This file is indexed.

/usr/share/perl5/Bio/Graphics/Layout.pm is in libbio-graphics-perl 2.39-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
package Bio::Graphics::Layout;

# shamelessly stolen from Mitch Skinner's JBrowse package and ported to perl.
# Original copyright here
#Copyright (c) 2007-2010 The Evolutionary Software Foundation
#
#Created by Mitchell Skinner <mitch_skinner@berkeley.edu>
#
#This package and its accompanying libraries are free software; you can
#redistribute it and/or modify it under the terms of the LGPL (either
#version 2.1, or at your option, any later version) or the Artistic
#License 2.0.  Refer to LICENSE for the full license text.

use strict;

# /*
#  * Code for laying out rectangles, given that layout is also happening
#  * in adjacent blocks at the same time
#  *
#  * This code does a lot of linear searching; n should be low enough that
#  * it's not a problem but if it turns out to be, some of it can be changed to
#  * binary searching without too much work.  Another possibility is to merge
#  * contour spans and give up some packing closeness in exchange for speed
#  * (the code already merges spans that have the same x-coord and are vertically
#  * contiguous).
#  */

sub new {
    my $class = shift;
    my ($leftBound, $rightBound) = @_;
    my $self = bless {},ref $class || $class;
    $self->{leftBound}  = $leftBound;
    $self->{rightBound} = $rightBound;
    # a Layout contains a left contour and a right contour;
    # the area between the contours is allocated, and the
    # area outside the contours is free.
    $self->{leftContour}  = Bio::Graphics::Layout::Contour->new();
    $self->{rightContour} = Bio::Graphics::Layout::Contour->new();
    $self->{seen} = {};
    $self->{leftOverlaps}  = [];
    $self->{rightOverlaps} = [];
    $self->{totalHeight}   = 0;
    return $self;
}

sub totalHeight {shift->{totalHeight}}

sub addRect {
    my $self = shift;
    my ($id,$left,$right,$height) = @_;

    if (defined $self->{seen}{$id}) {return $self->{seen}{$id}};
    
    # for each contour, we test the fit on the near side of the given rect,
    my $leftFit  = $self->tryLeftFit($left, $right, $height, 0);
    my $rightFit = $self->tryRightFit($left, $right, $height, 0);

    my $top;

    # and insert the far side from the side we tested
    # (we want to make sure the near side fits, but we want to extend
    #  the contour to cover the far side)
    if ($leftFit->{top} < $rightFit->{top}) {
        $top = $leftFit->{top};
        $self->{leftContour}->insertFit($leftFit->{fit}, $self->{rightBound} - $left,
					$top, $height);
        $self->{rightContour}->unionWith($right - $self->{leftBound}, $top, $height);
    } else {
        $top = $rightFit->{top};
        $self->{rightContour}->insertFit($rightFit->{fit}, $right - $self->{leftBound},
					 $top, $height);
        $self->{leftContour}->unionWith($self->{rightBound} - $left, $top, $height);
    }

    my $existing = {id      => $id, 
		   left    => $left, 
		   right   => $right,
		   top     => $top, 
		   height  => $height};
    $self->{seen}{$id} = $top;
    if ($left <= $self->{leftBound}) {
        push(@{$self->{leftOverlaps}},$existing);
        if ($self->{leftLayout}) {
	    $self->{leftLayout}->addExisting($existing);
	}
    }
    if ($right >= $self->{rightBound}) {
        push(@{$self->{rightOverlaps}},$existing);
        if ($self->{rightLayout}) {
	    $self->{rightLayout}->addExisting($existing);
	}
    }
    $self->{seen}{$id}   = $top;
    $self->{totalHeight} = Bio::Graphics::Math::max($self->{totalHeight}, $top + $height);
    return $top;
}

# this method is called by the block to the left to see if a given fit works
# in this layout
# takes: proposed rectangle
# returns: {top: value that makes the rectangle fit in this layout,
#           fit: "fit" for passing to insertFit}
sub tryLeftFit {
    my $self = shift;
    my ($left,$right,$height,$top) = @_;

    my ($fit, $nextFit);
    my $curTop = $top;

    while (1) {
        # check if the rectangle fits at curTop
        $fit = $self->{leftContour}->getFit($self->{rightBound} - $right, $height, $curTop);
        $curTop = Bio::Graphics::Math::max($self->{leftContour}->getNextTop($fit), $curTop);
        # if the rectangle extends onto the next block to the right;
        if ($self->{rightLayout} && ($right >= $self->{rightBound})) {
            # check if the rectangle fits into that block at this position
            $nextFit = $self->{rightLayout}->tryLeftFit($left, $right, $height, $curTop);
            # if not, nextTop will be the next y-value where the rectangle
            # fits into that block
            if ($nextFit->{top} > $curTop) {
                # in that case, try again to see if that y-value works
                $curTop = $nextFit->{top};
		next;
            }
        }
	last;
    }
    return {top=> $curTop, fit=> $fit};
}

# this method is called by the block to the right to see if a given fit works
# in this layout
# takes: proposed rectangle
# returns: {top: value that makes the rectangle fit in this layout,
#           fit: "fit" for passing to insertFit}
sub tryRightFit {
    my $self = shift;
    my ($left,$right,$height,$top) = @_;
    
    my ($fit, $nextFit);
    my $curTop = $top;

    while (1) {
        # check if the rectangle fits at curTop
        $fit = $self->{rightContour}->getFit($left - $self->{leftBound}, $height, $curTop);
        $curTop = Bio::Graphics::Math::max($self->{rightContour}->getNextTop($fit), $curTop);
        # if the rectangle extends onto the next block to the left;
        if ($self->{leftLayout} && ($left <= $self->{leftBound})) {
            # check if the rectangle fits into that block at this position
            $nextFit = $self->{leftLayout}->tryRightFit($left, $right, $height, $curTop);
            # if not, nextTop will be the next y-value where the rectangle
            # fits into that block
            if ($nextFit->{top} > $curTop) {
                # in that case, try again to see if that y-value works
                $curTop = $nextFit->{top};
                next;
            }
        }
	last
    }
    return {top => $curTop, fit => $fit};
}

sub hasSeen {
    my $self = shift;
    my $id   = shift;
    return defined $self->{seen}{$id};
}

sub setLeftLayout {
    my $self = shift;
    my $left = shift;

    for (my $i = 0; $i < @{$self->{leftOverlaps}}; $i++) {
        $left->addExisting($self->{leftOverlaps}[$i]);
    }

    $self->{leftLayout} = $left;
};

sub setRightLayout {
    my $self = shift;
    my $right = shift;

    for (my $i = 0; $i < @{$self->{rightOverlaps}}; $i++) {
        $right->addExisting($self->{rightOverlaps}[$i]);
    }
    $self->{rightLayout} = $right;
};

sub cleanup {
    my $self = shift;
    undef $self->{leftLayout};
    undef $self->{rightLayout};
};

# expects an {id, left, right, height, top} object
sub addExisting {
    my $self = shift;
    my $existing = shift;

    if (defined $self->{seen}[$existing->{id}]) {return};
    $self->{seen}{$existing->{id}} = $existing->{top};

    $self->{totalHeight} =
        Bio::Graphics::Math::max($self->{totalHeight}, $existing->{top} + $existing->{height});
    
    if ($existing->{left} <= $self->{leftBound}) {
        push(@{$self->{leftOverlaps}},$existing);
        if ($self->{leftLayout}) {
	    $self->{leftLayout}->addExisting($existing);
	}
    }
    if ($existing->{right} >= $self->{rightBound}) {
        push(@{$self->{rightOverlaps}},$existing);
        if ($self->{rightLayout}) {
	    $self->{rightLayout}->addExisting($existing);
	}
    }

    $self->{leftContour}->unionWith($self->{rightBound} - $existing->left,
				    $existing->{top},
				    $existing->{height});
    $self->rightContour->unionWith($existing->{right} - $self->{leftBound},
				   $existing->{top},
				   $existing->{height});
}

package Bio::Graphics::Layout::Contour;
use constant INF => 1<<16;

sub new {
    my $class = shift;
    my $top   = shift;

    # /*
    #  * A contour is described by a set of vertical lines of varying heights,
    #  * like this:
    #  *                         |
    #  *                         |
    #  *               |
    #  *                   |
    #  *                   |
    #  *                   |
    #  *
    #  * The contour is the union of the rectangles ending on the right side
    #  * at those lines, and extending leftward toward negative infinity.
    #  *
    #  * <=======================|
    #  * <=======================|
    #  * <==========|
    #  * <=================|
    #  * <=================|
    #  * <=================|
    #  *
    #  * x -->
    #  *
    #  * As we add new vertical spans, the contour expands, either downward
    #  * or in the direction of increasing x.
    #  */
    # // takes: top, a number indicating where the first span of the contour
    # // will go

    $top ||= 0;

    # // spans is an array of {top, x, height} objects representing
    # // the boundaries of the contour
    # // they're always sorted by top
    return bless {spans => 
		      [
		       {top=> $top,
			x  => INF,
			height => 0}
		      ]
    },ref $class || $class;
}

sub spans {shift->{spans}}

# // finds a space in the contour into which the given span fits
# // (i.e., the given span has higher x than the contour over its vertical span)
# // returns an ojbect {above, count}; above is the index of the last span above
# // where the given span will fit, count is the number of spans being
# // replaced by the given span
sub getFit {
    my $self = shift;
    my ($x,$height,$minTop) = @_;
    
    my ($aboveBottom, $curSpan);
    my $above = 0;
    my $spans = $self->spans;

    if ($minTop) {
        # set above = (index of the first span that starts below minTop)
        for (; $spans->[$above]{top} < $minTop; $above++) {
            if ($above >= (@$spans - 1)) {
                return {above=> @$spans - 1, count=> 0};
	    }
        }
    }

    # slide down the contour
    my $count;
  ABOVE: 
    for (; $above < @$spans; $above++) {
        $aboveBottom = $spans->[$above]{top} + $spans->[$above]{height};
        for ($count = 1; $above + $count < @$spans; $count++) {
            $curSpan = $spans->[$above + $count];
            if (($aboveBottom + $height) <= $curSpan->{top}) {
                # the given span fits between span[above] and
                # curSpan, keeping curSpan
                return {above=> $above, count=> $count - 1};
            }
            if ($curSpan->{x} > $x) {
                # the span at [above + count] overlaps the given span,
                # so we continue down the contour
                next ABOVE;
            }
            if (($curSpan->{x} <= $x) &&
                (($aboveBottom + $height) < ($curSpan->{top} + $curSpan->{height}))) {
                # the given span partially covers curSpan, and
                # will overlap it, so we keep curSpan
                return {above=> $above, count=> $count - 1};
            }
        }
        # the given span fits below span[above], replacing any
        # lower spans in the contour
        return {above=> $above, count => $count - 1};
    }
    # the given span fits at the end of the contour, replacing no spans
    return {above => $above, count => 0};
}

# add the given span to this contour where it fits, as given
# by getFit
sub insertFit {
    my $self = shift;
    my ($fit,$x,$top,$height) = @_;

    my $spans = $self->spans;

    # if the previous span and the current span have the same x-coord,
    # and are vertically contiguous, merge them.
    my $prevSpan = $spans->[$fit->{above}];
    if ((abs($prevSpan->{x} - $x) < 1)
        && (abs(($prevSpan->{top} + $prevSpan->{height}) - $top) < 1) ) {
        $prevSpan->{height} = ($top + $height) - $prevSpan->{top};
        # a bit of slop here is conservative if we take the max
        # (means things might get laid out slightly farther apart
        # than they would otherwise)
        $prevSpan->{x} = Bio::Graphics::Math::max($prevSpan->{x}, $x);
        splice(@$spans,$fit->{above} + 1, $fit->{count});
    } else {
        splice(@$spans,$fit->{above} + 1, $fit->{count},
                          {
                              top    => $top,
                              x      => $x,
                              height => $height
                          });
    }
}

# add the given span to this contour at the given location, if
# it would extend the contour
sub unionWith {
    my $self = shift;
    my ($x,$top,$height) = @_;
    
    my ($startBottom, $startIndex, $endIndex, $startSpan, $endSpan);
    my $bottom = $top + $height;
    my $spans = $self->spans;

  START: 
    for ($startIndex = 0; $startIndex < @$spans; $startIndex++) {
        $startSpan = $spans->[$startIndex];
        $startBottom = $startSpan->{top} + $startSpan->{height};
        if ($startSpan->{top} > $top) {
            # the given span extends above an existing span
            $endIndex = $startIndex;
            last START;
        }
        if ($startBottom > $top) {
            # if startSpan covers (at least some of) the given span,
            if ($startSpan->{x} >= $x) {
                my $covered = $startBottom - $top;
                # we don't have to worry about the covered area any more
                $top    += $covered;
                $height -= $covered;
                # if we've eaten up the whole span, then it's submerged
                # and we don't have to do anything
                if ($top >= $bottom) { return };
                next;
            } else {
                # find the first span not covered by the given span
                for ($endIndex = $startIndex;
                     $endIndex < @$spans;
                     $endIndex++) {
                    $endSpan = $spans->[$endIndex];
                    # if endSpan extends below or to the right
                    # of the given span, then we need to keep it
                    if ((($endSpan->{top} + $endSpan->{height}) > $bottom)
                        || $endSpan->{x} > $x) {
                        last START;
                    }
                }
                last START;
            }
        }
    }

    # if the previous span and the current span have the same x-coord,
    # and are vertically contiguous, merge them.
    my $prevSpan = $spans->[$startIndex - 1];
    if ((abs($prevSpan->{x} - $x) < 1)
        && (abs(($prevSpan->{top} + $prevSpan->{height}) - $top) < 1) ) {
        $prevSpan->{height} = ($top + $height) - $prevSpan->{top};
        $prevSpan->{x} = Bio::Graphics::Math::max($prevSpan->{x}, $x);
        splice(@$spans,$startIndex, $endIndex - $startIndex);
    } else {
        splice(@$spans,$startIndex, $endIndex - $startIndex,
                          {
                              top    => $top,
                              x      => $x,
                              height => $height
                          });
    }
}

# returns the top of the to-be-added span that fits into "fit"
# (as returned by getFit)
sub getNextTop {
    my $self = shift;
    my $fit  = shift;
    return $self->spans->[$fit->{above}]{top} + $self->spans->[$fit->{above}]{height};
};

package Bio::Graphics::Math;

sub max {$_[0] > $_[1] ? $_[0] : $_[1]}



1;