This file is indexed.

/usr/include/csound/OpcodeBase.hpp is in libcsnd-dev 1:6.05~dfsg1-7build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#ifndef OPCODE_BASE_H
#define OPCODE_BASE_H


#include <interlocks.h>
#include <csdl.h>
#include <cstdarg>

/**
 * Template base class, or pseudo-virtual base class,
 * for writing Csound opcodes in C++.
 * Derive opcode implementation classes like this:
 *
 * DerivedClass : public OpcodeBase<DerivedClass>
 * {
 * public:
 *     // All output fields must be declared first as MYFLT *:
 *     MYFLT *aret1;
 *     // All input fields must be declared next as MYFLT *:
 *     MYFLT *iarg1;
 *     MYFLT *karg2;
 *     MYFLT *aarg3;
 *     // All internal state variables must be declared after that:
 *     size_t state1;
 *     double state2;
 *     MYFLT state3;
 *     // Declare and implement only whichever of these are required:
 *     int init();
 *     int kontrol();
 *     int audio;
 *     int noteoff();
 *     void deinit();
 * };
 */
template<typename T>
class OpcodeBase
{
public:
  int init(CSOUND *csound)
  {
    return NOTOK;
  }
  static int init_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->init(csound);
  }
  int kontrol(CSOUND *csound)
  {
    return NOTOK;
  }
  static int kontrol_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->kontrol(csound);
  }
  int audio(CSOUND *csound)
  {
    return NOTOK;
  }
  static int audio_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->audio(csound);
  }
  /**
    This is how to compute audio signals for normal opcodes:
    (1) Zero all frames from 0 up to but not including Offset.
    (2) Compute all frames from ksmps_offset up to but not including End.
    (3) Zero all frames from End up to but not including ksmps.
    Example from a C opcode:
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = p->h.insdshead->ksmps_no_end;
    uint32_t n, nsmps = CS_KSMPS;
    if (UNLIKELY(offset)) memset(p->r, '\0', offset*sizeof(MYFLT));
    if (UNLIKELY(early)) {
      nsmps -= early;
      memset(&p->r[nsmps], '\0', early*sizeof(MYFLT));
    }
    for (n = offset; n < nsmps; n++) {
      input1 = MYFLT2LRND(p->a[n]);
      p->r[n] = (MYFLT) (input1 >> input2);
    }
    So in C++ it should look like this (which is much easier to understand):
    int frameIndex = 0;
    for( ; frameIndex < kperiodOffset(); ++frameIndex) {
        asignal[frameIndex] = 0;
    }
    for( ; frameIndex < kperiodEnd(); ++frameIndex) {
        asignal[frameIndex] = compute();
    }
    for( ; frameIndex < ksmps(); ++frameIndex) {
        asignal[frameIndex] = 0;
    }
   */
  uint32_t kperiodOffset() const
  {
      return opds.insdshead->ksmps_offset;
  }
  uint32_t kperiodEnd() const
  {
      uint32_t end = opds.insdshead->ksmps_no_end;
      if (end) {
          return end;
      } else {
          return ksmps();
      }
  }
  uint32_t ksmps() const
  {
      return opds.insdshead->ksmps;
  }
  void log(CSOUND *csound, const char *format,...)
  {
    va_list args;
    va_start(args, format);
    if(csound) {
      csound->MessageV(csound, 0, format, args);
    }
    else {
      vfprintf(stdout, format, args);
    }
    va_end(args);
  }
  void warn(CSOUND *csound, const char *format,...)
  {
    if(csound) {
      if(csound->GetMessageLevel(csound) & WARNMSG) {
        va_list args;
        va_start(args, format);
        csound->MessageV(csound, CSOUNDMSG_WARNING, format, args);
        va_end(args);
      }
    }
    else {
      va_list args;
      va_start(args, format);
      vfprintf(stdout, format, args);
      va_end(args);
    }
  }
  OPDS opds;
};

template<typename T>
class OpcodeNoteoffBase
{
public:
  int init(CSOUND *csound)
  {
    return NOTOK;
  }
  static int init_(CSOUND *csound, void *opcode)
  {
    if (!csound->GetReinitFlag(csound) && !csound->GetTieFlag(csound)) {
      csound->RegisterDeinitCallback(csound, opcode,
                                     &OpcodeNoteoffBase<T>::noteoff_);
    }
    return reinterpret_cast<T *>(opcode)->init(csound);
  }
  int kontrol(CSOUND *csound)
  {
    return NOTOK;
  }
  static int kontrol_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->kontrol(csound);
  }
  int audio(CSOUND *csound)
  {
    return NOTOK;
  }
  static int audio_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->audio(csound);
  }
  /**
    This is how to compute audio signals for normal opcodes:
    (1) Zero all frames from 0 up to but not including Offset.
    (2) Compute all frames from ksmps_offset up to but not including End.
    (3) Zero all frames from End up to but not including ksmps.
    Example from a C opcode:
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = p->h.insdshead->ksmps_no_end;
    uint32_t n, nsmps = CS_KSMPS;
    if (UNLIKELY(offset)) memset(p->r, '\0', offset*sizeof(MYFLT));
    if (UNLIKELY(early)) {
      nsmps -= early;
      memset(&p->r[nsmps], '\0', early*sizeof(MYFLT));
    }
    for (n = offset; n < nsmps; n++) {
      input1 = MYFLT2LRND(p->a[n]);
      p->r[n] = (MYFLT) (input1 >> input2);
    }
    So in C++ it should look like this (which is much easier to understand):
    int frameIndex = 0;
    for( ; frameIndex < kperiodOffset(); ++frameIndex) {
        asignal[frameIndex] = 0;
    }
    for( ; frameIndex < kperiodEnd(); ++frameIndex) {
        asignal[frameIndex] = compute();
    }
    for( ; frameIndex < ksmps(); ++frameIndex) {
        asignal[frameIndex] = 0;
    }
   */
  uint32_t kperiodOffset() const
  {
      return opds.insdshead->ksmps_offset;
  }
  uint32_t kperiodEnd() const
  {
      uint32_t end = opds.insdshead->ksmps_no_end;
      if (end) {
          return end;
      } else {
          return ksmps();
      }
  }
  uint32_t ksmps() const
  {
      return opds.insdshead->ksmps;
  }
  void log(CSOUND *csound, const char *format,...)
  {
    va_list args;
    va_start(args, format);
    if(csound) {
      csound->MessageV(csound, 0, format, args);
    }
    else {
      vfprintf(stdout, format, args);
    }
    va_end(args);
  }
  void warn(CSOUND *csound, const char *format,...)
  {
    if(csound) {
      if(csound->GetMessageLevel(csound) & WARNMSG) {
        va_list args;
        va_start(args, format);
        csound->MessageV(csound, CSOUNDMSG_WARNING, format, args);
        va_end(args);
      }
    }
    else {
      va_list args;
      va_start(args, format);
      vfprintf(stdout, format, args);
      va_end(args);
    }
  }
  int noteoff(CSOUND *csound)
  {
    return OK;
  }
  static int noteoff_(CSOUND *csound, void *opcode)
  {
    return reinterpret_cast<T *>(opcode)->noteoff(csound);
  }
  OPDS opds;
};

#endif