/usr/share/hyphy/TemplateBatchFiles/Plato.bf is in hyphy-common 2.2.6+dfsg-3build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | /************************************************************************************/
/* A Likelihood Method for the Detection of Selection and Recombination using Nucleotide Sequences
-Grassly and Holmes, 1997
HBL implementation by Olivier Fedrigo (ofedrigo@duke.edu)
October 2006
*/
RequireVersion ("0.9920060901");
VERBOSITY_LEVEL = -1; /* HELPS REDUCE GUI REFRESH OVERHEAD */
ACCEPT_BRANCH_LENGTHS = 1;
ACCEPT_ROOTED_TREES = 1;
nreps=100;
fprintf (stdout, "Partial Likelihood Anomalies detected Through Optimization - PLATO\nVersion 2.0\n(c) Copyright, 1998 Nick Grassly and Andrew Rambaut\nDepartment of Zoology, University of Oxford\nSouth Parks Road, Oxford OX1 3PS, U.K.\n");
SetDialogPrompt ("Please locate an alignment file:");
DataSet nucleotideSequences = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter filteredData = CreateFilter (nucleotideSequences,1);
HarvestFrequencies (observedFreqs, filteredData, 1, 1, 1);
fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites,"\n");
fprintf (stdout, "\nBase composition:\n\tA: ", Format (observedFreqs[0],10,5),
"\n\tC: ", Format (observedFreqs[1],10,5),
"\n\tG: ", Format (observedFreqs[2],10,5),
"\n\tT: ", Format (observedFreqs[3],10,5), "\n\n");
ExecuteAFile (HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf");
SelectTemplateModel(filteredData);
/*CALCULATE ML PARAMETERS AND LIKELIHOOD PER SITES*/
Tree givenTree = treeString;
LikelihoodFunction theLnLik = (filteredData, givenTree);
Optimize (paramValues, theLnLik);
/* SLKP: NEED TO SAVE GLOBAL VARIABLES; OTHERWISE THEY WILL BE OVERWRITTEN
DURING OPTIMIZATIONS FROM SIMULATED DATA */
GetString (likelihoodInfo, theLnLik, -1);
globalVariableList = likelihoodInfo["Global Independent"];
globalVariableCount = Columns (globalVariableList);
if (globalVariableCount)
{
stashed_GV = {globalVariableCount,1};
for (vc = 0; vc < globalVariableCount; vc = vc + 1)
{
ExecuteCommands ("stashed_GV[vc]="+globalVariableList[vc]+";");
}
}
ConstructCategoryMatrix (L, theLnLik, COMPLETE);
/* SLKP: If there are category variables involved in the model, one needs to collapse site likelihoods
conditional on the value of the category into an averaged value at a site */
if (Rows(L)>1)
{
catVars = likelihoodInfo["Categories"];
catVarCount = Columns (catVars);
if (catVarCount > 1)
{
fprintf (stdout, "ERROR: only one category variable can be handled by this code\n");
return 0;
}
ExecuteCommands ("GetInformation (catWeight,"+catVars[vc]+");");
L = catWeight[1][-1]*L;
}
/* END SLKP */
fprintf (stdout,"\nML parameters estimated. Log(L) = ", paramValues[1][0], "\n");
/*CALCULATE THE RATIO: (SUM OF LIKELIHOOD INSIDE THE WINDOW PER SITE)/(SUM OF LIKELIHOOD OUTSITE THE WINDOW PER SITE)*/
/*FOR EACH WINDOW SIZE (FROM 5bp TO HALF OF THE DATASET*/
fprintf(stdout,"Actual surface \n");
smin = 5;
smax = filteredData.sites$2;
liktable = getSurface(smin,smax,filteredData.sites,paramValues[1][0],L);
/*DO THE SAME THING FOR SIMULATIONS. 100 SIMULATION, FOR EACH ITERATE TAKE THE MAXIMAL VALUE FOR A GIVEN WINDOW SIZE*/
fprintf (stdout,"Simulating \n");
winLikList = {nreps,smax};
for (simCounter=0;simCounter<nreps;simCounter=simCounter+1)
{
Tree simTree=treeString;
ClearConstraints(simTree);
/* SLKP: NEED TO RESTORE GLOBAL VARIABLES BEFORE SIMULATION */
if (globalVariableCount)
{
for (vc = 0; vc < globalVariableCount; vc = vc + 1)
{
ExecuteCommands (globalVariableList[vc]+"=stashed_GV[vc];");
}
}
DataSet simData = SimulateDataSet(theLnLik);
DataSetFilter simFilter = CreateFilter(simData,1);
HarvestFrequencies (simFreqs,simFilter,1,1,1);
LikelihoodFunction simLik = (simFilter,simTree,simFreqs);
Optimize (simParamValues,simLik);
ConstructCategoryMatrix (Lsim,simLik, COMPLETE);
if (catVarCount == 1)
{
ExecuteCommands ("GetInformation (catWeight,"+catVars[vc]+");");
Lsim = catWeight[1][-1]*Lsim;
}
fprintf(stdout,"Replicate #",simCounter,"\nTree -ln Likelihood = ",simParamValues[1][0],"\n");
liktableTemp=getSurface(smin,smax,simFilter.sites,simParamValues[1][0],Lsim);
for (sp=0;sp<simFilter.sites-smin;sp=sp+1)
{
for (s=0;s<smax-smin+1;s=s+1) {winLikList[simCounter][s]=Max(liktableTemp[s][sp],winLikList[simCounter][s]);}
}
}
fprintf(stdout,"\nSimulations done\n");
/*CALCULATE MEAN AND VARIANCE OF SIMUALTIONS FOR EACH WINDOW SIZE*/
fprintf(stdout,"Calculate mean and variance \n");
mean = {smax,1};
variance = {smax,1};
sumsq=0.0; sums=0.0;
for (i=0;i<(smax-smin+1);i=i+1)
{
sumsq=0.0; sums=0.0;
for(j=0;j<nreps;j=j+1)
{
sums=sums+winLikList[j][i];
sumsq=sumsq+((winLikList[j][i])*(winLikList[j][i]));
}
variance[i]=((sumsq-((sums*sums)/nreps))/(nreps-1));
mean[i]=sums/nreps;
windowsize=i+smin;
}
/*CALCULATE Z-VALUES*/
fprintf(stdout,"Results \n");
alpha=0.05/(smax-smin+1);
Z={smax,filteredData.sites};
for(i=0;i<(smax-smin+1);i=i+1)
{
for(j=0;j<(filteredData.sites+1-i-smin);j=j+1)
{
Z[i][j]=(liktable[i][j]-mean[i])/(Sqrt(variance[i]));
}
}
fprintf(stdout,"\nZ values calculated\n");
/*DETERMINE CUTOFF*/
fprintf(stdout, "\nBonferroni-corrected significance level for alpha=0.05: ", alpha,"\n");
Z_cutOff=-normZval(alpha);
fprintf(stdout, "Z-values greater than ",Z_cutOff," are significant\n\n");
/* GET THE BEST SCORE*/
temp=0.0;
for (i=smin;i<=smax;i=i+1)
{
for (j=0;j<(filteredData.sites+1-i);j=j+1)
{
if (Z[i-smin][j]>temp && Z[i-smin][j]>Z_cutOff)
{
temp=Z[i-smin][j];
size=i;
sp=j;
}
}
}
map={filteredData.sites,1};
if (temp>Z_cutOff) /*IF THE BEST Z-SCORE IS SMALLER THAN THE CUTOFF THEN NO NEED TO DO IT*/
{
while (temp>Z_cutOff)
{
for (i=sp;i<(sp+size);i=i+1) {map[i]=1;}
fprintf(stdout,Format(sp+1,5,0)," - ",Format(sp+size,5,0)," : ",Format(Z[size-smin][site],6,2),"\n");
temp=0.0;
for (i=smin;i<=smax;i=i+1)
{
for (j=0;j<(filteredData.sites-i+1);j=j+1)
{
if (Z[i-smin][j]>temp && Z[i-smin][j]>Z_cutOff)
{
check=0;
for (n=j;n<(j+i);n=n+1) {check=check+map[n];}
if (check==0) /*RECORD A GOOD SCORE ONLY IF NONE OF ITS SITES HAS BEEN INCLUDED IN AN PREVIOUS BETTER SCORE*/
{
temp=Z[i-smin][j];
size=i;
sp=j;
}
}
}
}
}
}
else
{
fprintf(stdout, "No anomalous regions found\n");
}
fprintf(stdout,"\nFinished\n");
/************************************************************************************/
function normZval(P)
{
/*modified from Fortran algorithm AS241
APPL. STATIST. (1988) VOL. 37, NO. 3, 477-484.
Produces the normal deviate Z corresponding to a given lower
tail area of P; Z is accurate to about 1 part in 10e7.*/
SPLIT1 = 0.425;
SPLIT2 = 5.0;
CONST1 = 0.180625;
CONST2 = 1.6;
/*Coefficients for P close to 0.5*/
A0 = 3.3871327179;
A1 = 50.434271938;
A2 = 159.29113202;
A3 = 59.109374720;
B1 = 17.895169469;
B2 = 78.757757664;
B3 = 67.187563600;
/*Coefficients for P not close to 0, 0.5 or 1.*/
C0 = 1.4234372777;
C1 = 2.7568153900;
C2 = 1.3067284816;
C3 = 0.17023821103;
D1 = 0.73700164250;
D2 = 0.12021132975;
/*Coefficients for P near 0 or 1.*/
E0 = 6.6579051150;
E1 = 3.0812263860;
E2 = 0.42868294337;
E3 = 0.017337203997;
F1 = 0.24197894225;
F2 = 0.012258202635;
Q=P-0.5;
if(Abs(Q)<=SPLIT1)
{
Rx=CONST1-(Q*Q);
x=Q*((((((A3*Rx)+A2)*Rx)+A1)*Rx)+A0)/((((((B3*Rx)+B2)*Rx)+B1)*Rx)+1.0);
return x;
}
else {if(Q<0.0) {Rx=P;} else {Rx=1.0-P;}}
if(Rx<=0.0) {return 0.0;}
Rx=Sqrt(-Log(Rx));
if(Rx<=SPLIT2)
{
Rx=Rx-CONST2;
x=(((C3*Rx+C2)*Rx+C1)*Rx+C0)/((D2*Rx+D1)*Rx+1.0);
}
else
{
Rx=Rx-SPLIT2;
x=(((E3*Rx+E2)*Rx+E1)*Rx+E0)/((F2*Rx+F1)*Rx+1.0);
}
if(Q<0.0) {x = -x;}
return x;
}
/************************************************************************************/
function getSurface(windowMin,windowMax,nsites,MLS,Likelihood)
{
/*CALCULATE THE RATIO: (SUM OF Likelihood INSIDE THE WINDOW PER SITE)/(SUM OF Likelihood OUTSITE THE WINDOW PER SITE)*/
/*FOR EACH WINDOW SIZE (FROM windowMin TO windowMax FOR A DATASET WITH nsites AND MLS*/
timer = Time(1);
temp = {windowMax,nsites};
loopUB = nsites-windowMin+1;
windowSpan = windowMax-windowMin+1;
loggedL = Log (Likelihood);
for (sp=0;sp<loopUB;sp=sp+1)
{
/*
window = 0;
loopUB2 = windowMin+sp;
for (s=sp;s<loopUB2;s=s+1)
{
window=window+Log(Likelihood[s]);
}*/
/* SLKP: matrix hackery to do the same as above;
speeds things up quite a bit
see Examples/BatchLanguage/MatrixIndexing.bf */
logExtract = loggedL[{{0,sp}}][{{0,windowMin+sp-1}}];
window = (logExtract*Transpose(logExtract["1"]))[0];
temp[0][sp]= window/windowMin / ((MLS-window) / (nsites-windowMin));
localWS = Min (windowSpan, nsites-sp-windowMin-1);
i = 1;
while (i<=localWS)
{
cww = windowMin+i;
window = window+loggedL[sp+cww];
temp[i][sp] = (window/cww)/((MLS-window)/(nsites-cww));
i = i+1;
}
}
fprintf(stdout,"\nML surface done in ", Time(1)-timer, " seconds\n");
return temp;
}
/************************************************************************************/
|