/usr/m68k-linux-gnu/include/tgmath.h is in libc6-dev-m68k-cross 2.23-0ubuntu3cross1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | /* Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
*/
#ifndef _TGMATH_H
#define _TGMATH_H 1
/* Include the needed headers. */
#include <math.h>
#include <complex.h>
/* Since `complex' is currently not really implemented in most C compilers
and if it is implemented, the implementations differ. This makes it
quite difficult to write a generic implementation of this header. We
do not try this for now and instead concentrate only on GNU CC. Once
we have more information support for other compilers might follow. */
#if __GNUC_PREREQ (2, 7)
# ifdef __NO_LONG_DOUBLE_MATH
# define __tgml(fct) fct
# else
# define __tgml(fct) fct ## l
# endif
/* This is ugly but unless gcc gets appropriate builtins we have to do
something like this. Don't ask how it works. */
/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
Allows for _Bool. Expands to an integer constant expression. */
# if __GNUC_PREREQ (3, 1)
# define __floating_type(type) \
(__builtin_classify_type ((type) 0) == 8 \
|| (__builtin_classify_type ((type) 0) == 9 \
&& __builtin_classify_type (__real__ ((type) 0)) == 8))
# else
# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
# endif
/* The tgmath real type for T, where E is 0 if T is an integer type and
1 for a floating type. */
# define __tgmath_real_type_sub(T, E) \
__typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
/* The tgmath real type of EXPR. */
# define __tgmath_real_type(expr) \
__tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0), \
__floating_type (__typeof__ (expr)))
/* We have two kinds of generic macros: to support functions which are
only defined on real valued parameters and those which are defined
for complex functions as well. */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
(__extension__ ((sizeof (Val) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? (__tgmath_real_type (Val)) Fct (Val) \
: (sizeof (Val) == sizeof (float)) \
? (__tgmath_real_type (Val)) Fct##f (Val) \
: (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
(__extension__ ((sizeof (Val) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? (RetType) Fct (Val) \
: (sizeof (Val) == sizeof (float)) \
? (RetType) Fct##f (Val) \
: (RetType) __tgml(Fct) (Val)))
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof (Val1) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
: (sizeof (Val1) == sizeof (float)) \
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2)))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double) \
|| sizeof (Val3) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
== 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| sizeof (Val3) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8 \
|| __builtin_classify_type (Val3) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct##f (Val1, Val2, Val3)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) Fct (Val) \
: (__tgmath_real_type (Val)) Cfct (Val)) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) Fct##f (Val) \
: (__tgmath_real_type (Val)) Cfct##f (Val)) \
: ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) __tgml(Fct) (Val) \
: (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))
# define __TGMATH_UNARY_IMAG(Val, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct (Val) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct##f (Val) \
: (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) __tgml(Cfct) (Val)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct (Val)) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct##f (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct##f (Val)) \
: ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
__tgml(Fct) (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
__tgml(Cfct) (Val))))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
(__extension__ (((sizeof (__real__ (Val1)) > sizeof (double) \
|| sizeof (__real__ (Val2)) > sizeof (double)) \
&& __builtin_classify_type (__real__ (Val1) \
+ __real__ (Val2)) == 8) \
? ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Cfct) (Val1, Val2)) \
: (sizeof (__real__ (Val1)) == sizeof (double) \
|| sizeof (__real__ (Val2)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|| __builtin_classify_type (__real__ (Val2)) != 8) \
? ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Cfct (Val1, Val2)) \
: ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Cfct##f (Val1, Val2))))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif
/* Unary functions defined for real and complex values. */
/* Trigonometric functions. */
/* Arc cosine of X. */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X. */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X. */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X. */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
/* Cosine of X. */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X. */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X. */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of X. */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X. */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X. */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
/* Hyperbolic cosine of X. */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X. */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X. */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
/* Break VALUE into a normalized fraction and an integral power of 2. */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
/* X times (two to the EXP power). */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
/* Natural logarithm of X. */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
/* Base-ten logarithm of X. */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif
/* Return exp(X) - 1. */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
/* Return log(1 + X). */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
/* Return the base 2 signed integral exponent of X. */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
/* Compute base-2 exponential of X. */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
/* Compute base-2 logarithm of X. */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
/* Power functions. */
/* Return X to the Y power. */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
/* Return the square root of X. */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
/* Return `sqrt(X*X + Y*Y)'. */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
/* Return the cube root of X. */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
/* Absolute value of X. */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
/* Largest integer not greater than X. */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
/* Floating-point modulo remainder of X/Y. */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
/* Round X to integral valuein floating-point format using current
rounding direction, but do not raise inexact exception. */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
#define remquo(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
/* Round X to nearest integral value according to current rounding
direction. */
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)
/* Return X with its signed changed to Y's. */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
/* Error and gamma functions. */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
/* Return the remainder of integer divison X / Y with infinite precision. */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
/* Return X times (2 to the Nth power). */
#ifdef __USE_MISC
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
#endif
/* Return X times (2 to the Nth power). */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
/* Return X times (2 to the Nth power). */
#define scalbln(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
/* Return the binary exponent of X, which must be nonzero. */
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)
/* Return positive difference between X and Y. */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
/* Return maximum numeric value from X and Y. */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
/* Return minimum numeric value from X and Y. */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
/* Multiply-add function computed as a ternary operation. */
#define fma(Val1, Val2, Val3) \
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
/* Absolute value, conjugates, and projection. */
/* Argument value of Z. */
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
/* Complex conjugate of Z. */
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
/* Projection of Z onto the Riemann sphere. */
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
/* Decomposing complex values. */
/* Imaginary part of Z. */
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
/* Real part of Z. */
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
#endif /* tgmath.h */
|