           else if p (hd list1) (hd list2)
                then (hd list1) . (merge (tl list1) list2)
                else (hd list2) . (merge list1 (tl list2))
  in
  letrec pass alist = 
     if (length alist < 2)
     then alist
     else (merge (hd alist) (hd (tl alist))) . (pass (tl (tl alist)))
  in
  letrec sort alist = 
     if (null alist)
     then []
     else if (length alist = 1)
          then (hd alist)
          else sort (pass alist)
  in
  sort o (map (\x . [x]));;

% Split around a predicate.
  Example.
  kb_split (curry $= 3) [1;2;3;4;5;4;3;2;1;3];;
  ([3; 3; 3], [1; 2; 4; 5; 4; 2; 1]) : (int list # int list)
%
letrec kb_split p alist = 
   let cons = curry $.
   in
   if (null alist)
   then ([],[])
   else let (a,rst) = ((hd alist),tl alist)
        in
        (if (p a) then ((cons a)#I) else (I#(cons a)))
        (kb_split p rst);;


let is_subset s1 s2 = forall (\i. mem i s2) s1;;

letrec op_mem eq_func i  = fun [] . false |
                            (a . b) . if (eq_func i a) 
                                      then true
                                      else (op_mem eq_func i b);;

letrec op_union eq_func list1 list2 =
  if (null list1)
  then list2
  else if (null list2)
       then list1
       else let a = hd list1
            and rst = tl list1
            in
            if (op_mem eq_func a list2)
            then (op_union eq_func rst list2)
            else a . (op_union eq_func rst list2);;

let op_U eq_func set_o_sets = itlist (op_union eq_func) set_o_sets [];;

letrec iota bot top = 
   if (bot > top) 
   then []
   else bot . (iota (bot+1) top);;


letrec rev_itlist2 f list1 list2 base =
  if ((null list1) & (null list2))
  then base
  else if ((null list1) or (null list2))
       then failwith `different length lists to rev_itlist2`
       else let a = hd list1
            and b = hd list2
            and rst1 = tl list1
            and rst2 = tl list2
            in
            rev_itlist2 f rst1 rst2 (f a b base);;

letrec kb_map2 f list1 list2 =
   if (null list1) & (null list2)
   then []
   else (f (hd list1) (hd list2)) . (kb_map2 f (tl list1) (tl list2));;

letrec forall2 p list1 list2 =
   (null list1 & null list2) or
   ((p (hd list1) (hd list2)) &
    (forall2 p (tl list1) (tl list2)));;

let rotate alist = 
   letrec rot n alist = 
     if (n=0)
     then []
     else if (null alist)
          then failwith `rotate`
          else alist . (rot (n-1) ((tl alist)@[hd alist]))
   in
   rot (length alist) alist;;

% Generate all n! permutations of a list with permute. %
letrec perm alist =
   if (null alist)
   then []
   else if (null (tl alist))
        then [alist]
        else map (curry $. (hd alist)) (permute (tl alist))

and
    permute al = flat (map perm (rotate al));;


let remove_once item alist = snd (remove (curry $= item) alist);;

letrec multiset_diff m1 m2 =
   if (null m1)
   then []
   else if (null m2)
        then m1
        else let a = hd m1
             and rst = tl m1
             in
             if (mem a m2)
             then multiset_diff rst (remove_once a m2)
             else a . (multiset_diff rst m2);;

let multiset_gt order m1 m2 =
   let m1' = multiset_diff m1 m2
   and m2' = multiset_diff m2 m1
   in
   if (null m1') 
   then false
   else if (null m2') 
        then true
        else exists (\x. forall (order x) m2') m1';;


% Extends an ordering on elements of a type to a lexicographic ordering on
  lists of elements of that type.
%
letrec lex_gt order list1 list2 =
   if (null list1 & null list2)
   then false
   else let item1 = hd list1
        and rst1 = tl list1
        and item2 = hd list2
        and rst2 = tl list2
        in
        if (order item1 item2) 
        then true
        else if (item1 = item2) 
             then lex_gt order rst1 rst2
             else false;;