This file is indexed.

/usr/share/perl5/Bio/Tree/Statistics.pm is in libbio-perl-perl 1.6.924-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
#
# BioPerl module for Bio::Tree::Statistics
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Jason Stajich <jason@bioperl.org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::Tree::Statistics - Calculate certain statistics for a Tree

=head1 SYNOPSIS

  use Bio::Tree::Statistics;

=head1 DESCRIPTION

This should be where Tree statistics are calculated.  It was
previously where statistics from a Coalescent simulation.

It now contains several methods for calculating L<Tree-Trait
statistics>. 

=head1 FEEDBACK

=head2 Mailing Lists

User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list.  Your participation is much appreciated.

  bioperl-l@bioperl.org                  - General discussion
  http://bioperl.org/wiki/Mailing_lists  - About the mailing lists

=head2 Support 

Please direct usage questions or support issues to the mailing list:

I<bioperl-l@bioperl.org>

rather than to the module maintainer directly. Many experienced and 
reponsive experts will be able look at the problem and quickly 
address it. Please include a thorough description of the problem 
with code and data examples if at all possible.

=head2 Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:

  https://github.com/bioperl/bioperl-live/issues

=head1 AUTHOR - Jason Stajich

Email jason AT bioperl.org

=head1 CONTRIBUTORS

Heikki Lehvaslaiho, heikki at bioperl dot org

=head1 APPENDIX

The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _

=cut


# Let the code begin...


package Bio::Tree::Statistics;
use strict;


use base qw(Bio::Root::Root);

=head2 new

 Title   : new
 Usage   : my $obj = Bio::Tree::Statistics->new();
 Function: Builds a new Bio::Tree::Statistics object 
 Returns : Bio::Tree::Statistics
 Args    :

=head2 assess_bootstrap

 Title   : assess_bootstrap
 Usage   : my $tree_with_bs = $stats->assess_bootstrap(\@bs_trees);
 Function: Calculates the bootstrap for internal nodes based on
 Returns : L<Bio::Tree::TreeI>
 Args    : Arrayref of L<Bio::Tree::TreeI>s

=cut

sub assess_bootstrap{
   my ($self,$bs_trees,$guide_tree) = @_;
   my @consensus;

   # internal nodes are defined by their children

   my (%lookup,%internal);
   my $i = 0;
   for my $tree ( $guide_tree, @$bs_trees ) {
       # Do this as a top down approach, can probably be
       # improved by caching internal node states, but not going
       # to worry about it right now.

       my @allnodes = $tree->get_nodes;
       my @internalnodes = grep { ! $_->is_Leaf } @allnodes;
       for my $node ( @internalnodes ) {
           my @tips = sort map { $_->id } 
                      grep { $_->is_Leaf() } $node->get_all_Descendents;
           my $id = "(".join(",", @tips).")";
           if( $i == 0 ) {
               $internal{$id} = $node->internal_id;
           } else { 
               $lookup{$id}++;
           }
       }
       $i++;
   }
   my @save;
   for my $l ( keys %lookup ) {
       if( defined $internal{$l} ) {#&& $lookup{$l} > $min_seen ) {
           my $intnode = $guide_tree->find_node(-internal_id => $internal{$l});
           $intnode->bootstrap(sprintf("%d",100 * $lookup{$l} / $i));
       }
   }
   return $guide_tree;
}


=head2 cherries

  Example    : cherries($tree, $node);
  Description: Count number of paired leaf nodes
               in a binary tree
  Returns    : integer
  Exceptions : 
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Commonly used statistics assume a binary tree, but this methods
returns a value even for trees with polytomies.

=cut

sub cherries ($;$) {
    my $self = shift;
    my $tree = shift;
    my $node = shift || $tree->get_root_node;

    my $cherries = 0;
    my @descs = $node->each_Descendent;

    if ($descs[0]->is_Leaf and $descs[1]->is_Leaf) {
        if ($descs[3]) { #polytomy at leaf level
            $cherries = 0;
        } else {
            $cherries = 1;
        }
    } else {
        # recurse
        foreach my $desc (@descs) {
            $cherries += $self->cherries($tree, $desc);
        }
    }
    return $cherries;
}


=head2 Tree-Trait statistics

The following methods produce descriptors of trait distribution among
leaf nodes within the trees. They require that a trait has been set
for each leaf node. The tag methods of Bio::Tree::Node are used to
store them as key/value pairs. In this way, one tree can store more
than one trait.

Trees have method add_traits() to set trait values from a file. See the
add_trait() method in L<Bio::Tree::TreeFunctionsI>.

=head2 fitch

  Example    : fitch($tree, $key, $node);
  Description: Calculates Parsimony Score (PS) and internal trait
               values using the Fitch 1971 parsimony algorithm for
               the subtree a defined by the (internal) node.
               Node defaults to the root.
  Returns    : true on success
  Exceptions : leaf nodes have to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. trait name string
               3. Bio::Tree::NodeI object within the tree, optional

Runs first L<fitch_up> that calculates parsimony scores and then
L<fitch_down> that should resolve most of the trait/character state
ambiguities.

Fitch, W.M., 1971. Toward defining the course of evolution: minimal
change for a specific tree topology. Syst. Zool. 20, 406-416.

You can access calculated parsimony values using:

  $score = $node->->get_tag_values('ps_score');

and the trait value with:

  $traitvalue = $node->->get_tag_values('ps_trait'); # only the first
  @traitvalues = $node->->get_tag_values('ps_trait');

Note that there can be more that one trait value, especially for the
root node.

=cut

sub fitch {
    my $self = shift;
    my $tree = shift;
    my $key = shift || $self->throw("Trait name is needed");
    my $node = shift || $tree->get_root_node;

    $self->fitch_up($tree, $key, $node);
    $self->fitch_down($tree, $node);
}


=head2 ps

  Example    : ps($tree, $key, $node);
  Description: Calculates Parsimony Score (PS) from Fitch 1971
               parsimony algorithm for the subtree as defined
               by the (internal) node.
               Node defaults to the root.
  Returns    : integer, 1 < PS < n, where n is number of branches
  Exceptions : leaf nodes have to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. trait name string
               3. Bio::Tree::NodeI object within the tree, optional

This is the first half of the Fitch algorithm that is enough for
calculating the resolved parsimony values. The trait/chararacter
states are commonly left in ambiguous state. To resolve them, run
L<fitch_down>.

=cut

sub ps { shift->fitch_up(@_) }


=head2 fitch_up

  Example    : fitch_up($tree, $key, $node);
  Description: Calculates Parsimony Score (PS) from the Fitch 1971
               parsimony algorithm for the subtree as defined
               by the (internal) node.
               Node defaults to the root.
  Returns    : integer, 1< PS < n, where n is number of branches
  Exceptions : leaf nodes have to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. trait name string
               3. Bio::Tree::NodeI object within the tree, optional

This is a more generic name for L<ps> and indicates that it performs
the first bottom-up tree traversal that calculates the parsimony score
but usually leaves trait/character states ambiguous. If you are
interested in internal trait states, running L<fitch_down> should
resolve most of the ambiguities.

=cut

sub fitch_up {
    my $self = shift;
    my $tree = shift;
    my $key = shift || $self->throw("Trait name is needed");
    my $node = shift || $tree->get_root_node;

    if ($node->is_Leaf) {
        $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
            unless $node->has_tag($key);
        $node->set_tag_value('ps_trait', $node->get_tag_values($key) );
        $node->set_tag_value('ps_score', 0 );
        return; # end of recursion
    }

    foreach my $child ($node->each_Descendent) {
        $self->fitch_up($tree, $key, $child);
    }

    my %intersection;
    my %union;
    my $score;

    foreach my $child ($node->each_Descendent) {
        foreach my $trait ($child->get_tag_values('ps_trait') ) {
            $intersection{$trait}++ if $union{$trait};
            $union{$trait}++;
        }
        $score += $child->get_tag_values('ps_score');
    }

    if (keys %intersection) {
        $node->set_tag_value('ps_trait', keys %intersection);
        $node->set_tag_value('ps_score', $score);
    } else {
        $node->set_tag_value('ps_trait', keys %union);
        $node->set_tag_value('ps_score', $score+1);
    }

    if ($self->verbose) {
        print "-- node --------------------------\n";
        print "iID: ", $node->internal_id, " (", $node->id, ")\n";
        print "Trait: ", join (', ', $node->get_tag_values('ps_trait') ), "\n";
        print "length :", scalar($node->get_tag_values('ps_score')) , "\n";
    }
    return scalar $node->get_tag_values('ps_score');
}


=head2 fitch_down

  Example    : fitch_down($tree, $node);
  Description: Runs the second pass from Fitch 1971
               parsimony algorithm to resolve ambiguous
               trait states left by first pass.
               by the (internal) node.
               Node defaults to the root.
  Returns    : true
  Exceptions : dies unless the trait is defined in all nodes
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Before running this method you should have ran L<fitch_up> (alias to
L<ps> ). Note that it is not guaranteed that all states are completely
resolved.

=cut

sub fitch_down {
    my $self = shift;
    my $tree = shift;
    my $node = shift || $tree->get_root_node;

    my $key = 'ps_trait';
    $self->throw ("ERROR: ". $node->internal_id. " needs a value for $key")
        unless $node->has_tag($key);

    my $nodev;
    foreach my $trait ($node->get_tag_values($key) ) {
        $nodev->{$trait}++;
    }

    foreach my $child ($node->each_Descendent) {
        next if $child->is_Leaf;  # end of recursion

        my $intersection;
        foreach my $trait ($child->get_tag_values($key) ) {
            $intersection->{$trait}++ if $nodev->{$trait};
        }

        $self->fitch_down($tree, $child);
        $child->set_tag_value($key, keys %$intersection);
    }
    return 1;  # success
}


=head2 persistence

  Example    : persistence($tree, $node);
  Description: Calculates the persistence
               for node in the subtree defined by the (internal)
               node.  Node defaults to the root.
  Returns    : int, number of generations trait value has to remain same
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Persistence measures the stability that the trait value has in a
tree. It expresses the number of generations the trait value remains
the same. All the decendants of the root in the same generation have
to share the same value.

Depends on Fitch's parsimony score (PS).

=cut

sub _persistence {
    my $self = shift;
    my $tree = shift;
    my $node = shift;
    my $value = shift || $self->throw("Value is needed");


    my $key  = 'ps_trait';

    $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');

    return 0 unless $node->get_tag_values($key) eq $value; # wrong value
    return 1 if $node->is_Leaf; # end of recursion

    my $persistence = 10000000; # an arbitrarily large number
    foreach my $child ($node->each_Descendent) {
        my $pers = $self->_persistence($tree, $child, $value);
        $persistence = $pers if $pers < $persistence;
    }
    return $persistence + 1;
}

sub persistence {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;
    $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');

    my $key  = 'ps_trait';
    my $value = $node->get_tag_values($key);

    #calculate
    my $persistence =  $self->_persistence($tree, $node, $value);
    $node->set_tag_value('persistance', $persistence);
    return $persistence;
}


=head2 count_subclusters

  Example    : count_clusters($tree, $node);
  Description: Calculates the number of sub-clusters
               in the subtree defined by the (internal)
               node.  Node defaults to the root.
  Returns    : int, count
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Depends on Fitch's parsimony score (PS).

=cut

sub _count_subclusters {
    my $self = shift;
    my $tree = shift;
    my $node = shift;
    my $value = shift || $self->throw("Value is needed");

    my $key  = 'ps_trait';

    $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
        unless $node->has_tag($key);

    if ($node->get_tag_values($key) eq $value) {
        if ($node->get_tag_values('ps_score') == 0) {
            return 0;
        } else {
            my $count = 0;
            foreach my $child ($node->each_Descendent) {
                $count += $self->_count_subclusters($tree, $child, $value);
            }
            return $count;
        }
    }
    return 1;
}

sub count_subclusters {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;
    $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');

    my $key  = 'ps_trait';
    my $value = $node->get_tag_values($key);

    return $self->_count_subclusters($tree, $node, $value);
}


=head2 count_leaves

  Example    : count_leaves($tree, $node);
  Description: Calculates the number of leaves with same trait
               value as root in the subtree defined by the (internal)
               node.  Requires an unbroken line of identical trait values.
               Node defaults to the root.
  Returns    : int, number of leaves with this trait value
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Depends on Fitch's parsimony score (PS).

=cut

sub _count_leaves {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;
    my $value = shift;

    my $key  = 'ps_trait';

    $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
        unless $node->has_tag($key);

    if ($node->get_tag_values($key) eq $value) {
        #print $node->id, ": ", $node->get_tag_values($key), "\n";
        return 1 if $node->is_Leaf; # end of recursion

            my $count = 0;
            foreach my $child ($node->each_Descendent) {
                $count += $self->_count_leaves($tree, $child, $value);
            }
            return $count;
    }
    return 0;
}

sub count_leaves {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;
    $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');

    my $key  = 'ps_trait';
    my $value = $node->get_tag_values($key);

    return $self->_count_leaves($tree, $node, $value);
}


=head2 phylotype_length

  Example    : phylotype_length($tree, $node);
  Description: Sums up the branch lengths within phylotype
               exluding the subclusters where the trait values
               are different
  Returns    : float, length
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Depends on Fitch's parsimony score (PS).

=cut

sub _phylotype_length {
    my $self = shift;
    my $tree = shift;
    my $node = shift;
    my $value = shift;

    my $key  = 'ps_trait';

    $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
        unless $node->has_tag($key);

    return 0 if $node->get_tag_values($key) ne $value;
    return $node->branch_length if $node->is_Leaf; # end of recursion

    my $length = 0;
    foreach my $child ($node->each_Descendent) {
        my $sub_len = $self->_phylotype_length($tree, $child, $value);
        $length += $sub_len;
        $length += $child->branch_length if not $child->is_Leaf and $sub_len;
    }
    return $length;
}

sub phylotype_length {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;

    my $key  = 'ps_trait';
    my $value = $node->get_tag_values($key);

    return $self->_phylotype_length($tree, $node, $value);
}


=head2 sum_of_leaf_distances

  Example    : sum_of_leaf_distances($tree, $node);
  Description: Sums up the branch lengths from root to leaf
               exluding the subclusters where the trait values
               are different
  Returns    : float, length
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Depends on Fitch's parsimony score (PS).

=cut

sub _sum_of_leaf_distances {
    my $self = shift;
    my $tree = shift;
    my $node = shift;
    my $value = shift;

    my $key  = 'ps_trait';

    $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
        unless $node->has_tag($key);
    return 0 if $node->get_tag_values($key) ne $value;
    #return $node->branch_length if $node->is_Leaf; # end of recursion
    return 0 if $node->is_Leaf; # end of recursion

    my $length = 0;
    foreach my $child ($node->each_Descendent) {
        $length += $self->_count_leaves($tree, $child, $value) * $child->branch_length +
        $self->_sum_of_leaf_distances($tree, $child, $value);
    }
    return $length;
}

sub sum_of_leaf_distances {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;

    my $key  = 'ps_trait';
    my $value = $node->get_tag_values($key);

    return $self->_sum_of_leaf_distances($tree, $node, $value);
}


=head2 genetic_diversity

  Example    : genetic_diversity($tree, $node);
  Description: Diversity is the sum of root to leaf distances
               within the phylotype normalised by number of leaf
               nodes
  Returns    : float, value of genetic diversity
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Depends on Fitch's parsimony score (PS).

=cut

sub genetic_diversity {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;

    return $self->sum_of_leaf_distances($tree, $node) /
        $self->count_leaves($tree, $node);
}


=head2 statratio

  Example    : statratio($tree, $node);
  Description: Ratio of the stem length and the genetic diversity of the
               phylotype L<genetic_diversity>
  Returns    : float, separation score
  Exceptions : all the  nodes need to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. Bio::Tree::NodeI object within the tree, optional

Statratio gives a measure of separation and variability within the phylotype.
Larger values identify more rapidly evolving and recent phylotypes.

Depends on Fitch's parsimony score (PS).

=cut

sub statratio {
    my $self = shift;
    my $tree = shift;
    my $node = shift  || $tree->get_root_node;

    my $div = $self->genetic_diversity($tree, $node);
    return 0 if $div == 0;
    return $node->branch_length / $div;

}


=head2 ai

  Example    : ai($tree, $key, $node);
  Description: Calculates the Association Index (AI) of Whang et
               al. 2001 for the subtree defined by the (internal)
               node.  Node defaults to the root.
  Returns    : real
  Exceptions : leaf nodes have to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. trait name string
               3. Bio::Tree::NodeI object within the tree, optional

  Association index (AI) gives a more fine grained results than PS since
  the result is a real number. ~0 E<lt>= AI.

  Wang, T.H., Donaldson, Y.K., Brettle, R.P., Bell, J.E., Simmonds, P.,
  2001.  Identification of shared populations of human immunodeficiency
  Virus Type 1 infecting microglia and tissue macrophages outside the
  central nervous system. J. Virol. 75 (23), 11686-11699.

=cut

sub _node_ai {
    my $self = shift;
    my $node = shift;
    my $key = shift;

    my $traits;
    my $leaf_count = 0;
    for my $desc ( $node->get_all_Descendents ) {
        next unless $desc->is_Leaf;
        $leaf_count++;
        $self->throw ("Node ". $desc->id. " needs a value for trait [$key]")
            unless $desc->has_tag($key);
        my $trait = $desc->get_tag_values($key);
        $traits->{$trait}++;
    }
    my $most_common = 0;
    foreach ( keys %$traits) {
        $most_common = $traits->{$_} if $traits->{$_} > $most_common;
    }
    return sprintf "%1.6f", (1 - ($most_common/$leaf_count) ) / (2**($leaf_count-1) );
}

sub ai {
    my $self = shift;
    my $tree = shift;
    my $key = shift || $self->throw("Trait name is needed");
    my $start_node = shift || $tree->get_root_node;
    return unless $start_node;

    my $sum = 0;
    for my $node ( $start_node->get_all_Descendents ) {
        next if $node->is_Leaf;
        $sum += $self->_node_ai($node, $key);
    }
    return $sum;
}


=head2 mc

  Example    : mc($tree, $key, $node);
  Description: Calculates the Monophyletic Clade (MC) size statistics
               for the subtree a defined by the (internal) node.
               Node defaults to the root;
  Returns    : hashref with trait values as keys
  Exceptions : leaf nodes have to have the trait defined
  Args       : 1. Bio::Tree::TreeI object
               2. trait name string
               3. Bio::Tree::NodeI object within the tree, optional

  Monophyletic Clade (MC) size statistics by Salemi at al 2005. It is
  calculated for each trait value. 1 E<lt>= MC E<lt>= nx, where nx is the
  number of tips with value x:

   pick the internal node with maximim value for
      number of of tips with only trait x

  MC was defined by Parker et al 2008.

  Salemi, M., Lamers, S.L., Yu, S., de Oliveira, T., Fitch, W.M., McGrath, M.S.,
   2005. Phylodynamic analysis of Human Immunodeficiency Virus Type 1 in
   distinct brain compartments provides a model for the neuropathogenesis of
   AIDS. J. Virol. 79 (17), 11343-11352.

  Parker, J., Rambaut A., Pybus O., 2008. Correlating viral phenotypes
   with phylogeny: Accounting for phylogenetic uncertainty Infection,
   Genetics and Evolution 8 (2008), 239-246.

=cut

sub _node_mc  {
    my $self = shift;
    my $node = shift;
    my $key = shift;

    my $traits;
    my $leaf_count = 0;
    for my $node2 ( $node->get_all_Descendents ) {
        next unless $node2->is_Leaf;
        $leaf_count++;
        my $trait = $node2->get_tag_values($key);
        $traits->{$trait}++;
    }
    return $traits;
}

sub mc {
    my $self = shift;
    my $tree = shift;
    my $key = shift || die "Trait name is needed";
    my $start_node = shift || $tree->get_root_node;
    return unless $start_node;

    my $sum; # hashref, keys are trait values
    my $keys; # hashref, keys are trait values
    foreach my $node ( $start_node->get_all_Descendents ) {
        next if $node->is_Leaf;
        my $traits = $self->_node_mc($node, $key);
        if (scalar keys %$traits == 1) {
            my ($value) = keys %$traits;
            no warnings;
            $sum->{$value} = $traits->{$value}
                if $sum->{$value} < $traits->{$value};
        } else {
            map { $keys->{$_} = 1 } keys %$traits;
        }
    }
    # check for cases where there are no clusters
    foreach my $value (keys %$keys) {
        $sum->{$value} = 1 unless defined $sum->{$value};
    }
    return $sum;
}


1;