This file is indexed.

/usr/share/doc/libblitz-doc/html/User-et.html is in libblitz-doc 1:0.10-3.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.0, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Blitz++: User et</title>

<meta name="description" content="Blitz++: User et">
<meta name="keywords" content="Blitz++: User et">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Keyword-Index.html#Keyword-Index" rel="index" title="Keyword Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Array-Expressions.html#Array-Expressions" rel="up" title="Array Expressions">
<link href="Where-expr.html#Where-expr" rel="next" title="Where expr">
<link href="Math-functions-2.html#Math-functions-2" rel="prev" title="Math functions 2">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space: nowrap}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: serif; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en">
<a name="User-et"></a>
<div class="header">
<p>
Next: <a href="Where-expr.html#Where-expr" accesskey="n" rel="next">Where expr</a>, Previous: <a href="Math-functions-2.html#Math-functions-2" accesskey="p" rel="prev">Math functions 2</a>, Up: <a href="Array-Expressions.html#Array-Expressions" accesskey="u" rel="up">Array Expressions</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Keyword-Index.html#Keyword-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Declaring-your-own-math-functions-on-arrays"></a>
<h3 class="section">3.10 Declaring your own math functions on arrays</h3>

<a name="index-math-functions-declaring-your-own"></a>
<a name="index-Array-declaring-your-own-math-functions-on"></a>

<p>There are four macros which make it easy to turn your own scalar functions
into functions defined on arrays.  They are:
</p>
<a name="index-BZ_005fDECLARE_005fFUNCTION"></a>

<div class="example">
<pre class="example">BZ_DECLARE_FUNCTION(f)                   // 1
BZ_DECLARE_FUNCTION_RET(f,return_type)   // 2
BZ_DECLARE_FUNCTION2(f)                  // 3
BZ_DECLARE_FUNCTION2_RET(f,return_type)  // 4
</pre></div>

<p>Use version 1 when you have a function which takes one argument and returns
a result of the same type.  For example:
</p>
<div class="example">
<pre class="example">#include &lt;blitz/array.h&gt;

using namespace blitz;

double myFunction(double x)
{ 
    return 1.0 / (1 + x); 
}

BZ_DECLARE_FUNCTION(myFunction)

int main()
{
    Array&lt;double,2&gt; A(4,4), B(4,4);  // ...
    B = myFunction(A);
}
</pre></div>

<p>Use version 2 when you have a one argument function whose return type is
different than the argument type, such as
</p>
<div class="example">
<pre class="example">int g(double x);
</pre></div>

<p>Use version 3 for a function which takes two arguments and returns a result
of the same type, such as:
</p>
<div class="example">
<pre class="example">double g(double x, double y);
</pre></div>

<p>Use version 4 for a function of two arguments which returns a different
type, such as:
</p>
<div class="example">
<pre class="example">int g(double x, double y);
</pre></div>

<a name="Tensor-notation"></a>
<h3 class="section">3.11 Tensor notation</h3>

<a name="index-tensor-notation"></a>
<a name="index-Array-tensor-notation"></a>

<p>Blitz++ arrays support a tensor-like notation.  Here&rsquo;s an example of
real-world tensor notation:
<pre>
 ijk    ij k
A    = B  C
</pre></p>
<p><em>A</em> is a rank 3 tensor (a three dimensional array), <em>B</em> is a rank
2 tensor (a two dimensional array), and <em>C</em> is a rank 1 tensor (a one
dimensional array).  The above expression sets 
<code>A(i,j,k) = B(i,j) * C(k)</code>.
</p>
<p>To implement this product using Blitz++, we&rsquo;ll need the arrays and some
index placeholders:
</p>
<a name="index-index-placeholders-used-for-tensor-notation"></a>

<div class="example">
<pre class="example">Array&lt;float,3&gt; A(4,4,4);
Array&lt;float,2&gt; B(4,4);
Array&lt;float,1&gt; C(4);

firstIndex i;    // Alternately, could just say
secondIndex j;   // using namespace blitz::tensor;
thirdIndex k;
</pre></div>

<p>Here&rsquo;s the Blitz++ code which is equivalent to the tensor expression:
</p>
<div class="example">
<pre class="example">A = B(i,j) * C(k);
</pre></div>

<p>The index placeholder arguments tell an array how to map its dimensions onto
the dimensions of the destination array.  For example, here&rsquo;s some
real-world tensor notation:
<pre>
 ijk    ij k    jk i
C    = A  x  - A  y
</pre></p>
<p>In Blitz++, this would be coded as:
</p>
<div class="example">
<pre class="example">using namespace blitz::tensor;

C = A(i,j) * x(k) - A(j,k) * y(i);
</pre></div>

<p>This tensor expression can be visualized in the following way:
</p>
<div align="center"><img src="tensor1.gif" alt="tensor1">
</div><div align="center">Examples of array indexing, subarrays, and slicing.
</div>
<p>Here&rsquo;s an example which computes an outer product of two one-dimensional
arrays:
<a name="index-outer-product"></a>
<a name="index-kronecker-product"></a>
<a name="index-tensor-product"></a>
</p>
<div class="smallexample">
<pre class="smallexample">#include &lt;blitz/array.h&gt;

using namespace blitz;

int main()
{
    Array&lt;float,1&gt; x(4), y(4);
    Array&lt;float,2&gt; A(4,4);

    x = 1, 2, 3, 4;
    y = 1, 0, 0, 1;

    firstIndex i;
    secondIndex j;

    A = x(i) * y(j);

    cout &lt;&lt; A &lt;&lt; endl;

    return 0;
}

</pre></div>

<p>And the output:
</p>
<div class="smallexample">
<pre class="smallexample">(0,3) x (0,3)
[ 1 0 0 1 
  2 0 0 2 
  3 0 0 3 
  4 0 0 4 ]

</pre></div>

<p>Index placeholders can <em>not</em> be used on the left-hand side of an
expression.  If you need to reorder the indices, you must do this on the
right-hand side.
</p>
<p>In real-world tensor notation, repeated indices imply a contraction (or
summation).  For example, this tensor expression computes a matrix-matrix
product:
<pre>
 ij    ik  kj
C   = A   B
</pre></p>
<p>The repeated k index is interpreted as meaning
<pre>
c    = sum of (a   * b  ) over k
 ij             ik    kj
</pre></p>
<a name="index-contraction"></a>
<a name="index-tensor-contraction"></a>

<p>In Blitz++, repeated indices do <em>not</em> imply contraction.  If you want
to contract (sum along) an index, you must use the <code>sum()</code> function:
</p>
<div class="example">
<pre class="example">Array&lt;float,2&gt; A, B, C;   // ...
firstIndex i;
secondIndex j;
thirdIndex k;

C = sum(A(i,k) * B(k,j), k);
</pre></div>

<p>The <code>sum()</code> function is an example of an <em>array reduction</em>,
described in the next section.
</p>
<p>Index placeholders can be used in any order in an expression.  This example
computes a kronecker product of a pair of two-dimensional arrays, and
permutes the indices along the way:
</p>
<div class="example">
<pre class="example">Array&lt;float,2&gt; A, B;   // ...
Array&lt;float,4&gt; C;      // ...
fourthIndex l;

C = A(l,j) * B(k,i);
</pre></div>

<p>This is equivalent to the tensor notation
<pre>
 ijkl    lj ki
C     = A  B
 </pre></p>
<p>Tensor-like notation can be mixed with other array notations:
</p>
<div class="example">
<pre class="example">Array&lt;float,2&gt; A, B;  // ...
Array&lt;double,4&gt; C;    // ...

C = cos(A(l,j)) * sin(B(k,i)) + 1./(i+j+k+l);
</pre></div>

<a name="index-tensor-notation-efficiency-issues"></a>
<p>An important efficiency note about tensor-like notation: the right-hand side
of an expression is <em>completely evaluated</em> for <em>every</em> element in
the destination array.  For example, in this code:
</p>
<div class="example">
<pre class="example">Array&lt;float,1&gt; x(4), y(4);
Array&lt;float,2&gt; A(4,4):

A = cos(x(i)) * sin(y(j));
</pre></div>

<p>The resulting implementation will look something like this:
</p>
<div class="example">
<pre class="example">for (int n=0; n &lt; 4; ++n)
  for (int m=0; m &lt; 4; ++m)
    A(n,m) = cos(x(n)) * sin(y(m));
</pre></div>

<p>The functions <code>cos</code> and <code>sin</code> will be invoked sixteen times each.
It&rsquo;s possible that a good optimizing compiler could hoist the <code>cos</code>
evaluation out of the inner loop, but don&rsquo;t hold your breath &ndash; there&rsquo;s a
lot of complicated machinery behind the scenes to handle tensor notation,
and most optimizing compilers are easily confused.  In a situation like the
above, you are probably best off manually creating temporaries for
<code>cos(x)</code> and <code>sin(y)</code> first.
</p>
<a name="Array-reductions"></a>
<h3 class="section">3.12 Array reductions</h3>
<a name="index-Array-reductions"></a>
<a name="index-reductions"></a>

<p>Currently, Blitz++ arrays support two forms of reduction:
</p>
<ul>
<li> Reductions which transform an array into a scalar (for example,
summing the elements).  These are referred to as <strong>complete
reductions</strong>.

</li><li> Reducing an N dimensional array (or array expression) to an N-1
dimensional array expression.  These are called <strong>partial reductions</strong>.

</li></ul>

<a name="index-Array-reductions-complete"></a>
<a name="index-complete-reductions"></a>
<a name="index-reductions-complete"></a>

<a name="Complete-reductions"></a>
<h3 class="section">3.13 Complete reductions</h3>

<p>Complete reductions transform an array (or array expression) into 
a scalar.  Here are some examples:
</p>
<div class="example">
<pre class="example">Array&lt;float,2&gt; A(3,3);
A = 0, 1, 2,
    3, 4, 5,
    6, 7, 8;
cout &lt;&lt; sum(A) &lt;&lt; endl          // 36
     &lt;&lt; min(A) &lt;&lt; endl          // 0
     &lt;&lt; count(A &gt;= 4) &lt;&lt; endl;  // 5
</pre></div>

<p>Here are the available complete reductions:
</p>
<dl compact="compact">
<dt><code>sum()</code></dt>
<dd><a name="index-sum_0028_0029-reduction"></a>
<p>Summation (may be promoted to a higher-precision type)
</p>
</dd>
<dt><code>product()</code></dt>
<dd><a name="index-product_0028_0029-reduction"></a>
<p>Product 
</p>
</dd>
<dt><code>mean()</code></dt>
<dd><a name="index-mean_0028_0029-reduction"></a>
<p>Arithmetic mean (promoted to floating-point type if necessary) 
</p>
</dd>
<dt><code>min()</code></dt>
<dd><a name="index-min_0028_0029-reduction"></a>
<p>Minimum value 
</p>
</dd>
<dt><code>max()</code></dt>
<dd><a name="index-max_0028_0029-reduction"></a>
<p>Maximum value 
</p>
</dd>
<dt><code>minmax()</code></dt>
<dd><a name="index-minmax_0028_0029-reduction"></a>
<p>Simultaneous minimum and maximum value (returns a value of type MinMaxValue&lt;T&gt;)
</p>
</dd>
<dt><code>minIndex()</code></dt>
<dd><a name="index-minIndex_0028_0029-reduction"></a>
<p>Index of the minimum value (<code>TinyVector&lt;int,N_rank&gt;</code>)
</p>
</dd>
<dt><code>maxIndex()</code></dt>
<dd><a name="index-maxIndex_0028_0029-reduction"></a>
<p>Index of the maximum value (<code>TinyVector&lt;int,N_rank&gt;</code>)
</p>
</dd>
<dt><code>count()</code></dt>
<dd><a name="index-count_0028_0029-reduction"></a>
<p>Counts the number of times the expression is logical true (<code>int</code>)
</p>
</dd>
<dt><code>any()</code></dt>
<dd><a name="index-any_0028_0029-reduction"></a>
<p>True if the expression is true anywhere (<code>bool</code>)
</p>
</dd>
<dt><code>all()</code></dt>
<dd><a name="index-all_0028_0029-reduction"></a>
<p>True if the expression is true everywhere (<code>bool</code>)
</p></dd>
</dl>

<p><strong>Caution:</strong> <code>minIndex()</code> and <code>maxIndex()</code> return TinyVectors, 
even when the rank of the array (or array expression) is 1.
</p>
<p>Reductions can be combined with <code>where</code> expressions (<a href="Where-expr.html#Where-expr">Where expr</a>)
to reduce over some part of an array.  For example, <code>sum(where(A &gt; 0,
A, 0))</code> sums only the positive elements in an array.
</p>
<a name="Partial-Reductions"></a>
<h3 class="section">3.14 Partial Reductions</h3>

<a name="index-Array-reductions-partial"></a>
<a name="index-partial-reductions"></a>
<a name="index-reductions-partial"></a>

<p>Here&rsquo;s an example which computes the sum of each row of a two-dimensional
array:
</p>
<div class="example">
<pre class="example">Array&lt;float,2&gt; A;    // ...
Array&lt;float,1&gt; rs;   // ...
firstIndex i;
secondIndex j;

rs = sum(A, j);
</pre></div>

<p>The reduction <code>sum()</code> takes two arguments:
</p>
<ul>
<li> The first argument is an array or array expression.

</li><li> The second argument is an index placeholder indicating the
dimension over which the reduction is to occur.  

</li></ul>

<p>Reductions have an <strong>important restriction</strong>: It is currently only
possible to reduce over the <em>last</em> dimension of an array or array
expression.  Reducing a dimension other than the last would require Blitz++
to reorder the dimensions to fill the hole left behind.  For example, in
order for this reduction to work:
</p>
<div class="example">
<pre class="example">Array&lt;float,3&gt; A;   // ...
Array&lt;float,2&gt; B;   // ...
secondIndex j;

// Reduce over dimension 2 of a 3-D array?
B = sum(A, j);
</pre></div>

<p>Blitz++ would have to remap the dimensions so that the third dimension
became the second.  It&rsquo;s not currently smart enough to do this.
</p>
<p>However, there is a simple workaround which solves some of the problems
created by this limitation: you can do the reordering manually, prior to the
reduction:
</p>
<div class="example">
<pre class="example">B = sum(A(i,k,j), k);
</pre></div>

<p>Writing <code>A(i,k,j)</code> interchanges the second and third dimensions,
permitting you to reduce over the second dimension.  Here&rsquo;s a list of the
reduction operations currently supported:
</p>
<dl compact="compact">
<dt><code>sum()</code></dt>
<dd><p>Summation
</p>
</dd>
<dt><code>product()</code></dt>
<dd><p>Product 
</p>
</dd>
<dt><code>mean()</code></dt>
<dd><p>Arithmetic mean (promoted to floating-point type if necessary)
</p>
</dd>
<dt><code>min()</code></dt>
<dd><p>Minimum value
</p>
</dd>
<dt><code>max()</code></dt>
<dd><p>Maximum value
</p>
</dd>
<dt><code>minIndex()</code></dt>
<dd><p>Index of the minimum value (int)
</p>
</dd>
<dt><code>maxIndex()</code></dt>
<dd><p>Index of the maximum value (int)
</p>
</dd>
<dt><code>count()</code></dt>
<dd><p>Counts the number of times the expression is logical true (int)
</p>
</dd>
<dt><code>any()</code></dt>
<dd><p>True if the expression is true anywhere (bool)
</p>
</dd>
<dt><code>all()</code></dt>
<dd><p>True if the expression is true everywhere (bool)
</p>
</dd>
<dt><code>first()</code></dt>
<dd><p>First index at which the expression is logical true (int); if the expression
is logical true nowhere, then <code>tiny(int())</code> (INT_MIN) is returned.
</p>
</dd>
<dt><code>last()</code></dt>
<dd><p>Last index at which the expression is logical true (int); if the expression
is logical true nowhere, then <code>huge(int())</code> (INT_MAX) is returned.  
</p></dd>
</dl>

<p>The reductions <code>any()</code>, <code>all()</code>, and <code>first()</code> have
short-circuit semantics: the reduction will halt as soon as the answer is
known.  For example, if you use <code>any()</code>, scanning of the expression
will stop as soon as the first true value is encountered.
</p>
<p>To illustrate, here&rsquo;s an example:
</p>
<div class="example">
<pre class="example">Array&lt;int, 2&gt; A(4,4);

A =  3,   8,   0,   1,
     1,  -1,   9,   3,
     2,  -5,  -1,   1,
     4,   3,   4,   2;

Array&lt;float, 1&gt; z(4);
firstIndex i;
secondIndex j;

z = sum(A(j,i), j);
</pre></div>

<p>The array <code>z</code> now contains the sum of <code>A</code> along each column:
</p>
<div class="example">
<pre class="example">[ 10    5     12    7 ]
</pre></div>

<p>This table shows what the result stored in <code>z</code> would be if
<code>sum()</code> were replaced with other reductions:
</p>
<div class="example">
<pre class="example">sum                     [         10         5        12         7 ]
mean                    [        2.5      1.25         3      1.75 ]
min                     [          1        -5        -1         1 ]
minIndex                [          1         2         2         0 ]
max                     [          4         8         9         3 ]
maxIndex                [          3         0         1         1 ]
first((A &lt; 0), j)       [ -2147483648        1         2 -2147483648 ]
product                 [         24       120         0         6 ]
count((A(j,i) &gt; 0), j)  [          4         2         2         4 ]
any(abs(A(j,i)) &gt; 4, j) [          0         1         1         0 ]
all(A(j,i) &gt; 0, j)      [          1         0         0         1 ]
</pre></div>

<p>Note: the odd numbers for first() are <code>tiny(int())</code> i.e. the smallest
number representable by an int.  The exact value is machine-dependent.
</p>
<a name="index-Array-reductions-chaining"></a>
<a name="index-partial-reductions-chaining"></a>
<a name="index-reductions-chaining"></a>

<p>The result of a reduction is an array expression, so reductions
can be used as operands in an array expression:
</p>
<div class="example">
<pre class="example">Array&lt;int,3&gt; A;
Array&lt;int,2&gt; B;
Array&lt;int,1&gt; C;   // ...

secondIndex j;
thirdIndex k;

B = sqrt(sum(sqr(A), k));

// Do two reductions in a row
C = sum(sum(A, k), j);
</pre></div>

<p>Note that this is not allowed:
</p>
<div class="example">
<pre class="example">Array&lt;int,2&gt; A;
firstIndex i;
secondIndex j;

// Completely sum the array?
int result = sum(sum(A, j), i);
</pre></div>

<p>You cannot reduce an array to zero dimensions!  Instead, use one of the
global functions described in the previous section.
</p>

<hr>
<div class="header">
<p>
Next: <a href="Where-expr.html#Where-expr" accesskey="n" rel="next">Where expr</a>, Previous: <a href="Math-functions-2.html#Math-functions-2" accesskey="p" rel="prev">Math functions 2</a>, Up: <a href="Array-Expressions.html#Array-Expressions" accesskey="u" rel="up">Array Expressions</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Keyword-Index.html#Keyword-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>