/usr/share/hol88-2.02.19940316/Library/pair/conv.ml is in hol88-library-source 2.02.19940316-31.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 | % --------------------------------------------------------------------- %
% Copyright (c) Jim Grundy 1992 %
% All rights reserved %
% %
% Jim Grundy, hereafter referred to as `the Author', retains the %
% copyright and all other legal rights to the Software contained in %
% this file, hereafter referred to as `the Software'. %
% %
% The Software is made available free of charge on an `as is' basis. %
% No guarantee, either express or implied, of maintenance, reliability %
% or suitability for any purpose is made by the Author. %
% %
% The user is granted the right to make personal or internal use %
% of the Software provided that both: %
% 1. The Software is not used for commercial gain. %
% 2. The user shall not hold the Author liable for any consequences %
% arising from use of the Software. %
% %
% The user is granted the right to further distribute the Software %
% provided that both: %
% 1. The Software and this statement of rights is not modified. %
% 2. The Software does not form part or the whole of a system %
% distributed for commercial gain. %
% %
% The user is granted the right to modify the Software for personal or %
% internal use provided that all of the following conditions are %
% observed: %
% 1. The user does not distribute the modified software. %
% 2. The modified software is not used for commercial gain. %
% 3. The Author retains all rights to the modified software. %
% %
% Anyone seeking a licence to use this software for commercial purposes %
% is invited to contact the Author. %
% --------------------------------------------------------------------- %
% CONTENTS: conversions for moveing qantifiers about. %
% --------------------------------------------------------------------- %
%$Id: conv.ml,v 3.1 1993/12/07 14:42:10 jg Exp $%
begin_section convsec;;
% ------------------------------------------------------------------------- %
% NOT_FORALL_THM = |- !f. ~(!x. f x) = (?x. ~f x) %
% ------------------------------------------------------------------------- %
let NOT_FORALL_THM =
let f = "f:*->bool" in
let x = "x:*" in
let t = mk_comb(f,x) in
let all = mk_forall(x,t) and exists = mk_exists(x,mk_neg t) in
let nott = ASSUME (mk_neg t) in
%WW% let th1 = DISCH all (MP (NOT_ELIM nott) (SPEC x (ASSUME all))) in
let imp1 = DISCH exists (CHOOSE (x, ASSUME exists) (NOT_INTRO th1)) in
let th2 = CCONTR t
%WW% (MP (NOT_ELIM(ASSUME(mk_neg exists))) (EXISTS(exists,x)nott)) in
let th3 = CCONTR exists
%WW% (MP (NOT_ELIM(ASSUME (mk_neg all))) (GEN x th2)) in
let imp2 = DISCH (mk_neg all) th3 in
GEN f (IMP_ANTISYM_RULE imp2 imp1);;
% ------------------------------------------------------------------------- %
% NOT_EXISTS_THM = |- !f. ~(?x. f x) = (!x. ~f x) %
% ------------------------------------------------------------------------- %
let NOT_EXISTS_THM =
let f = "f:*->bool" in
let x = "x:*" in
let t = mk_comb(f,x) in
let tm = mk_neg(mk_exists(x,t)) in
let all = mk_forall(x,mk_neg t) in
let asm1 = ASSUME t in
%WW% let thm1 = MP (NOT_ELIM(ASSUME tm)) (EXISTS (rand tm, x) asm1) in
let imp1 = DISCH tm (GEN x (NOT_INTRO (DISCH t thm1))) in
let asm2 = ASSUME all and asm3 = ASSUME (rand tm) in
let thm2 = DISCH (rand tm) (CHOOSE (x,asm3)
%WW% (MP (NOT_ELIM(SPEC x asm2)) asm1)) in
let imp2 = DISCH all (NOT_INTRO thm2) in
GEN f (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% NOT_PFORALL_CONV "~!p.t" = |- (~!p.t) = (?p.~t) %
% ------------------------------------------------------------------------- %
let NOT_PFORALL_CONV tm =
(let (p,_) = dest_pforall (dest_neg tm) in
let f = rand (rand tm) in
let th = ISPEC f NOT_FORALL_THM in
let th1 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
ETA_CONV)))) th in
let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV p))) th1 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th2
) ? failwith `NOT_PFORALL_CONV: argyment must have the form "~!p.tm"`;;
% ------------------------------------------------------------------------- %
% NOT_PEXISTS_CONV "~?p.t" = |- (~?p.t) = (!p.~t) %
% ------------------------------------------------------------------------- %
let NOT_PEXISTS_CONV tm =
(let (p,_) = dest_pexists (dest_neg tm) in
let f = rand (rand tm) in
let th = ISPEC f NOT_EXISTS_THM in
let th1 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
ETA_CONV)))) th in
let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV p))) th1 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th2
) ? failwith `NOT_PEXISTS_CONV: argyment must have the form "~!p.tm"`;;
% ------------------------------------------------------------------------- %
% PEXISTS_NOT_CONV "?p.~t" = |- (?p.~t) = (~!p.t) %
% ------------------------------------------------------------------------- %
let PEXISTS_NOT_CONV tm =
(let xtm = mk_pforall ((I # dest_neg) (dest_pexists tm)) in
SYM (NOT_PFORALL_CONV (mk_neg xtm))
) ? failwith `PEXISTS_NOT_CONV: argument must have the form "?x.~tm"`;;
% ------------------------------------------------------------------------- %
% PFORALL_NOT_CONV "!p.~t" = |- (!p.~t) = (~?p.t) %
% ------------------------------------------------------------------------- %
let PFORALL_NOT_CONV tm =
(let xtm = mk_pexists ((I # dest_neg) (dest_pforall tm)) in
SYM (NOT_PEXISTS_CONV (mk_neg xtm))
) ? failwith `PFORALL_NOT_CONV: argument must have the form "!x.~tm"`;;
% ------------------------------------------------------------------------- %
% FORALL_AND_THM |- !f g. (!x. f x /\ g x) = ((!x. f x) /\ (!x. g x)) %
% ------------------------------------------------------------------------- %
let FORALL_AND_THM =
let f = "f:*->bool" in
let g = "g:*->bool" in
let x = "x:*" in
let th1 = ASSUME "!x:*. (f x) /\ (g x)" in
let imp1 =
(uncurry CONJ) (((GEN x) # (GEN x)) (CONJ_PAIR (SPEC x th1))) in
let th2 = ASSUME "(!x:*. f x) /\ (!x:*. g x)" in
let imp2 =
GEN x ((uncurry CONJ) (((SPEC x) # (SPEC x)) (CONJ_PAIR th2)))
in
GENL [f;g] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;
% ------------------------------------------------------------------------- %
% PFORALL_AND_CONV "!x. P /\ Q" = |- (!x. P /\ Q) = (!x.P) /\ (!x.Q) %
% ------------------------------------------------------------------------- %
let PFORALL_AND_CONV tm =
(let (x,(P,Q)) = (I # dest_conj) (dest_pforall tm) in
let f = mk_pabs(x,P) in
let g = mk_pabs(x,Q) in
let th = ISPECL [f;g] FORALL_AND_THM in
let th1 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x))))
th in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV))))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RAND_CONV PBETA_CONV)))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th3 in
(CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV)))) th4
) ? failwith
`PFORALL_AND_CONV: argument must have the form "!p. P /\\ Q"`;;
% ------------------------------------------------------------------------- %
% EXISTS_OR_THM |- !f g. (?x. f x \/ g x) = ((?x. f x) \/ (?x. g x)) %
% ------------------------------------------------------------------------- %
let EXISTS_OR_THM =
let f = "f:*->bool" in
let g = "g:*->bool" in
let x = "x:*" in
let P = mk_comb(f,x) in
let Q = mk_comb(g,x) in
let tm = mk_pexists (x,mk_disj(P,Q)) in
let ep = mk_exists(x,P) and eq = mk_exists(x,Q) in
let Pth = EXISTS(ep,x)(ASSUME P) and Qth = EXISTS(eq,x)(ASSUME Q) in
let thm1 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
let imp1 = DISCH tm (CHOOSE (x,ASSUME tm) thm1) in
let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
let th1 = EXISTS(tm,x) t1 and th2 = EXISTS(tm,x) t2 in
let e1 = CHOOSE (x,ASSUME ep) th1 and e2 = CHOOSE (x,ASSUME eq) th2 in
let thm2 = DISJ_CASES (ASSUME(mk_disj(ep,eq))) e1 e2 in
let imp2 = DISCH (mk_disj(ep,eq)) thm2 in
GENL [f;g] (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% PEXISTS_OR_CONV "?x. P \/ Q" = |- (?x. P \/ Q) = (?x.P) \/ (?x.Q) %
% ------------------------------------------------------------------------- %
let PEXISTS_OR_CONV tm =
(let (x,(P,Q)) = (I # dest_disj) (dest_pexists tm) in
let f = mk_pabs(x,P) in
let g = mk_pabs(x,Q) in
let th = ISPECL [f;g] EXISTS_OR_THM in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x))))) th in
let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV))))))) th1 in
let th3 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RAND_CONV PBETA_CONV)))))) th2 in
let th4 = (CONV_RULE (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
ETA_CONV))))) th3 in
(CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV)))) th4
) ? failwith
`PEXISTS_OR_CONV: argument must have the form "?p. P \\/ Q"`;;
% ------------------------------------------------------------------------- %
% AND_PFORALL_CONV "(!x. P) /\ (!x. Q)" = |- (!x.P)/\(!x.Q) = (!x. P /\ Q) %
% ------------------------------------------------------------------------- %
let AND_PFORALL_CONV tm =
(let (x,P),(y,Q) = (dest_pforall # dest_pforall) (dest_conj tm) in
if (not (x=y)) then fail else
let f = mk_pabs (x,P) in
let g = mk_pabs (x,Q) in
let th = SYM (ISPECL [f;g] FORALL_AND_THM) in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV ETA_CONV)))))) th in
let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV
(RAND_CONV ETA_CONV))))) th1 in
let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
let th4 = (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV)))))) th3
in
(CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV
PBETA_CONV))))) th4
) ? failwith
`AND_PFORALL_CONV: arguments must have form "(!p.P)/\\(!p.Q)"`;;
% ------------------------------------------------------------------------- %
% LEFT_AND_FORALL_THM = |- !f Q. (!x. f x) /\ Q = (!x. f x /\ Q) %
% ------------------------------------------------------------------------- %
let LEFT_AND_FORALL_THM =
let x = "x:*" in
let f = "f:*->bool" in
let Q = "Q:bool" in
let th1 = ASSUME "(!x:*. f x) /\ Q" in
let imp1 = GEN x ((uncurry CONJ) ((SPEC x # I) (CONJ_PAIR th1))) in
let th2 = ASSUME "!x:*. f x /\ Q" in
let imp2 = (uncurry CONJ) ((GEN x # I) (CONJ_PAIR (SPEC x th2))) in
GENL [Q;f] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;
% ------------------------------------------------------------------------- %
% LEFT_AND_PFORALL_CONV "(!x.P) /\ Q" = %
% |- (!x.P) /\ Q = (!x'. P[x'/x] /\ Q) %
% ------------------------------------------------------------------------- %
let LEFT_AND_PFORALL_CONV tm =
(let (x,P),Q = (dest_pforall # I) (dest_conj tm) in
let f = mk_pabs(x,P) in
let th = ISPECL [Q;f] LEFT_AND_FORALL_THM in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV ETA_CONV)))))) th in
let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1
in
(CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
PBETA_CONV)))))) th2
) ? failwith `LEFT_AND_PFORALL_CONV: expecting "(!p.P) /\\ Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_AND_FORALL_THM = |- !P g. P /\ (!x. g x) = (!x. P /\ g x) %
% ------------------------------------------------------------------------- %
let RIGHT_AND_FORALL_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let th1 = ASSUME "P /\ (!x:*. g x)" in
let imp1 = GEN x ((uncurry CONJ) ((I # SPEC x) (CONJ_PAIR th1))) in
let th2 = ASSUME "!x:*. P /\ g x" in
let imp2 = (uncurry CONJ) ((I # GEN x) (CONJ_PAIR (SPEC x th2))) in
GENL [P;g] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;
% ------------------------------------------------------------------------- %
% RIGHT_AND_PFORALL_CONV "P /\ (!x.Q)" = %
% |- P /\ (!x.Q) = (!x'. P /\ Q[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_AND_PFORALL_CONV tm =
(let P,(x,Q) = (I # dest_pforall) (dest_conj tm) in
let g = mk_pabs(x,Q) in
let th = (ISPECL [P; g] RIGHT_AND_FORALL_THM) in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
ETA_CONV))))) th in
let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th2
) ? failwith `RIGHT_AND_PFORALL_CONV: expecting "P /\\ (!p.Q)"`;;
% ------------------------------------------------------------------------- %
% OR_PEXISTS_CONV "(?x. P) \/ (?x. Q)" = |- (?x.P) \/ (?x.Q) = (?x. P \/ Q) %
% ------------------------------------------------------------------------- %
let OR_PEXISTS_CONV tm =
(let (x,P),(y,Q) = (dest_pexists # dest_pexists) (dest_disj tm) in
if (not (x=y)) then fail else
let f = mk_pabs (x,P) in
let g = mk_pabs (x,Q) in
let th = SYM (ISPECL [f;g] EXISTS_OR_THM) in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV ETA_CONV)))))) th in
let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV
(RAND_CONV ETA_CONV))))) th1 in
let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
let th4 = (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV)))))) th3
in
(CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV
PBETA_CONV))))) th4
) ? failwith
`OR_PEXISTS_CONV: arguments must have form "(!p.P) \\/ (!p.Q)"`;;
% ------------------------------------------------------------------------- %
% LEFT_OR_EXISTS_THM = |- (?x. f x) \/ Q = (?x. f x \/ Q) %
% ------------------------------------------------------------------------- %
let LEFT_OR_EXISTS_THM =
let x = "x:*" in
let Q = "Q:bool" in
let f = "f:*->bool" in
let P = mk_comb (f,x) in
let ep = mk_exists(x,P) in
let tm = mk_disj (ep,Q) in
let otm = mk_exists (x,(mk_disj(P,Q))) in
let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
let th1 = EXISTS(otm,x) t1 and th2 = EXISTS(otm,x) t2 in
let thm1 = DISJ_CASES (ASSUME tm) (CHOOSE(x,ASSUME ep)th1) th2 in
let imp1 = DISCH tm thm1 in
let Pth = EXISTS(ep,x)(ASSUME P) and Qth = ASSUME Q in
let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
let imp2 = DISCH otm (CHOOSE (x,ASSUME otm) thm2) in
GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% LEFT_OR_PEXISTS_CONV "(?x.P) \/ Q" = %
% |- (?x.P) \/ Q = (?x'. P[x'/x] \/ Q) %
% ------------------------------------------------------------------------- %
let LEFT_OR_PEXISTS_CONV tm =
(let (x,P),Q = (dest_pexists # I) (dest_disj tm) in
let f = mk_pabs(x,P) in
let th = ISPECL [Q;f] LEFT_OR_EXISTS_THM in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV ETA_CONV)))))) th in
let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1
in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
PBETA_CONV)))))
th2
) ? failwith `LEFT_OR_PEXISTS_CONV: expecting "(?p.P) \\/ Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_OR_EXISTS_THM = |- P \/ (?x. g x) = (?x. P \/ g x) %
% ------------------------------------------------------------------------- %
let RIGHT_OR_EXISTS_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let Q = mk_comb (g,x) in
let eq = mk_exists(x,Q) in
let tm = mk_disj (P,eq) in
let otm = mk_exists (x,(mk_disj(P,Q))) in
let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
let th1 = EXISTS(otm,x) t1 and th2 = EXISTS(otm,x) t2 in
let thm1 = DISJ_CASES (ASSUME tm) th1 (CHOOSE(x,ASSUME eq)th2) in
let imp1 = DISCH tm thm1 in
let Qth = EXISTS(eq,x)(ASSUME Q) and Pth = ASSUME P in
let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
let imp2 = DISCH otm (CHOOSE (x,ASSUME otm) thm2) in
GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% RIGHT_OR_PEXISTS_CONV "P \/ (?x.Q)" = %
% |- P \/ (?x.Q) = (?x'. P \/ Q[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_OR_PEXISTS_CONV tm =
(let P,(x,Q) = (I # dest_pexists) (dest_disj tm) in
let g = mk_pabs(x,Q) in
let th = (ISPECL [P; g] RIGHT_OR_EXISTS_THM) in
let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
ETA_CONV))))) th in
let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1 in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th2
) ? failwith `RIGHT_OR_PEXISTS_CONV: expecting "P \\/ (?p.Q)"`;;
% ------------------------------------------------------------------------- %
% BOTH_EXISTS_AND_THM = |- !P Q. (?x. P /\ Q) = (?x. P) /\ (?x. Q) %
% ------------------------------------------------------------------------- %
let BOTH_EXISTS_AND_THM =
let x = "x:*" in
let P = "P:bool" in
let Q = "Q:bool" in
let t = mk_conj(P,Q) in
let exi = mk_exists(x,t) in
let (t1,t2) = CONJ_PAIR (ASSUME t) in
let t11 = EXISTS ((mk_exists(x,P)),x) t1 in
let t21 = EXISTS ((mk_exists(x,Q)),x) t2 in
let imp1 =
DISCH_ALL
(CHOOSE (x, ASSUME (mk_exists(x,mk_conj(P,Q)))) (CONJ t11 t21))
in
let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
let th22 = CHOOSE(x,ASSUME(mk_exists(x,P))) th21 in
let th23 = CHOOSE(x,ASSUME(mk_exists(x,Q))) th22 in
let (u1,u2) =
CONJ_PAIR (ASSUME (mk_conj(mk_exists(x,P),mk_exists(x,Q)))) in
let th24 = PROVE_HYP u1 (PROVE_HYP u2 th23) in
let imp2 = DISCH_ALL th24 in
GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% LEFT_EXISTS_AND_THM = |- !Q f. (?x. f x /\ Q) = (?x. f x) /\ Q %
% ------------------------------------------------------------------------- %
let LEFT_EXISTS_AND_THM =
let x = "x:*" in
let f = "f:*->bool" in
let P = mk_comb (f,x) in
let Q = "Q:bool" in
let t = mk_conj(P,Q) in
let exi = mk_exists(x,t) in
let (t1,t2) = CONJ_PAIR (ASSUME t) in
let t11 = EXISTS ((mk_exists(x,P)),x) t1 in
let imp1 =
DISCH_ALL
(CHOOSE
(x, ASSUME (mk_exists(x,mk_conj(P,Q))))
(CONJ t11 t2)) in
let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
let th22 = CHOOSE(x,ASSUME(mk_exists(x,P))) th21 in
let (u1,u2) = CONJ_PAIR (ASSUME (mk_conj(mk_exists(x,P),Q))) in
let th23 = PROVE_HYP u1 (PROVE_HYP u2 th22) in
let imp2 = DISCH_ALL th23 in
GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% RIGHT_EXISTS_AND_THM = |- !P g. (?x. P /\ g x) = P /\ (?x. g x) %
% ------------------------------------------------------------------------- %
let RIGHT_EXISTS_AND_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let Q = mk_comb(g,x) in
let t = mk_conj(P,Q) in
let exi = mk_exists(x,t) in
let (t1,t2) = CONJ_PAIR (ASSUME t) in
let t21 = EXISTS ((mk_exists(x,Q)),x) t2 in
let imp1 =
DISCH_ALL
(CHOOSE
(x, ASSUME (mk_exists(x,mk_conj(P,Q))))
(CONJ t1 t21)) in
let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
let th22 = CHOOSE(x,ASSUME(mk_exists(x,Q))) th21 in
let (u1,u2) = CONJ_PAIR (ASSUME (mk_conj(P,mk_exists(x,Q)))) in
let th23 = PROVE_HYP u1 (PROVE_HYP u2 th22) in
let imp2 = DISCH_ALL th23 in
GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% PEXISTS_AND_CONV : move existential quantifier into conjunction. %
% %
% A call to PEXISTS_AND_CONV "?x. P /\ Q" returns: %
% %
% |- (?x. P /\ Q) = (?x.P) /\ Q [x not free in Q] %
% |- (?x. P /\ Q) = P /\ (?x.Q) [x not free in P] %
% |- (?x. P /\ Q) = (?x.P) /\ (?x.Q) [x not free in P /\ Q] %
% ------------------------------------------------------------------------- %
let PEXISTS_AND_CONV tm =
(let (x,(P,Q)) = (I # dest_conj) (dest_pexists tm) ?
failwith `expecting "?x. P /\\ Q"` in
let oP = occs_in x P and oQ = occs_in x Q in
if (oP & oQ) then
failwith `bound pair occurs in both conjuncts`
else if ((not oP) & (not oQ)) then
let th1 =
INST_TYPE
[(type_of x, mk_vartype `*`)]
BOTH_EXISTS_AND_THM in
let th2 = SPECL [P;Q] th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x)))))
th3 in
let th5 =
CONV_RULE
(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th4
in
th5
else if oP then % not free in Q %
let f = mk_pabs(x,P) in
let th1 = ISPECL [Q;f] LEFT_EXISTS_AND_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV
(RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th3
in
th4
else % not free in P%
let g = mk_pabs(x,Q) in
let th1 = ISPECL [P;g] RIGHT_EXISTS_AND_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RAND_CONV PBETA_CONV)))))
th2 in
let th4 =
CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
in
th4
) ?\st failwith `PEXISTS_AND_CONV: `^st;;
% ------------------------------------------------------------------------- %
% AND_PEXISTS_CONV "(?x.P) /\ (?x.Q)" = |- (?x.P) /\ (?x.Q) = (?x. P /\ Q) %
% ------------------------------------------------------------------------- %
let AND_PEXISTS_CONV tm =
(let ((x,P),(y,Q)) = (dest_pexists # dest_pexists) (dest_conj tm)
? failwith `expecting "(?x.P) /\\ (?x.Q)"`
in
if not (x=y) then
failwith `expecting "(?x.P) /\\ (?x.Q)"`
else if (occs_in x P) or (occs_in x Q) then
failwith `"` ^ (fst(dest_var x)) ^ `" free in conjunct(s)`
else
SYM (PEXISTS_AND_CONV (mk_pexists (x,mk_conj(P,Q))))
) ?\st failwith `AND_EXISTS_CONV: ` ^ st;;
% ------------------------------------------------------------------------- %
% LEFT_AND_PEXISTS_CONV "(?x.P) /\ Q" = %
% |- (?x.P) /\ Q = (?x'. P[x'/x] /\ Q) %
% ------------------------------------------------------------------------- %
let LEFT_AND_PEXISTS_CONV tm =
(let ((x,P),Q) = (dest_pexists # I) (dest_conj tm) in
let f = mk_pabs(x,P) in
let th1 = SYM (ISPECL [Q;f] LEFT_EXISTS_AND_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
ETA_CONV)))))
th1 in
let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
PBETA_CONV)))))
th3
in
th4
) ? failwith `LEFT_AND_PEXISTS_CONV: expecting "(?x.P) /\\ Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_AND_PEXISTS_CONV "P /\ (?x.Q)" = %
% |- P /\ (?x.Q) = (?x'. P /\ (Q[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_AND_PEXISTS_CONV tm =
(let (P,(x,Q)) = (I # dest_pexists) (dest_conj tm) in
let g = mk_pabs(x,Q) in
let th1 = SYM (ISPECL [P;g] RIGHT_EXISTS_AND_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th3
in
th4
) ? failwith `RIGHT_AND_EXISTS_CONV: expecting "P /\\ (?x.Q)"`;;
% ------------------------------------------------------------------------- %
% BOTH_FORALL_OR_THM = |- !P Q. (!x. P \/ Q) = (!x. P) \/ (!x. Q) %
% ------------------------------------------------------------------------- %
let BOTH_FORALL_OR_THM =
let x = "x:*" in
let P = "P:bool" in
let Q = "Q:bool" in
let imp11 = DISCH_ALL (SPEC x (ASSUME (mk_forall(x,P)))) in
let imp12 = DISCH_ALL (GEN x (ASSUME P)) in
let fath = IMP_ANTISYM_RULE imp11 imp12 in
let th1 = REFL (mk_forall(x, mk_disj (P,Q))) in
let th2 =
CONV_RULE (RAND_CONV (K (INST [(mk_disj(P,Q),P)] fath))) th1 in
let th3 =
CONV_RULE (RAND_CONV (RATOR_CONV (RAND_CONV (K (SYM fath))))) th2 in
let th4 =
CONV_RULE (RAND_CONV (RAND_CONV (K (SYM (INST [(Q,P)] fath))))) th3
in
GENL [P;Q] th4 ;;
% ------------------------------------------------------------------------- %
% LEFT_FORALL_OR_THM = |- !Q f. (!x. f x \/ Q) = (!x. f x) \/ Q %
% ------------------------------------------------------------------------- %
let LEFT_FORALL_OR_THM =
let x = "x:*" in
let f = "f:*->bool" in
let P = mk_comb (f,x) in
let Q = "Q:bool" in
let tm = (mk_forall(x,mk_disj(P,Q))) in
let thm1 = SPEC x (ASSUME tm) in
%WW% let thm2 = CONTR P (MP (NOT_ELIM(ASSUME (mk_neg Q))) (ASSUME Q)) in
let thm3 = DISJ1 (GEN x (DISJ_CASES thm1 (ASSUME P) thm2)) Q in
let thm4 = DISJ2 (mk_forall(x,P)) (ASSUME Q) in
let imp1 = DISCH tm (DISJ_CASES (SPEC Q EXCLUDED_MIDDLE) thm4 thm3) in
let thm5 = SPEC x (ASSUME (mk_forall(x,P))) in
let thm6 = ASSUME Q in
let imp2 =
(DISCH_ALL (GEN x (DISJ_CASES_UNION
(ASSUME (mk_disj(mk_forall(x,P),Q)))
thm5
thm6)))
in
GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% RIGHT_FORALL_OR_THM = |- !P g. (!x. P \/ g x) = P \/ (!x. g x) %
% ------------------------------------------------------------------------- %
let RIGHT_FORALL_OR_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let Q = mk_comb(g,x) in
let tm = (mk_forall(x,mk_disj(P,Q))) in
let thm1 = SPEC x (ASSUME tm) in
%WW% let thm2 = CONTR Q (MP (NOT_ELIM (ASSUME (mk_neg P))) (ASSUME P)) in
let thm3 = DISJ2 P (GEN x (DISJ_CASES thm1 thm2 (ASSUME Q))) in
let thm4 = DISJ1 (ASSUME P) (mk_forall(x,Q)) in
let imp1 = DISCH tm (DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm4 thm3) in
let thm5 = ASSUME P in
let thm6 = SPEC x (ASSUME (mk_forall(x,Q))) in
let imp2 =
(DISCH_ALL (GEN x (DISJ_CASES_UNION
(ASSUME (mk_disj(P,mk_forall(x,Q))))
thm5
thm6)))
in
GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2);;
% ------------------------------------------------------------------------- %
% PFORALL_OR_CONV : move universal quantifier into disjunction. %
% %
% A call to PFORALL_OR_CONV "!x. P \/ Q" returns: %
% %
% |- (!x. P \/ Q) = (!x.P) \/ Q [if x not free in Q] %
% |- (!x. P \/ Q) = P \/ (!x.Q) [if x not free in P] %
% |- (!x. P \/ Q) = (!x.P) \/ (!x.Q) [if x free in neither P nor Q] %
% ------------------------------------------------------------------------- %
let PFORALL_OR_CONV tm =
(let (x,(P,Q)) = (I # dest_disj) (dest_pforall tm) ?
failwith `expecting "!x. P \\/ Q"` in
let oP = occs_in x P and oQ = occs_in x Q in
if (oP & oQ) then
failwith `bound pair occurs in both conjuncts`
else if ((not oP) & (not oQ)) then
let th1 =
INST_TYPE
[(type_of x, mk_vartype `*`)]
BOTH_FORALL_OR_THM in
let th2 = SPECL [P;Q] th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x)))))
th3 in
let th5 =
CONV_RULE
(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th4
in
th5
else if oP then % not free in Q %
let f = mk_pabs(x,P) in
let th1 = ISPECL [Q;f] LEFT_FORALL_OR_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV
(RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th3
in
th4
else % not free in P%
let g = mk_pabs(x,Q) in
let th1 = ISPECL [P;g] RIGHT_FORALL_OR_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
(CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RAND_CONV PBETA_CONV))))))
th2 in
let th4 =
(CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th3
in
th4
) ?\st failwith `PFORALL_OR_CONV: `^st;;
% ------------------------------------------------------------------------- %
% OR_PFORALL_CONV "(!x.P) \/ (!x.Q)" = |- (!x.P) \/ (!x.Q) = (!x. P \/ Q) %
% ------------------------------------------------------------------------- %
let OR_PFORALL_CONV tm =
(let ((x,P),(y,Q)) = (dest_pforall # dest_pforall) (dest_disj tm)
? failwith `expecting "(!x.P) \\/ (!x.Q)"`
in
if not (x=y) then
failwith `expecting "(!x.P) \\/ (!x.Q)"`
else if (occs_in x P) or (occs_in x Q) then
failwith `"` ^ (fst(dest_var x)) ^ `" free in disjuncts(s)`
else
SYM (PFORALL_OR_CONV (mk_pforall (x,mk_disj(P,Q))))
) ?\st failwith `OR_FORALL_CONV: ` ^ st;;
% ------------------------------------------------------------------------- %
% LEFT_OR_PFORALL_CONV "(!x.P) \/ Q" = %
% |- (!x.P) \/ Q = (!x'. P[x'/x] \/ Q) %
% ------------------------------------------------------------------------- %
let LEFT_OR_PFORALL_CONV tm =
(let ((x,P),Q) = (dest_pforall # I) (dest_disj tm) in
let f = mk_pabs(x,P) in
let th1 = SYM (ISPECL [Q;f] LEFT_FORALL_OR_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
ETA_CONV)))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
PBETA_CONV)))))
th3
in
th4
) ? failwith `LEFT_OR_PFORALL_CONV: expecting "(!x.P) \\/ Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_OR_PFORALL_CONV "P \/ (!x.Q)" = %
% |- P \/ (!x.Q) = (!x'. P \/ (Q[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_OR_PFORALL_CONV tm =
(let (P,(x,Q)) = (I # dest_pforall) (dest_disj tm) in
let g = mk_pabs(x,Q) in
let th1 = SYM (ISPECL [P;g] RIGHT_FORALL_OR_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th3
in
th4
) ? failwith `RIGHT_OR_FORALL_CONV: expecting "P \\/ (!x.Q)"`;;
% ------------------------------------------------------------------------- %
% BOTH_FORALL_IMP_THM = |- (!x. P ==> Q) = ((?x.P) ==> (!x.Q)) %
% ------------------------------------------------------------------------- %
let BOTH_FORALL_IMP_THM =
let x = "x:*" in
let P = "P:bool" in
let Q = "Q:bool" in
let tm = mk_forall(x, mk_imp (P, Q)) in
let asm = mk_exists(x,P) in
let th1 = GEN x (CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm)))) in
let imp1 = DISCH tm (DISCH asm th1) in
let cncl = rand(concl imp1) in
let th2 = SPEC x (MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P))) in
let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% LEFT_FORALL_IMP_THM = |- (!x. P[x]==>Q) = ((?x.P[x]) ==> Q) %
% ------------------------------------------------------------------------- %
let LEFT_FORALL_IMP_THM =
let x = "x:*" in
let f = "f:*->bool" in
let P = mk_comb(f,x) in
let Q = "Q:bool" in
let tm = mk_forall(x, mk_imp (P, Q)) in
let asm = mk_exists(x,P) in
let th1 = CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm))) in
let imp1 = DISCH tm (DISCH asm th1) in
let cncl = rand(concl imp1) in
let th2 = MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P)) in
let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% RIGHT_FORALL_IMP_THM = |- (!x. P==>Q[x]) = (P ==> (!x.Q[x])) %
% ------------------------------------------------------------------------- %
let RIGHT_FORALL_IMP_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let Q = mk_comb (g,x) in
let tm = mk_forall(x, mk_imp (P, Q)) in
let imp1 = DISCH P(GEN x(UNDISCH(SPEC x(ASSUME tm)))) in
let cncl = concl imp1 in
let imp2 = GEN x (DISCH P(SPEC x(UNDISCH (ASSUME cncl)))) in
GENL [P;g] (IMP_ANTISYM_RULE (DISCH tm imp1) (DISCH cncl imp2)) ;;
% ------------------------------------------------------------------------- %
% BOTH_EXISTS_IMP_THM = |- (?x. P ==> Q) = ((!x.P) ==> (?x.Q)) %
% ------------------------------------------------------------------------- %
let BOTH_EXISTS_IMP_THM =
let x = "x:*" in
let P = "P:bool" in
let Q = "Q:bool" in
let tm = mk_exists(x, mk_imp (P, Q)) in
let eQ = mk_exists(x,Q) in
let aP = mk_forall(x,P) in
let thm1 = EXISTS(eQ,x)(UNDISCH(ASSUME(mk_imp(P,Q)))) in
let thm2 = DISCH aP (PROVE_HYP (SPEC x (ASSUME aP)) thm1) in
let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) thm2) in
let thm2 = CHOOSE(x,UNDISCH (ASSUME (rand(concl imp1)))) (ASSUME Q) in
let thm3 = DISCH P (PROVE_HYP (GEN x (ASSUME P)) thm2) in
let imp2 = DISCH (rand(concl imp1)) (EXISTS(tm,x) thm3) in
GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% LEFT_EXISTS_IMP_THM = |- (?x. P[x] ==> Q) = ((!x.P[x]) ==> Q) %
% ------------------------------------------------------------------------- %
let LEFT_EXISTS_IMP_THM =
let x = "x:*" in
let f = "f:*->bool" in
let P = mk_comb(f,x) in
let Q = "Q:bool" in
let tm = mk_exists(x, mk_imp (P, Q)) in
let allp = mk_forall(x,P) in
let th1 = SPEC x (ASSUME allp) in
let thm1 = MP (ASSUME(mk_imp(P,Q))) th1 in
let imp1 = DISCH tm (CHOOSE(x,ASSUME tm)(DISCH allp thm1)) in
let otm = rand(concl imp1) in
let thm2 = EXISTS(tm,x)(DISCH P (UNDISCH(ASSUME otm))) in
let nex = mk_exists(x,mk_neg P) in
let asm1 = EXISTS (nex, x) (ASSUME (mk_neg P)) in
%WW% let th2 = CCONTR P (MP (NOT_ELIM(ASSUME (mk_neg nex))) asm1) in
%WW% let th3 = CCONTR nex (MP (NOT_ELIM(ASSUME(mk_neg allp)))(GEN x th2)) in
let thm4 = DISCH P (CONTR Q (UNDISCH (ASSUME (mk_neg P)))) in
let thm5 = CHOOSE(x,th3)(EXISTS(tm,x)thm4) in
let thm6 = DISJ_CASES (SPEC allp EXCLUDED_MIDDLE) thm2 thm5 in
let imp2 = DISCH otm thm6 in
GENL [Q; f] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% RIGHT_EXISTS_IMP_THM = |- (?x. P ==> Q[x]) = (P ==> (?x.Q[x])) %
% ------------------------------------------------------------------------- %
let RIGHT_EXISTS_IMP_THM =
let x = "x:*" in
let P = "P:bool" in
let g = "g:*->bool" in
let Q = mk_comb (g,x) in
let tm = mk_exists(x, mk_imp (P, Q)) in
let thm1 = EXISTS (mk_exists(x,Q),x) (UNDISCH(ASSUME(mk_imp(P,Q)))) in
let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (DISCH P thm1)) in
let thm2 = UNDISCH (ASSUME (rand(concl imp1))) in
let thm3 = CHOOSE (x,thm2) (EXISTS (tm,x) (DISCH P (ASSUME Q))) in
let thm4 = EXISTS(tm,x)(DISCH P(CONTR Q(UNDISCH(ASSUME(mk_neg P))))) in
let thm5 = DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm3 thm4 in
let imp2 = (DISCH(rand(concl imp1)) thm5) in
GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2) ;;
% ------------------------------------------------------------------------- %
% PFORALL_IMP_CONV, implements the following axiom schemes. %
% %
% |- (!x. P==>Q[x]) = (P ==> (!x.Q[x])) [x not free in P] %
% %
% |- (!x. P[x]==>Q) = ((?x.P[x]) ==> Q) [x not free in Q] %
% %
% |- (!x. P==>Q) = ((?x.P) ==> (!x.Q)) [x not free in P==>Q] %
% ------------------------------------------------------------------------- %
let PFORALL_IMP_CONV tm =
(let (x,(P,Q)) = (I # dest_imp) (dest_pforall tm) ?
failwith `expecting "?x. P ==> Q"` in
let oP = occs_in x P and oQ = occs_in x Q in
if (oP & oQ) then
failwith `bound pair occurs in both sides of "==>"`
else if ((not oP) & (not oQ)) then
let th1 =
INST_TYPE
[(type_of x, mk_vartype `*`)]
BOTH_FORALL_IMP_THM in
let th2 = SPECL [P;Q] th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x)))))
th3 in
let th5 =
CONV_RULE
(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th4
in
th5
else if oP then % not free in Q %
let f = mk_pabs(x,P) in
let th1 = ISPECL [Q;f] LEFT_FORALL_IMP_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV
(RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th3
in
th4
else % not free in P%
let g = mk_pabs(x,Q) in
let th1 = ISPECL [P;g] RIGHT_FORALL_IMP_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
(RAND_CONV PBETA_CONV)))))
th2 in
let th4 =
CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
in
th4
) ?\st failwith `PFORALL_IMP_CONV: `^st;;
% ------------------------------------------------------------------------- %
% LEFT_IMP_PEXISTS_CONV "(?x.P) ==> Q" = %
% |- ((?x.P) ==> Q) = (!x'. P[x'/x] ==> Q) %
% ------------------------------------------------------------------------- %
let LEFT_IMP_PEXISTS_CONV tm =
(let (x,P),Q = (dest_pexists # I) (dest_imp tm) in
let f = mk_pabs(x,P) in
let th = SYM (ISPECL [Q;f] LEFT_FORALL_IMP_THM) in
let th1 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
(RAND_CONV ETA_CONV)))))
th in
let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th1
in
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV)))))
th2
) ? failwith `LEFT_IMP_PEXISTS_CONV: expecting "(?p.P) ==> Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_IMP_PFORALL_CONV "P ==> (!x.Q)" = %
% |- (P ==> (!x.Q)) = (!x'. P ==> (Q[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_IMP_PFORALL_CONV tm =
(let (P,(x,Q)) = (I # dest_pforall) (dest_imp tm) in
let g = mk_pabs(x,Q) in
let th1 = SYM (ISPECL [P;g] RIGHT_FORALL_IMP_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th3
in
th4
) ? failwith `RIGHT_IMP_FORALL_CONV: expecting "P ==> (!x.Q)"`;;
% ------------------------------------------------------------------------- %
% PEXISTS_IMP_CONV, implements the following axiom schemes. %
% %
% |- (?x. P==>Q[x]) = (P ==> (?x.Q[x])) [x not free in P] %
% %
% |- (?x. P[x]==>Q) = ((!x.P[x]) ==> Q) [x not free in Q] %
% %
% |- (?x. P==>Q) = ((!x.P) ==> (?x.Q)) [x not free in P==>Q] %
% ------------------------------------------------------------------------- %
let PEXISTS_IMP_CONV tm =
(let (x,(P,Q)) = (I # dest_imp) (dest_pexists tm) ?
failwith `expecting "?x. P ==> Q"` in
let oP = occs_in x P and oQ = occs_in x Q in
if (oP & oQ) then
failwith `bound pair occurs in both sides of "==>"`
else if ((not oP) & (not oQ)) then
let th1 =
INST_TYPE
[(type_of x, mk_vartype `*`)]
BOTH_EXISTS_IMP_THM in
let th2 = SPECL [P;Q] th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
(PALPHA_CONV x)))))
th3 in
let th5 =
CONV_RULE
(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th4
in
th5
else if oP then % not free in Q %
let f = mk_pabs(x,P) in
let th1 = ISPECL [Q;f] LEFT_EXISTS_IMP_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
th2 in
let th4 =
CONV_RULE
(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
ETA_CONV))))
th3
in
th4
else % not free in P%
let g = mk_pabs(x,Q) in
let th1 = ISPECL [P;g] RIGHT_EXISTS_IMP_THM in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
th1 in
let th3 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV
(PABS_CONV (RAND_CONV PBETA_CONV)))))
th2 in
let th4 =
CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
in
th4
) ?\st failwith `PEXISTS_IMP_CONV: `^st;;
% ------------------------------------------------------------------------- %
% LEFT_IMP_PFORALL_CONV "(!x. t1[x]) ==> t2" = %
% |- (!x. t1[x]) ==> t2 = (?x'. t1[x'] ==> t2) %
% ------------------------------------------------------------------------- %
let LEFT_IMP_PFORALL_CONV tm =
(let ((x,P),Q) = (dest_pforall # I) (dest_imp tm) in
let f = mk_pabs(x,P) in
let th1 = SYM (ISPECL [Q;f] LEFT_EXISTS_IMP_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
ETA_CONV)))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV
(RATOR_CONV (RAND_CONV PBETA_CONV)))))
th3
in
th4
) ? failwith `LEFT_IMP_PFORALL_CONV: expecting "(!x.P) ==> Q"`;;
% ------------------------------------------------------------------------- %
% RIGHT_IMP_EXISTS_CONV "t1 ==> (?x. t2)" = %
% |- (t1 ==> ?x. t2) = (?x'. t1 ==> t2[x'/x]) %
% ------------------------------------------------------------------------- %
let RIGHT_IMP_PEXISTS_CONV tm =
(let (P,(x,Q)) = (I # dest_pexists) (dest_imp tm) in
let g = mk_pabs(x,Q) in
let th1 = SYM (ISPECL [P;g] RIGHT_EXISTS_IMP_THM) in
let th2 =
CONV_RULE
(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
th1 in
let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
let th4 =
CONV_RULE
(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
th3
in
th4
) ? failwith `RIGHT_IMP_PEXISTS_CONV: expecting "P ==> (!x.Q)"`;;
(
NOT_PFORALL_CONV,
NOT_PEXISTS_CONV,
PEXISTS_NOT_CONV,
PFORALL_NOT_CONV,
PFORALL_AND_CONV,
PEXISTS_OR_CONV,
AND_PFORALL_CONV,
LEFT_AND_PFORALL_CONV,
RIGHT_AND_PFORALL_CONV,
OR_PEXISTS_CONV,
LEFT_OR_PEXISTS_CONV,
RIGHT_OR_PEXISTS_CONV,
PEXISTS_AND_CONV,
AND_PEXISTS_CONV,
LEFT_AND_PEXISTS_CONV,
RIGHT_AND_PEXISTS_CONV,
PFORALL_OR_CONV,
OR_PFORALL_CONV,
LEFT_OR_PFORALL_CONV,
RIGHT_OR_PFORALL_CONV,
PFORALL_IMP_CONV,
LEFT_IMP_PEXISTS_CONV,
RIGHT_IMP_PFORALL_CONV,
PEXISTS_IMP_CONV,
LEFT_IMP_PFORALL_CONV,
RIGHT_IMP_PEXISTS_CONV
);;
end_section convsec;;
let (
NOT_PFORALL_CONV,
NOT_PEXISTS_CONV,
PEXISTS_NOT_CONV,
PFORALL_NOT_CONV,
PFORALL_AND_CONV,
PEXISTS_OR_CONV,
AND_PFORALL_CONV,
LEFT_AND_PFORALL_CONV,
RIGHT_AND_PFORALL_CONV,
OR_PEXISTS_CONV,
LEFT_OR_PEXISTS_CONV,
RIGHT_OR_PEXISTS_CONV,
PEXISTS_AND_CONV,
AND_PEXISTS_CONV,
LEFT_AND_PEXISTS_CONV,
RIGHT_AND_PEXISTS_CONV,
PFORALL_OR_CONV,
OR_PFORALL_CONV,
LEFT_OR_PFORALL_CONV,
RIGHT_OR_PFORALL_CONV,
PFORALL_IMP_CONV,
LEFT_IMP_PEXISTS_CONV,
RIGHT_IMP_PFORALL_CONV,
PEXISTS_IMP_CONV,
LEFT_IMP_PFORALL_CONV,
RIGHT_IMP_PEXISTS_CONV
) = it;;
|