/usr/share/perl5/Bio/Tree/Compatible.pm is in libbio-perl-perl 1.6.924-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | #
# BioPerl module for Bio::Tree::Compatible
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Gabriel Valiente <valiente@lsi.upc.edu>
#
# Copyright Gabriel Valiente
#
# You may distribute this module under the same terms as Perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::Tree::Compatible - Testing compatibility of phylogenetic trees
with nested taxa.
=head1 SYNOPSIS
use Bio::Tree::Compatible;
use Bio::TreeIO;
my $input = Bio::TreeIO->new('-format' => 'newick',
'-file' => 'input.tre');
my $t1 = $input->next_tree;
my $t2 = $input->next_tree;
my ($incompat, $ilabels, $inodes) = Bio::Tree::Compatible::is_compatible($t1,$t2);
if ($incompat) {
my %cluster1 = %{ Bio::Tree::Compatible::cluster_representation($t1) };
my %cluster2 = %{ Bio::Tree::Compatible::cluster_representation($t2) };
print "incompatible trees\n";
if (scalar(@$ilabels)) {
foreach my $label (@$ilabels) {
my $node1 = $t1->find_node(-id => $label);
my $node2 = $t2->find_node(-id => $label);
my @c1 = sort @{ $cluster1{$node1} };
my @c2 = sort @{ $cluster2{$node2} };
print "label $label";
print " cluster"; map { print " ",$_ } @c1;
print " cluster"; map { print " ",$_ } @c2; print "\n";
}
}
if (scalar(@$inodes)) {
while (@$inodes) {
my $node1 = shift @$inodes;
my $node2 = shift @$inodes;
my @c1 = sort @{ $cluster1{$node1} };
my @c2 = sort @{ $cluster2{$node2} };
print "cluster"; map { print " ",$_ } @c1;
print " properly intersects cluster";
map { print " ",$_ } @c2; print "\n";
}
}
} else {
print "compatible trees\n";
}
=head1 DESCRIPTION
NB: This module has exclusively class methods that work on Bio::Tree::TreeI
objects. An instance of Bio::Tree::Compatible cannot itself represent a tree,
and so typically there is no need to create one.
Bio::Tree::Compatible is a Perl tool for testing compatibility of
phylogenetic trees with nested taxa represented as Bio::Tree::Tree
objects. It is based on a recent characterization of ancestral
compatibility of semi-labeled trees in terms of their cluster
representations.
A semi-labeled tree is a phylogenetic tree with some of its internal
nodes labeled, and it can represent a classification tree as well as a
phylogenetic tree with nested taxa, with labeled internal nodes
corresponding to taxa at a higher level of aggregation or nesting than
that of their descendents.
Two semi-labeled trees are compatible if their topological
restrictions to the common labels are such that for each node label,
the smallest clusters containing it in each of the trees coincide and,
furthermore, no cluster in one of the trees properly intersects a
cluster of the other tree.
Future extensions of Bio::Tree::Compatible include a
Bio::Tree::Supertree module for combining compatible phylogenetic
trees with nested taxa into a common supertree.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to the
Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via the
web:
https://github.com/bioperl/bioperl-live/issues
=head1 SEE ALSO
=over
=item * Philip Daniel and Charles Semple. Supertree Algorithms for
Nested Taxa. In: Olaf R. P. Bininda-Emonds (ed.) Phylogenetic
Supertrees: Combining Information to Reveal the Tree of Life,
I<Computational Biology>, vol. 4, chap. 7, pp. 151-171. Kluwer (2004).
=item * Charles Semple, Philip Daniel, Wim Hordijk, Roderic
D. M. Page, and Mike Steel: Supertree Algorithms for Ancestral
Divergence Dates and Nested Taxa. Bioinformatics B<20>(15), 2355-2360
(2004).
=item * Merce Llabres, Jairo Rocha, Francesc Rossello, and Gabriel
Valiente: On the Ancestral Compatibility of Two Phylogenetic Trees
with Nested Taxa. J. Math. Biol. B<53>(3), 340-364 (2006).
=back
=head1 AUTHOR - Gabriel Valiente
Email valiente@lsi.upc.edu
=head1 APPENDIX
The rest of the documentation details each of the object methods.
=cut
package Bio::Tree::Compatible;
use strict;
# Object preamble - inherits from Bio::Root::Root
use Set::Scalar;
use base qw(Bio::Root::Root);
=head2 postorder_traversal
Title : postorder_traversal
Usage : my @nodes = @{ $tree->postorder_traversal }
Function: Return list of nodes in postorder
Returns : reference to array of Bio::Tree::Node
Args : none
For example, the postorder traversal of the tree
C<(((A,B)C,D),(E,F,G));> is a reference to an array of nodes with
internal_id 0 through 9, because the Newick standard representation
for phylogenetic trees is based on a postorder traversal.
+---A +---0
| |
+---+---C +---4---2
| | | | | |
| | +---B | | +---1
| | | |
+ +-------D 9 +-------3
| |
| +-----E | +-----5
| | | |
+-----+-----F +-----8-----6
| |
+-----G +-----7
=cut
sub postorder_traversal {
my($self) = @_;
my @stack;
my @queue;
push @stack, $self->get_root_node;
while (@stack) {
my $node = pop @stack;
push @queue, $node;
foreach my $child ($node->each_Descendent(-sortby => 'internal_id')) {
push @stack, $child;
}
}
my @postorder = reverse @queue;
return \@postorder;
}
=head2 cluster_representation
Title : cluster_representation
Usage : my %cluster = %{ $tree->cluster_representation }
Function: Compute the cluster representation of a tree
Returns : reference to hash of array of string indexed by
Bio::Tree::Node
Args : none
For example, the cluster representation of the tree
C<(((A,B)C,D),(E,F,G));> is a reference to a hash associating an array
of string (descendent labels) to each node, as follows:
0 --> [A]
1 --> [B]
2 --> [A,B,C]
3 --> [D]
4 --> [A,B,C,D]
5 --> [E]
6 --> [F]
7 --> [G]
8 --> [E,F,G]
9 --> [A,B,C,D,E,F,G]
=cut
sub cluster_representation {
my ($tree) = @_;
my %cluster;
my @postorder = @{ postorder_traversal($tree) };
foreach my $node ( @postorder ) {
my @labeled = map { $_->id } grep { $_->id } $node->get_Descendents;
push @labeled, $node->id if $node->id;
$cluster{$node} = \@labeled;
}
return \%cluster;
}
=head2 common_labels
Title : common_labels
Usage : my $labels = $tree1->common_labels($tree2);
Function: Return set of common node labels
Returns : Set::Scalar
Args : Bio::Tree::Tree
For example, the common labels of the tree C<(((A,B)C,D),(E,F,G));>
and the tree C<((A,B)H,E,(J,(K)G)I);> are: C<[A,B,E,G]>.
+---A +---A
| |
+---+---C +-------H
| | | | |
| | +---B | +---B
| | |
+ +-------D +-----------E
| |
| +-----E | +-------J
| | | |
+-----+-----F +---I
| |
+-----G +---G---K
=cut
sub common_labels {
my($self,$arg) = @_;
my @labels1 = map { $_->id } grep { $_->id } $self->get_nodes;
my $common = Set::Scalar->new( @labels1 );
my @labels2 = map { $_->id } grep { $_->id } $arg->get_nodes;
my $temp = Set::Scalar->new( @labels2 );
return $common->intersection($temp);
}
=head2 topological_restriction
Title : topological_restriction
Usage : $tree->topological_restriction($labels)
Function: Compute the topological restriction of a tree to a subset
of node labels
Returns : Bio::Tree::Tree
Args : Set::Scalar
For example, the topological restrictions of each of the trees
C<(((A,B)C,D),(E,F,G));> and C<((A,B)H,E,(J,(K)G)I);> to the labels
C<[A,B,E,G]> are as follows:
+---A +---A
| |
+---+---+ +---+
| | | |
| +---B | +---B
+ |
| +---E +-------E
| | |
+-------+ +---+---G
|
+---G
=cut
sub topological_restriction {
my ($tree, $labels) = @_;
for my $node ( @{ postorder_traversal($tree) } ) {
unless (ref($node)) { # skip $node if already removed
my @cluster = map { $_->id } grep { $_->id } $node->get_Descendents;
push @cluster, $node->id if $node->id;
my $cluster = Set::Scalar->new(@cluster);
if ($cluster->is_disjoint($labels)) {
$tree->remove_Node($node);
} else {
if ($node->id and not $labels->has($node->id)) {
$node->{'_id'} = undef;
}
}
}
}
}
=head2 is_compatible
Title : is_compatible
Usage : $tree1->is_compatible($tree2)
Function: Test compatibility of two trees
Returns : boolean
Args : Bio::Tree::Tree
For example, the topological restrictions of the trees
C<(((A,B)C,D),(E,F,G));> and C<((A,B)H,E,(J,(K)G)I);> to their common
labels, C<[A,B,E,G]>, are compatible. The respective cluster
representations are as follows:
[A] [A]
[B] [B]
[E] [E]
[G] [G]
[A,B] [A,B]
[E,G] [A,B,E,G]
[A,B,E,G]
As a second example, the trees C<(A,B);> and C<((B)A);> are
incompatible. Their respective cluster representations are as follows:
[A] [B]
[B] [A,B]
[A,B]
The reason is, the smallest cluster containing label C<A> is C<[A]> in
the first tree but C<[A,B]> in the second tree.
+---A A---B
|
+
|
+---B
As a second example, the trees C<(((B,A),C),D);> and C<((A,(D,B)),C);>
are also incompatible. Their respective cluster representations are as
follows:
[A] [A]
[B] [B]
[C] [C]
[D] [D]
[A,B] [B,D]
[A,B,C] [A,B,D]
[A,B,C,D] [A,B,C,D]
The reason is, cluster C<[A,B]> properly intersects cluster
C<[B,D]>. There are further incompatibilities between these trees:
C<[A,B,C]> properly intersects both C<[B,D]> and C<[A,B,D]>.
+---B +-------A
| |
+---+ +---+ +---D
| | | | |
+---+ +---A | +---+
| | + |
+ +-------C | +---B
| |
+-----------D +-----------C
=cut
sub is_compatible {
my ($tree1, $tree2) = @_;
my $common = $tree1->Bio::Tree::Compatible::common_labels($tree2);
$tree1->Bio::Tree::Compatible::topological_restriction($common);
$tree2->Bio::Tree::Compatible::topological_restriction($common);
my @postorder1 = @{ postorder_traversal($tree1) };
my @postorder2 = @{ postorder_traversal($tree2) };
my %cluster1 = %{ cluster_representation($tree1) };
my %cluster2 = %{ cluster_representation($tree2) };
my $incompat = 0; # false
my @labels;
foreach my $label ( $common->elements ) {
my $node1 = $tree1->find_node(-id => $label);
my @labels1 = @{ $cluster1{$node1} };
my $cluster1 = Set::Scalar->new(@labels1);
my $node2 = $tree2->find_node(-id => $label);
my @labels2 = @{ $cluster2{$node2} };
my $cluster2 = Set::Scalar->new(@labels2);
unless ( $cluster1->is_equal($cluster2) ) {
$incompat = 1; # true
push @labels, $label;
}
}
my @nodes;
foreach my $node1 ( @postorder1 ) {
my @labels1 = @{ $cluster1{$node1} };
my $cluster1 = Set::Scalar->new(@labels1);
foreach my $node2 ( @postorder2 ) {
my @labels2 = @{$cluster2{$node2} };
my $cluster2 = Set::Scalar->new(@labels2);
if ($cluster1->is_properly_intersecting($cluster2)) {
$incompat = 1; # true
push @nodes, $node1, $node2;
}
}
}
return ($incompat, \@labels, \@nodes);
}
1;
|