/usr/share/perl5/Data/ParseBinary.pm is in libdata-parsebinary-perl 0.31~dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 | package Data::ParseBinary;
use strict;
use warnings;
no warnings 'once';
our $VERSION = 0.31;
use Data::ParseBinary::Core;
use Data::ParseBinary::Adapters;
use Data::ParseBinary::Streams;
use Data::ParseBinary::Stream::String;
use Data::ParseBinary::Stream::Wrapper;
use Data::ParseBinary::Stream::Bit;
use Data::ParseBinary::Stream::StringBuffer;
use Data::ParseBinary::Stream::File;
use Data::ParseBinary::Constructs;
use Config;
our $DefaultPass = Data::ParseBinary::NullConstruct->create();
$Data::ParseBinary::BaseConstruct::DefaultPass = $DefaultPass;
our $print_debug_info = undef;
my $support_64_bit_int;
eval { my $x = pack "Q", 5 };
if ( $@ ) {
$support_64_bit_int = 0;
require Math::BigInt;
} else {
$support_64_bit_int = 1
}
$@ = '';
sub UBInt16 { return Data::ParseBinary::Primitive->create($_[0], 2, "n") }
sub UBInt32 { return Data::ParseBinary::Primitive->create($_[0], 4, "N") }
sub ULInt16 { return Data::ParseBinary::Primitive->create($_[0], 2, "v") }
sub ULInt32 { return Data::ParseBinary::Primitive->create($_[0], 4, "V") }
sub UNInt32 { return Data::ParseBinary::Primitive->create($_[0], 4, "L") }
sub UNInt16 { return Data::ParseBinary::Primitive->create($_[0], 2, "S") }
sub UNInt8 { return Data::ParseBinary::Primitive->create($_[0], 1, "C") }
sub SNInt32 { return Data::ParseBinary::Primitive->create($_[0], 4, "l") }
sub SNInt16 { return Data::ParseBinary::Primitive->create($_[0], 2, "s") }
sub SNInt8 { return Data::ParseBinary::Primitive->create($_[0], 1, "c") }
sub NFloat32{ return Data::ParseBinary::Primitive->create($_[0], 4, "f") }
sub NFloat64{ return Data::ParseBinary::Primitive->create($_[0], 8, "d") };
*SBInt8 = \&SNInt8;
*SLInt8 = \&SNInt8;
*Byte = \&UNInt8;
*UBInt8 = \&UNInt8;
*ULInt8 = \&UNInt8;
my $create_64_classes = sub {
my ($name, $is_signed, $is_be) = @_;
return Data::ParseBinary::ExtendedNumberAdapter->create(Field($name, 8), $is_signed, $is_be);
};
if ($support_64_bit_int) {
*UNInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "Q") };
*SNInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "q") };
}
if ($^V ge v5.10.0) {
*SBInt16 = sub { return Data::ParseBinary::Primitive->create($_[0], 2, "s>") };
*SLInt16 = sub { return Data::ParseBinary::Primitive->create($_[0], 2, "s<") };
*SBInt32 = sub { return Data::ParseBinary::Primitive->create($_[0], 4, "l>") };
*SLInt32 = sub { return Data::ParseBinary::Primitive->create($_[0], 4, "l<") };
*BFloat32= sub { return Data::ParseBinary::Primitive->create($_[0], 4, "f>") };
*LFloat32= sub { return Data::ParseBinary::Primitive->create($_[0], 4, "f<") };
if ($support_64_bit_int) {
*SBInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "q>") };
*SLInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "q<") };
*UBInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "Q>") };
*ULInt64 = sub { return Data::ParseBinary::Primitive->create($_[0], 8, "Q<") };
} else {
*SBInt64 = sub { $create_64_classes->($_[0], 1, 1) };
*SLInt64 = sub { $create_64_classes->($_[0], 1, 0) };
*UBInt64 = sub { $create_64_classes->($_[0], 0, 1) };
*ULInt64 = sub { $create_64_classes->($_[0], 0, 0) };
}
*BFloat64= sub { return Data::ParseBinary::Primitive->create($_[0], 8, "d>") };
*LFloat64= sub { return Data::ParseBinary::Primitive->create($_[0], 8, "d<") };
} else {
my ($primitive_class, $reversed_class);
if (pack('s', -31337) eq "\x85\x97") {
$primitive_class = 'Data::ParseBinary::Primitive';
$reversed_class = 'Data::ParseBinary::ReveresedPrimitive';
} else {
$reversed_class = 'Data::ParseBinary::Primitive';
$primitive_class = 'Data::ParseBinary::ReveresedPrimitive';
}
*SBInt16 = sub { return $primitive_class->create($_[0], 2, "s") };
*SLInt16 = sub { return $reversed_class->create($_[0], 2, "s") };
*SBInt32 = sub { return $primitive_class->create($_[0], 4, "l") };
*SLInt32 = sub { return $reversed_class->create($_[0], 4, "l") };
*BFloat32= sub { return $primitive_class->create($_[0], 4, "f") };
*LFloat32= sub { return $reversed_class->create($_[0], 4, "f") };
if ($support_64_bit_int) {
*SBInt64 = sub { return $primitive_class->create($_[0], 8, "q") };
*SLInt64 = sub { return $reversed_class->create($_[0], 8, "q") };
*UBInt64 = sub { return $primitive_class->create($_[0], 8, "Q") };
*ULInt64 = sub { return $reversed_class->create($_[0], 8, "Q") };
} else {
*SBInt64 = sub { $create_64_classes->($_[0], 1, 1) };
*SLInt64 = sub { $create_64_classes->($_[0], 1, 0) };
*UBInt64 = sub { $create_64_classes->($_[0], 0, 1) };
*ULInt64 = sub { $create_64_classes->($_[0], 0, 0) };
}
*BFloat64= sub { return $primitive_class->create($_[0], 8, "d") };
*LFloat64= sub { return $reversed_class->create($_[0], 8, "d") };
}
sub Struct { return Data::ParseBinary::Struct->create(@_) }
sub Sequence{ return Data::ParseBinary::Sequence->create(@_) };
sub Array {
my ($count, $sub) = @_;
if ($count and ref($count) and UNIVERSAL::isa($count, "CODE")) {
return Data::ParseBinary::MetaArray->create($count, $sub);
} else {
return Data::ParseBinary::MetaArray->create(sub {$count}, $sub);
}
}
sub GreedyRange { return Data::ParseBinary::Range->create(1, undef, $_[0]); }
sub OptionalGreedyRange { return Data::ParseBinary::Range->create(0, undef, $_[0]); }
sub Range { return Data::ParseBinary::Range->create(@_) };
sub Padding { return Data::ParseBinary::Padding->create($_[0]) }
sub Flag { return Data::ParseBinary::BitField->create($_[0], 1) }
sub Bit { return Data::ParseBinary::BitField->create($_[0], 1) }
sub Nibble { return Data::ParseBinary::BitField->create($_[0], 4) }
sub Octet { return Data::ParseBinary::BitField->create($_[0], 8) }
sub BitField { return Data::ParseBinary::BitField->create(@_) }
sub ReversedBitField { return Data::ParseBinary::ReversedBitField->create(@_) }
sub ConditionalRestream { return Data::ParseBinary::ConditionalRestream->create(@_) }
sub BitStruct {
my ($name, @subcons) = @_;
my $subcon = Struct($name, @subcons);
return ConditionalRestream($subcon, "Bit", sub { not $_->stream->isBitStream() });
}
sub ReversedBitStruct {
my ($name, @subcons) = @_;
my $subcon = Struct($name, @subcons);
return ConditionalRestream($subcon, "ReversedBit", sub { not $_->stream->isBitStream() });
}
sub Enum { return Data::ParseBinary::Enum->create(@_) }
sub OneOf {
my ($subcon, $list) = @_;
my $code = sub {
return grep $_ == $_[0], @$list;
};
return Data::ParseBinary::LamdaValidator->create($subcon, $code);
}
sub NoneOf {
my ($subcon, $list) = @_;
my $code = sub {
my @res = grep $_ == $_[0], @$list;
return @res == 0;
};
return Data::ParseBinary::LamdaValidator->create($subcon, $code);
}
sub Field {
my ($name, $len) = @_;
if ($len and ref($len) and UNIVERSAL::isa($len, "CODE")) {
return Data::ParseBinary::MetaField->create($name, $len);
} else {
return Data::ParseBinary::StaticField->create($name, $len);
}
}
*Bytes = \&Field;
sub RepeatUntil (&$) { return Data::ParseBinary::RepeatUntil->create(@_) }
sub Char {
my ($name, $encoding) = @_;
# if we don't have encoding - a char is simply one byte
return Field($name, 1) unless $encoding;
if ( ( $encoding eq "UTF-32LE" ) or ( $encoding eq "UTF-32BE" ) ) {
my $subcon = Field($name, 4);
return Data::ParseBinary::CharacterEncodingAdapter->create($subcon, $encoding);
} elsif ( ( $encoding eq "UTF-16LE" ) or ( $encoding eq "UTF-16BE" ) ) {
my $place = $encoding eq "UTF-16LE" ? 1 : 0;
my $subcon = Struct($name,
Field("FirstUnit", 2),
Array( sub { my $ch = substr($_->ctx->{FirstUnit}, $place, 1); return ( ( ($ch ge "\xD8" ) and ($ch le "\xDB") ) ? 1 : 0 ) },
Field("TheRest", 2)
)
);
my $assambled = Data::ParseBinary::FirstUnitAndTheRestAdapter->create($subcon, 2);
return Data::ParseBinary::CharacterEncodingAdapter->create($assambled, $encoding);
} elsif ( ( $encoding eq "utf8" ) or ( $encoding eq "UTF-8" ) ) {
my $subcon = Struct($name,
Field("FirstUnit", 1),
Array( sub { my $ch = $_->ctx->{FirstUnit}; return scalar(grep { $ch ge $_ } "\xC0", "\xE0", "\xF0" ) || 0 },
Field("TheRest", 1)
)
);
my $assambled = Data::ParseBinary::FirstUnitAndTheRestAdapter->create($subcon, 1);
return Data::ParseBinary::CharacterEncodingAdapter->create($assambled, $encoding);
} elsif ( $encoding =~ /^(?:utf|ucs)/i ) {
die "Unrecognized UTF format: $encoding";
} else {
# this is a single-byte encoding
return Data::ParseBinary::CharacterEncodingAdapter->create(Field($name, 1), $encoding);
}
}
sub PaddedString {
my ($name, $length, %params) = @_;
my $subcon = Data::ParseBinary::PaddedStringAdapter->create(Field($name, $length), length => $length, %params);
return $subcon unless $params{encoding};
return Data::ParseBinary::CharacterEncodingAdapter->create($subcon, $params{encoding});
};
sub String {
my ($name, $length, %params) = @_;
if (defined $params{padchar}) {
#this is a padded string
return PaddedString($name, $length, %params);
}
return Data::ParseBinary::JoinAdapter->create(
Array($length, Char($name, $params{encoding})),
);
}
sub LengthValueAdapter { return Data::ParseBinary::LengthValueAdapter->create(@_) }
sub PascalString {
my ($name, $length_field_type, $encoding) = @_;
$length_field_type ||= \&UBInt8;
my $length_field;
{
no strict 'refs';
$length_field = &$length_field_type('length');
}
if (not $encoding) {
return LengthValueAdapter(
Sequence($name,
$length_field,
Field("data", sub { $_->ctx->[0] }),
)
);
} else {
return LengthValueAdapter(
Sequence($name,
$length_field,
Data::ParseBinary::JoinAdapter->create(
Array(sub { $_->ctx->[0] }, Char("data", $encoding)),
),
)
);
}
}
sub CString {
my ($name, %params) = @_;
my ($terminators, $encoding, $char_field) = @params{qw{terminators encoding char_field}};
$terminators = "\x00" unless defined $terminators;
$char_field ||= Char($name, $encoding);
my @t_list = split '', $terminators;
return Data::ParseBinary::CStringAdapter->create(
Data::ParseBinary::JoinAdapter->create(
RepeatUntil(sub { my $obj = $_->obj; grep($obj eq $_, @t_list) } ,$char_field)),
$terminators
);
}
sub Switch { return Data::ParseBinary::Switch->create(@_) }
sub Pointer { return Data::ParseBinary::Pointer->create(@_) }
sub LazyBound { return Data::ParseBinary::LazyBound->create(@_) }
sub Value { return Data::ParseBinary::Value->create(@_) }
sub Anchor { my $name = shift; return Value($name, sub { $_->stream->tell } ) }
sub Terminator { return Data::ParseBinary::Terminator->create() }
sub IfThenElse {
my ($name, $predicate, $then_subcon, $else_subcon) = @_;
return Switch($name, sub { &$predicate ? 1 : 0 },
{
1 => $then_subcon,
0 => $else_subcon,
}
)
}
sub If {
my ($predicate, $subcon, $elsevalue) = @_;
return IfThenElse($subcon->_get_name(),
$predicate,
$subcon,
Value("elsevalue", sub { $elsevalue })
)
}
sub Peek { Data::ParseBinary::Peek->create(@_) }
sub Const { Data::ParseBinary::ConstAdapter->create(@_) }
sub Alias {
my ($newname, $oldname) = @_;
return Value($newname, sub { $_->ctx->{$oldname}});
}
sub Union { Data::ParseBinary::Union->create(@_) }
sub RoughUnion { Data::ParseBinary::RoughUnion->create(@_) }
*CreateStreamReader = \&Data::ParseBinary::Stream::Reader::CreateStreamReader;
*CreateStreamWriter = \&Data::ParseBinary::Stream::Writer::CreateStreamWriter;
sub ExtractingAdapter { Data::ParseBinary::ExtractingAdapter->create(@_) };
sub Aligned {
my ($subcon, $modulus) = @_;
$modulus ||= 4;
die "Aligned should be more then 2" if $modulus < 2;
my $sub_name = $subcon->_get_name();
my $s = ExtractingAdapter(
Struct($sub_name,
Anchor("Aligned_before"),
$subcon,
Anchor("Aligned_after"),
Padding(sub { ($modulus - (($_->ctx->{Aligned_after} - $_->ctx->{Aligned_before}) % $modulus)) % $modulus })
),
$sub_name);
return $s;
}
sub Restream {
my ($subcon, $stream_name) = @_;
return Data::ParseBinary::Restream->create($subcon, $stream_name);
}
sub Bitwise {
my ($subcon) = @_;
return Restream($subcon, "Bit");
}
sub Magic {
my ($data) = @_;
return Const(Field(undef, length($data)), $data);
}
sub Select { Data::ParseBinary::Select->create(@_) }
sub Optional {
my $subcon = shift;
return Select($subcon, $DefaultPass);
}
sub FlagsEnum { Data::ParseBinary::FlagsEnum->create(@_) }
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT = qw(
UBInt8
ULInt8
SBInt8
SLInt8
Byte
UBInt16
ULInt16
SBInt16
SLInt16
UBInt32
ULInt32
SBInt32
SLInt32
BFloat32
LFloat32
UBInt64
ULInt64
SBInt64
SLInt64
BFloat64
LFloat64
Struct
Sequence
Padding
Flag
Bit
Nibble
Octet
BitField
BitStruct
ReversedBitField
ReversedBitStruct
Enum
$DefaultPass
OneOf
NoneOf
Array
RepeatUntil
Field
Bytes
Switch
Pointer
Anchor
Char
String
PascalString
CString
PaddedString
LazyBound
Value
IfThenElse
If
Peek
Const
Terminator
Alias
Union
RoughUnion
CreateStreamReader
CreateStreamWriter
Aligned
ExtractingAdapter
Restream
Bitwise
Magic
Select
FlagsEnum
);
our @Neturals_depricated = qw{
UNInt8
SNInt8
UNInt16
SNInt16
UNInt32
SNInt32
UNInt64
SNInt64
NFloat32
NFloat64
};
our @EXPORT_OK = (@Neturals_depricated, qw{
Range
GreedyRange
OptionalGreedyRange
Optional
});
our %EXPORT_TAGS = ( NATURALS => \ @Neturals_depricated, all => [ @EXPORT_OK, @EXPORT ]);
1;
__END__
=head1 NAME
Data::ParseBinary - Yet Another parser for binary structures
=head1 SYNOPSIS
$s =
Struct("Construct",
Struct("Header",
Magic("MZ"),
Byte("Version"),
UBInt32("Expire Date"),
Enum(UBInt32("Data Type"),
Array => 0,
String => 1,
Various => 2,
),
Byte("Have Extended Header"),
If ( sub { $_->ctx->{"Have Extended Header"} },
CString("Author")
),
),
Switch("data", sub { $_->ctx->{Header}->{"Data Type"} },
{
Array => Array(4, SBInt32("Signed Int 32")),
String => PascalString("Name"),
Various =>
Struct("Various data",
NoneOf(Byte("value"), [4, 9]),
Padding(1), # byte
BitStruct("Mini Values",
Flag("done"),
Nibble("Short"),
Padding(1), #bit
SBInt16("something"),
),
),
}
),
);
my $data = $s->parse("MZabcde\0\0\0\1\1semuel\0\x05fghij");
# $data contains:
# {
# 'Header' =>
# {
# 'Version' => 97,
# 'Expire Date' => 1650680933
# 'Data Type' => 'String',
# 'Have Extended Header' => 1,
# 'Author' => 'semuel',
# }
# 'data' => 'fghij',
# }
=head1 DESCRIPTION
This module is a Perl Port for PyConstructs http://construct.wikispaces.com/
This module enables writing declarations for simple and complex binary structures,
parsing binary to hash/array data structure, and building binary data from hash/array
data structure.
=head1 Reference Code
=head2 Struct
$s = Struct("foo",
UBInt8("a"),
UBInt16("b"),
Struct("bar",
UBInt8("a"),
UBInt16("b"),
)
);
$data = $s->parse("ABBabb");
# $data is { a => 65, b => 16962, bar => { a => 97, b => 25186 } }
This is the main building block of the module - the struct. Whenever there is the
need to bind a few varibles together, use Struct. Many constructs receive only one
sub-construct as parameter, (for example, all the conditional constructs) so use
Struct.
=head2 Primitives
=head3 Byte-Primitives
But this Struct is just an empy shell. we need to fill it with data types.
So here is a list of primitive elements:
Byte, UBInt8, ULInt8 (All three are aliases to the same things)
SBInt8, SLInt8
UBInt16
ULInt16
SBInt16
SLInt16
UBInt32
ULInt32
SBInt32
SLInt32
BFloat32
LFloat32
UBInt64
ULInt64
SBInt64
SLInt64
BFloat64
LFloat64
S - Signed, U - Unsigned, L - Little endian, B - Big Endian
Samples:
UBInt16("foo")->parse("\x01\x02") == 258
ULInt16("foo")->parse("\x01\x02") == 513
UBInt16("foo")->build(31337) eq 'zi'
SBInt16("foo")->build(-31337) eq "\x85\x97"
SLInt16("foo")->build(-31337) eq "\x97\x85"
And of course, see Struct above to how bundle a few primitives together.
Be aware that the Float data type is not portable between platforms. So
it is advisable not to use it when there is an alternative.
=head3 Bit-Primitives
Flag, Bit (1 bit)
Nibble (4 bits)
Octet (8 bits, equal to "Byte")
BitField (variable length)
These primitive are bit-wide. however, unless using BitStruct, they take a whole
byte from the input stream. Take for example this struct:
$s = Struct("bits",
Flag("a"),
Nibble("b"),
);
$data = $s->parse("\x25\x27");
# data is { a => 1, b => 7 }
"\x25\x27" is 0010010100100111 in binary. The Flag is first, and it takes one byte
from the stream (00100101) use the last bit (1) and discard the rest. After it comes
the Mibble, that takes a byte too, (00100111) use the last four bits (0111) and discard
the rest.
If you need these bits to be packed tight together, see BitStruct.
Examples for the rest of the bit constructs:
$s = Struct("bits",
Octet("a"),
BitField("b", 5),
);
$data = $s->parse("\x25\x27");
# data is { a => 37, b => 7 }
=head2 Meta-Constructs
Life isn't always simple. If you only have a rigid structure with constance types,
then you can use other modules, that are far simplier. hack, use pack/unpack.
So if you have more complicate requirements, welcome to the meta-constructs.
Basically, you pass a code ref to the meta-construct, which will be used while
parsing and building.
For every data that the code ref needs, the $_ variable is loaded with all the
data that you need. $_->ctx is equal to $_->ctx(0), that returns hash-ref
containing all the data that the current struct parsed. Is you want to go another
level up, just request $_->ctx(1).
Also avialble are $_->obj, when need to inspect the current object, (see RepeatUntil)
and $_->stream, which gives the current stream. (mostly used as $_->stream->tell to
get the current location)
As a rule, everywhere a code-ref is used, a simple number can be used too.
If it doesn't - it's a bug. please report it.
=head2 Meta-Primitives
=head3 Field (Bytes)
The first on is the field. a Field is a chunk of bytes, with variable length:
$s = Struct("foo",
Byte("length"),
Field("data", sub { $_->ctx->{length} }),
);
(it can be also in constent length, by replacing the code section with, for example, 4)
So we have struct, that the first byte is the length of the field, and after that the field itself.
An example:
$data = $s->parse("\x03ABC");
# $data is {length => 3, data => "ABC"}
$data = $s->parse("\x04ABCD");
# $data is {length => 4, data => "ABCD"}
And so on.
Field is also called Bytes.
=head3 Value
A calculated value - not in the stream. It is calculated on both parse and build.
$s = Struct("foo",
UBInt8("width"),
UBInt8("height"),
Value("total_pixels", sub { $_->ctx->{width} * $_->ctx->{height}}),
);
=head3 Alias
Copies "a" to "b".
$s = Struct("foo",
Byte("a"),
Alias("b", "a"),
);
$data = $s->parse("\x25");
# $data is { a => 37, b => 37 }
=head2 Conditionals
=head3 If / IfThenElse
Basic branching:
$s = Struct("foo",
Flag("has_options"),
If(sub { $_->ctx->{has_options} },
Bytes("options", 5)
)
);
The If statment takes it's name from the contained construct, and return undef
of the condition is not met.
$s = Struct("foo",
Flag("long_options"),
IfThenElse("options", sub { $_->ctx->{long_options} },
Bytes("Long Options", 5),
Bytes("Short Options", 3),
),
);
The IfThenElse discard the name of the contained consturct, and use its own.
=head3 Switch
Multi branching. Can operate on numbers or strings. In the first example used with
Enum to convert a value to string.
The Switch discard the name of the contained consturcts, and use its own.
return undef if $DefaultPass is used.
$s = Struct("foo",
Enum(Byte("type"),
INT1 => 1,
INT2 => 2,
INT4 => 3,
STRING => 4,
),
Switch("data", sub { $_->ctx->{type} },
{
INT1 => UBInt8("spam"),
INT2 => UBInt16("spam"),
INT4 => UBInt32("spam"),
STRING => String("spam", 6),
}
)
);
$data = $s->parse("\x01\x12");
# $data is {type => "INT1", data => 18}
$data = $s->parse("\x02\x12\x34");
# $data is {type => "INT2", data => 4660}
$data = $s->parse("\x04abcdef");
# $data is {type => "STRING", data => 'abcdef'}
And so on. Switch also have a default option:
$s = Struct("foo",
Byte("type"),
Switch("data", sub { $_->ctx->{type} },
{
1 => UBInt8("spam"),
2 => UBInt16("spam"),
},
default => UBInt8("spam")
)
);
And can use $DefaultPass that make it to no-op.
$s = Struct("foo",
Byte("type"),
Switch("data", sub { $_->ctx->{type} },
{
1 => UBInt8("spam"),
2 => UBInt16("spam"),
},
default => $DefaultPass,
)
);
$data = $s->parse("\x01\x27");
# $data is { type => 1, data => 37 }
$DefaultPass is valid also as one of the options:
$s = Struct("foo",
Byte("type"),
Switch("data", sub { $_->ctx->{type} },
{
1 => $DefaultPass,
2 => UBInt16("spam"),
},
default => UBInt8("spam"),
)
);
$data = $s->parse("\x01\x27");
# $data is { type => 1, data => undef }
=head2 Loops
=head3 Array
Array, as any meta construct, and have constant length or variable lenght.
# This is an Array of four bytes
$s = Array(4, UBInt8("foo"));
$data = $s->parse("\x01\x02\x03\x04");
# $data is [1, 2, 3, 4]
# Array with variable length
$s = Struct("foo",
Byte("length"),
Array(sub { $_->ctx->{length}}, UBInt16("data")),
);
$data = $s->parse("\x03\x00\x01\x00\x02\x00\x03");
# $data is {length => 3, data => [1, 2, 3]}
=head3 RepeatUntil
RepeatUntil gets for every round to inspect data on $_->obj:
$s = RepeatUntil(sub {$_->obj eq "\x00"}, Field("data", 1));
$data = $s->parse("abcdef\x00this is another string");
# $data is [qw{a b c d e f}, "\0"]
=head2 Adapters
Adapters are constructs that transform the data that they work on. It wraps some underlining
structure, and present the data in a new, easier to use, way. There are some built-in
adapters for general use, but it is easy to write one of your own.
This is actually the easiest way to extend the framework.
For creating an adapter, the class should inherent from the Data::ParseBinary::Adapter
class. For example, we will take the IP address. An IP address can be viewed as
four bytes, or one unsigned long integer, but humans like to see it as dotted numbers.
("1.2.3.4") Here is how I would have done it. First, I'll write an adapter class:
package IpAddressAdapter;
our @ISA = qw{Data::ParseBinary::Adapter};
sub _encode {
my ($self, $tvalue) = @_;
return [split '\.', $tvalue];
}
sub _decode {
my ($self, $value) = @_;
return join '.', @$value;
}
This adapter transforms dotted IP address ("1.2.3.4") to four numbers. Each number size
is "byte", so we will use an array of four bytes. For actually creating one
we should write:
my $ipAdapter = IpAddressAdapter->create(Array(4, Byte("foo")));
(An adapter inherits its name from the underlying data construct)
Or we can create a little function:
sub IpAddressAdapterFunc {
my $name = shift;
IpAddressAdapter->create(Array(4, Byte($name)));
}
And then:
IpAddressAdapterFunc("foo")->parse("\x01\x02\x03\x04");
# will return "1.2.3.4"
On additional note, it is possible to declare an "init" sub inside IpAddressAdapter,
that will receive any extra parameter that "create" recieved.
=head3 Enum
One of the built-in Adapters is Enum:
$s = Enum(Byte("protocol"),
TCP => 6,
UDP => 17,
);
$s->parse("\x06") # return 'TCP'
$s->parse("\x11") # return 'UDP'
$s->build("TCP") # returns "\x06"
It is also possible to have a default:
$s = Enum(Byte("protocol"),
TCP => 6,
UDP => 17,
_default_ => blah => 99,
);
$s->parse("\x12") # returns 'blah'
Please note that the default tag must not be one of the supplied pairs.
And finally:
$s = Enum(Byte("protocol"),
TCP => 6,
UDP => 17,
_default_ => $DefaultPass,
);
$s->parse("\x12") # returns 18
$DefaultPass tells Enum that if it isn't familiar with the value, pass it alone.
=head3 FlagsEnum
If the field represent a set of flags, then the library provide a construct just for that:
$s = FlagsEnum(ULInt16("characteristics"),
RELOCS_STRIPPED => 0x0001,
EXECUTABLE_IMAGE => 0x0002,
LINE_NUMS_STRIPPED => 0x0004,
REMOVABLE_RUN_FROM_SWAP => 0x0400,
BIG_ENDIAN_MACHINE => 0x8000,
);
$data = $s->parse("\2\4");
# $data is { EXECUTABLE_IMAGE => 1, REMOVABLE_RUN_FROM_SWAP => 1 };
Of course, this is equvalent to creating a BitStruct, and specifing Flag-s in the
correct positions, and so on. but this is an easier way.
=head2 Validators
Validator... validate. they validate that the value on the stream is an expected
one, and they validate that the value that need to be written to the stream is
a correct one. otherwise, throws an exception.
=head3 OneOf / NoneOf
OneOf(UBInt8("foo"), [4,5,6,7])->parse("\x05") # return 5
OneOf(UBInt8("foo"), [4,5,6,7])->parse("\x08") # dies.
NoneOf(UBInt8("foo"), [4,5,6,7])->parse("\x08") # returns 8
NoneOf(UBInt8("foo"), [4,5,6,7])->parse("\x05") # dies
=head3 Const
$s = Const(Bytes("magic", 6), "FOOBAR");
On parsing: verify that the correct value is being read, and return it.
On building: if value is supplied, verify that it is the correct one. if the
value is not supplied, insert the correct one.
=head3 Magic
Magic("\x89PNG\r\n\x1a\n")
A constant string that is written / read and verified to / from the stream.
For example, every PNG file starts with eight pre-defined bytes. this construct
handle them, transparant to the calling program. (you don't need to supply a value,
nor you will see the parsed value)
=head2 BitStruct
As said in the section about Bit-Primitives, these primitives are not packed tightly,
and each will take complete bytes from the stream.
If you need to pack them tightly, use BitStruct:
$s = BitStruct("foo",
BitField("a", 3), # three bit int
Flag("b"), # one bit
Nibble("c"), # four bit int
BitField("d", 5), # five bit int
);
$data = $s->parse("\xe1\xf2");
# $data is { a => 7, b => 0, c => 1, d => 30 }
As can be seen, we start with 1110000111110010. The it is being splitted as
a=111, b=0, c=0001, d=11110 and the rest (010) is discard.
BitStruct can be inside other BitStruct. Inside BitStruct, Struct and BitStruct are equivalents.
$s = BitStruct("foo",
BitField("a", 3),
Flag("b"),
Nibble("c"),
Struct("bar",
Nibble("d"),
Bit("e"),
Octet("f"),
)
);
$data = $s->parse("\xe1\xf2\x34");
# $data is { a => 7, b => 0, c => 1, bar => { d => 15, e => 0, f => 70 } }
It is possible to mix a byte-primitives inside a BitStruct:
$s = BitStruct("foo",
BitField("a", 3),
UBInt16("int data"),
Nibble("b"),
);
$data = $s->parse("\xe1\xf2\x34");
# $data is { a => 7, "int data" => 3985, b => 10 }
Just be aware that this UBInt16 starts from the middle of the first byte, and
ends in the middle of the third.
BitStruct is based on a BitStream (see Stream) that is not seekable. So it can't
contain any construct that require seekability.
=head3 Bitwise
Use Bitwise when you are not under a BitStream, and you have single construct
that need to be packed by bits, and you don't want to create another hash for
just this construct. Here is an example from BMP:
Bitwise(Array(sub { $_->ctx(2)->{width} }, Nibble("index")));
We have an array of Nibble, that need to be packed together.
=head2 ReversedBitStruct and ReversedBitField
BitStruct assumes that each byte is arranged, bit-wise, from the most significante
bit (MSB) to the least significante bit. (LSB) However, it is not always true.
Lets say that you bytes are:
MSB LSB
Byte 1: A B C D E F G H
Byte 2: I J K M L N O P
And suppose that you have a bit-struct with three fields. AF1 is three bits,
AF2 is one bit, and AF3 is eight bits. so if:
AF1=ABC, AF2=D, AF3=EFGHIJKM
use: BitStruct with BitField
AF1=CBA, AF2=D, AF3=MKJIHGFE
use: BitStruct with ReversedBitField
AF1=HGF, AF2=E, AF3=DCBAPONL
use: ReversedBitStruct with BitField
AF1=FGH, AF2=E, AF3=LNOPABCD
use: ReversedBitStruct with ReversedBitField
=head2 Padding
Padding remove bytes from the stream
$s = Struct("foo",
Padding(2),
Flag("myflag"),
Padding(5),
);
$data = $s->parse("\x00\x00\x01\x00\x00\x00\x00\x00");
# $data is { myflag => 1 }
However, if woring on Bit Stream, then Padding takes bits and not bytes
$s = BitStruct("foo",
Padding(2),
Flag("myflag"),
Padding(5),
);
$data = $s->parse("\x20");
# $data is { myflag => 1 }
Padding is a meta-construct, can take code ref instead of a number
$s = Struct("foo",
Byte("count"),
Padding( sub { $_->ctx->{count} } ),
Flag("myflag"),
);
$data = $s->parse("\x02\0\0\1");
# $data is { count => 2, muflag => 1 }
=head2 Peeking and Jumping
Not all parsing is linear. sometimes you need to peek ahead to see if a certain
value exists ahead, or maybe you know where the data is, it's just that it is
some arbitary number of bytes ahead. or before.
=head3 Pointer and Anchor
Pointers are another animal of meta-struct. For example:
$s = Struct("foo",
Pointer(sub { 4 }, Byte("data1")), # <-- data1 is at (absolute) position 4
Pointer(sub { 7 }, Byte("data2")), # <-- data2 is at (absolute) position 7
);
$data = $s->parse("\x00\x00\x00\x00\x01\x00\x00\x02");
# $data is {data1=> 1 data2=>2 }
Literaly is says: jump to position 4, read byte, return to the beginning, jump to position 7,
read byte, return to the beginning.
Anchor can help a Pointer to find it's target:
$s = Struct("foo",
Byte("padding_length"),
Padding(sub { $_->ctx->{padding_length} } ),
Byte("relative_offset"),
Anchor("absolute_position"),
Pointer(sub { $_->ctx->{absolute_position} + $_->ctx->{relative_offset} }, Byte("data")),
);
$data = $s->parse("\x05\x00\x00\x00\x00\x00\x03\x00\x00\x00\xff");
# $data is { absolute_position=> 7, relative_offset => 3, data => 255, padding_length => 5 }
Anchor saves the current location in the stream, enable the Pointer to jump to location
relative to it.
Also, $_->stream->tell will point you to the current location, giving the ability for
relative location without using Anchor. The above construct is quevalent to:
$s = Struct("foo",
Byte("padding_length"),
Padding(sub { $_->ctx->{padding_length} } ),
Byte("relative_offset"),
Pointer(sub { $_->stream->tell + $_->ctx->{relative_offset} }, Byte("data")),
);
=head3 Peek
$s = Struct("foo",
Byte("a"),
Peek(Byte("b")),
Byte("c"),
);
Peek is like Pointer with two differences: one that it is no-op on build.
second the location is calculated relative to the current location,
while with Pointer it's absolute position.
If no distance is supplied, zero is assumed. it is posible to supply
constant distance, (i.e. 5) or code ref. Examples:
Peek(UBInt16("b"), 5) # Peek 5 bytes ahead
Peek(UBInt16("b"), sub { $_->ctx->{this_far} }) # calculated number of bytes ahead
=head2 Strings
=head3 Char
The Char construct represent a single character. This can mean one byte, or
if it have encoding attached, a multi-byte character.
$s = Char("c", "utf8");
$s->build("\x{1abcd}");
# returns "\xf0\x9a\xaf\x8d"
The allowded encodings are:
UTF-32LE
UTF-32BE
UTF-16LE
UTF-16BE
UTF-8
utf8
or any single-byte encoding supported by the Encode module
for example: iso-8859-8
If you don't know if your unicode string is BE or LE, then it's probably BE.
=head3 String (constant length / meta)
A string with constant length:
String("foo", 5)->parse("hello")
# returns "hello"
A string with variable length, and encoding:
String("description", sub { $_->ctx->{description_size} }, encoding => 'UTF-16LE' )
The string length is specified in *characters*, not bytes.
=head3 PaddedString
A Padded string with constant length:
$s = PaddedString("foo", 10, padchar => "X", paddir => "right");
$s->parse("helloXXXXX") # return "hello"
$s->build("hello") # return 'helloXXXXX'
I think that it speaks for itself. only that paddir can be one of qw{right left center},
and there can be also trimdir that can be "right" or "left".
When encoding is supplied, for example:
$s = PaddedString("foo", 10, encoding => "utf8");
The String length is still specified in *bytes*, not characters. If anyone ever
encouter a padded constant length string with multi byte encoding that it's length is
specified in characters, please send me an email.
=head3 PascalString
PascalString - String with a length marker in the beginning:
$s = PascalString("foo");
$s->build("hello world") # returns "\x0bhello world"
The marker can be of any kind:
$s = PascalString("foo", \&UBInt16);
$s->build("hello") # returns "\x00\x05hello"
(the marker can be pointer to any function that get a name and return construct.
And on parse that construct should return a value. like the built-in primitives for example)
With encoding:
$s = PascalString("foo", undef, "utf8");
The string length is specified in *characters*, not bytes.
=head3 CString
And finally, CString:
$s = CString("foo");
$s->parse("hello\x00") # returns 'hello'
Can have many optional terminators:
$s = CString("foo", terminators => "XYZ");
$s->parse("helloY") # returns 'hello'
With encoding:
$s = CString("foo", encoding => "utf8");
=head2 Union / RoughUnion
$s = Union("foo",
UBInt32("a"),
UBInt16("b")
);
$data = $s->parse("\xaa\xbb\xcc\xdd");
# $data is { a => 2864434397, b => 43707 }
A Union. currently work only with constant-size constructs, (like primitives, Struct and such)
but not on bit-stream.
$s = Struct("records",
ULInt32("record_size"),
RoughUnion("params",
Field("raw", sub { $_->ctx(1)->{record_size} - 8 }),
Array(sub { int(($_->ctx(1)->{record_size} - 8) / 4) }, ULInt32("params")),
),
);
RoughUnion is a type of Union, that doesn't check the size of it's sub-constructs.
it is used when we don't know before-hand the size of the sub-constructs, and the size
of the union as a whole. In the above example, we assume that if the union target is
the array of integers, then it probably record_size % 4 = 0.
If it's not, and we build this construct from the array, then we will be a few bytes
short.
=head2 Aligned
$s = Struct("bmp",
ULInt32("width"),
ULInt32("height"),
Array(
sub { $_->ctx->{height} },
Aligned(
Array(
sub { $_->ctx(2)->{width} },
Byte("index")
),
4),
),
);
Aligned make sure that the contained construct's size if dividable by $modulo. the
syntex is:
Aligned($subcon, $modulo);
In the above example, we have an excert from the BMP parser. each pixel is a byte.
There is an array of lines (height) that each line is an array of pixels. each line
is aligned to a four bytes boundary.
The modulo can be any number. 2, 4, 8, 7, 23.
=head2 Terminator
Terminator()->parse("")
verify that we reached the end of the stream. Not very useful, unless you are
processing a file and need to verify that you have reached the end
=head2 LasyBound
This construct is estinental for recoursive constructs.
$s = Struct("foo",
Flag("has_next"),
If(sub { $_->ctx->{has_next} }, LazyBound("next", sub { $s })),
);
$data = $s->parse("\x01\x01\x01\x00");
# $data is:
# {
# has_next => 1,
# next => {
# has_next => 1,
# next => {
# has_next => 1,
# next => {
# has_next => 0,
# next => undef
# }
# }
# }
# }
=head2 Sequence
Similar to Struct, just return an arrat reference instead of hash ref
$s = Sequence("foo",
UBInt8("a"),
UBInt16("b"),
Sequence("bar",
UBInt8("a"),
UBInt16("b"),
)
);
$data = $s->parse("ABBabb");
# $data is [ 65, 16962, [ 97, 25186 ] ]
Be aware that not every construct works well under Sequence. For example, Value
will have problems on building. Using Struct is prefered.
=head1 Depricated Constructs
A few construct are being depricated - for the reason that while parsing
a binary stream, you should know before-hand what are you going to get.
If needed, it is possible to use Peek or Pointer to look ahead.
These will be exported only by request, or by using the :all tag
use Data::ParseBinary qw{:all};
use Data::ParseBinary qw{UNInt64 OptionalGreedyRange};
=head2 Primitives
The following primitives are depricated, because I don't think it's good practice
to declare a structure with native-order byte order.
What if someone will run your program in a machine with the oposite byte order?
N stand for Platform natural
UNInt8
SNInt8
UNInt16
SNInt16
UNInt32
SNInt32
UNInt64
SNInt64
NFloat32
NFloat64
These will be exported only by request, or by using the :NATURALS tag
use Data::ParseBinary qw{:NATURALS};
=head2 Ranges
Please use Array, with constant or dynamic number of elements
# This is an array for 3 to 7 bytes
$s = Range(3, 7, UBInt8("foo"));
$data = $s->parse("\x01\x02\x03");
$data = $s->parse("\x01\x02\x03\x04\x05\x06\x07\x08\x09");
# in the last example, will take only 7 bytes from the stream
# A range with at least one byte, unlimited
$s = GreedyRange(UBInt8("foo"));
# A range with zero to unlimited bytes
$s = OptionalGreedyRange(UBInt8("foo"));
=head2 Optional
Optional construct may or may not be in the stream. Of course, it need a seekable stream.
The optional section usually have a Const in them, that indicates is this section
exists.
my $wmf_file = Struct("wmf_file",
Optional(
Struct("placeable_header",
Const(ULInt32("key"), 0x9AC6CDD7),
ULInt16("handle"),
),
),
ULInt16("version"),
ULInt32("size"), # file size is in words
);
A better way is to Peek ahead, and decide if this part exists:
my $wmf_file = Struct("wmf_file",
Peek(ULInt32("header_key")),
If(sub { $_->ctx->{header_key} == 0x9AC6CDD7 },
Struct("placeable_header",
Const(ULInt32("key"), 0x9AC6CDD7),
ULInt16("handle"),
),
),
ULInt16("version"),
ULInt32("size"), # file size is in words
);
=head1 Streams
Until now, everything worked in single-action. build built one construct, and parse
parsed one construct from one string. But suppose the string have more then one
construct in it? Suppose we want to write two constructs into one string? (and
if these constructs are in bit-mode, we can't create and just join them)
So, anyway, we have streams. A stream is an object that let a construct read and
parse bytes from, or build and write bytes to.
Please note, that some constructs can only work on seekable streams.
=head2 String
is seekable, not bit-stream
This is the most basic stream.
$data = $s->parse("aabb");
# is equivalent to:
$stream = CreateStreamReader("aabb");
$data = $s->parse($stream);
# also equivalent to:
$stream = CreateStreamReader(String => "aabb");
$data = $s->parse($stream);
Being that String is the default stream type, it is not needed to specify it.
So, if there is a string contains two or more structs, that the following code is possible:
$stream = CreateStreamReader(String => $my_string);
$data1 = $s1->parse($stream);
$data2 = $s2->parse($stream);
The other way is equally possible:
$stream = CreateStreamWriter(String => undef);
$s1->build($data1);
$s2->build($data2);
$my_string = $stream->Flush();
The Flush command in Writer Stream says: finish doing whatever you do, and return
your internal object. For string writer it is simply return the string that it built.
Wrapping streams (like Bit, StringBuffer) finish whatever they are doing, flush the
data to the internal stream, and call Flush on that internal stream.
The special case here is Wrap, that does not call Flush on the internal stream.
usefull for some configurations.
a Flush operation happens in the end of every build operation automatically, and
when a stream being destroyed.
In creation, the following lines are equvalent:
$stream = CreateStreamWriter(undef);
$stream = CreateStreamWriter('');
$stream = CreateStreamWriter(String => undef);
$stream = CreateStreamWriter(String => '');
Of course, it is possible to create String Stream with inital string to append to:
$stream = CreateStreamWriter(String => "aabb");
And any sequencal build operation will append to the "aabb" string.
=head2 StringRef
is seekable, not bit-stream
Mainly for cases when the string is to big to play around with. Writer:
my $string = '';
$stream = CreateStreamWriter(StringRef => \$string);
... do build operations ...
# and now the data in $string.
# or refer to: ${ $stream->Flush() }
Because Flush returns what's inside the stream - in this case a reference to a string.
For Reader:
my $string = 'MBs of data...';
$stream = CreateStreamReader(StringRef => \$string);
... parse operations ...
=head2 Bit
not seekable, is bit-stream
While every stream support bit-fields, when requesting 2 bits in non-bit-streams
you get these two bits, but a whole byte is consumed from the stream. In bit stream,
only two bits are consumed.
When you use BitStruct construct, it actually wraps the current stream with a bit stream.
If the stream is already bit-stream, it continues as usual.
What does it all have to do with you? great question. Support you have a string containing
a few bit structs, and each struct is aligned to a byte border. Then you can use
the example under the BitStruct section.
However, if the bit structs are not aligned, but compressed one against the other, then
you should use:
$s = BitStruct("foo",
Padding(1),
Flag("myflag"),
Padding(3),
);
$inner = "\x42\0";
$stream1 = CreateStreamReader(Bit => String => $inner);
$data1 = $s->parse($stream1);
# data1 is { myflag => 1 }
$data2 = $s->parse($stream1);
# data2 is { myflag => 1 }
$data3 = $s->parse($stream1);
# data3 is { myflag => 0 }
Note that the Padding constructs detects that it work on bit stream, and pad in bits
instead of bytes.
On Flush the bit stream write the reminding bits (up to a byte border) as 0,
write the last byte to the contained stream, and call Flush on the said contained stream.
so, if we use the $s from the previous code section:
$stream1 = CreateStreamWriter(Bit => String => undef);
$s->build({ myflag => 1 }, $stream1);
$s->build({ myflag => 1 }, $stream1);
$s->build({ myflag => 0 }, $stream1);
my $result = $stream1->Flush();
# $result eq "\x40\x40\0"
In this case each build operation did Flush on the bit stream, closing the last
(and only) byte. so we get three bytes, each contain one record. But if we want
that our constructs will be compressed each against the other, then we need
to protect the bit stream from the Flush command:
$stream1 = CreateStreamWriter(Wrap => Bit => String => undef);
$s->build($data1, $stream1);
$s->build($data1, $stream1);
$s->build($data2, $stream1);
my $result = $stream1->Flush()->Flush();
# $result eq "\x42\0";
Ohh. Two Flushs. one for the Wrap, one for the Bit and the String.
However, as you can see, the structs are packed together. The Wrap stream protects
the Bit stream from the Flush command in the end of every build.
=head2 StringBuffer
is seekable, not bit-stream
Suppose that you have some non-seekable stream. like socket. and suppose that your
struct do use construct that need seekable stream. What can you do?
Enter StringBuffer. It reads from the warped stream exactly the number of bytes
that the struct needs, giving the struct the option to seek inside the read section.
and if the struct seeks ahead - it will just read enough bytes to seek to this place.
In writer stream, the StringBuffer will pospone writing the data to the actual stream,
until the Flush command.
This warper stream is usefull only when the struct seek inside it's borders, and
not sporadically reads data from 30 bytes ahead / back.
# suppose we have unseekable reader stream names $s_stream
# (for example, TCP connection)
$stream1 = CreateStreamReader(StringBuffer => $s_stream);
# $s is some struct that uses seek. (using Peek, for example)
$data = $s->parse($stream1);
# the data were read, you can either drop $stream1 or continue use
# it for future parses.
# now suppose we have a unseekable writer strea name $w_stream
$stream1 = CreateStreamWriter(StringBuffer => $w_stream);
# $s is some struct that uses seek. (using Peek, for example)
$s->build($data1, $stream1);
# data is written into $stream1, flushed to $w_stream, and sent.
Note that in StringBuffer, the Flush operation writes the data to the underlining
stream, and then Flushes that stream.
=head2 Wrap
A simple wraping stream, whose only function is to protect the contained stream
from Flush commands. Usable only for writer streams, and can be used to:
1. Protect a Bit stream, so it will compress multiple structs without byte alignment
(see the Bit stream documentation for example)
2. Protect a StringBuffer, so it will aggregate some structs before you will
Flush them all as one to the socket/file/whatever.
=head2 File
is seekable, not bit-stream
Reads from / Writes to a file. it is your responsebility to open the file and binmode it.
open my $fh, "<", "bin_data.xdf" or die "oh sh...";
binmode $fh;
$stream1 = CreateStreamReader(File => $fh);
=head1 Format Library
The Data::ParseBinary arrive with ever-expanding set of pre-defined parsers for popular formats.
Each of these parsers is in it's own module.
And if you have a file-format, then this is how it's done:
use Data::ParseBinary::Graphics::BMP qw{$bmp_parser};
open my $fh2, "<", $filename or die "can not open $filename";
binmode $fh2;
$data = $bmp_parser->parse(CreateStreamReader(File => $fh2));
And $data will contain the parsed file. In the same way, it is possible to build a BMP file.
Please look for the documentation inside each module,
as it highlights various issues with the various libraries.
=head1 Debugging
=head2 Output on failure
The first line of defence is the output on error. Where did it happend?
in which construct? In which byte of the input?
On error, you get the following "die" messege:
Got Exception not enought bytes in stream
Streams location:
1: Stream BitReader in byte #Bit 5
2: Stream StringReader in byte #2
Constructs Stack:
1: BitField f
2: Struct bar
3: BitStruct foo
It tells me that I was inside "f" under "bar" under "foo", that it's the
second byte in stream, and because I was inside a BitStuct I get another
line for the stream, pointing me to the exact bit.
=head2 $print_debug_info
What we miss in the "die" messege above, is knowing how did I got there.
If it's inside Array, how many times it happen, and what decissions taken
along the way. But fear not. just set $print_debug_info:
$Data::ParseBinary::print_debug_info = 1;
This will trigger a print every time the parsing process enter or exit a construct.
So if a parsing dies, you can follow where it did.
=head1 TODO
The following elements were not implemented:
OnDemand
Reconfig and a macro Rename
AlignedStruct
Probe
Embed
Tunnel (TunnelAdapter is already implemented)
Add documentation to: ExtractingAdapter
Move the insertion of the parsed value to the context from the Struct/Sequence constructs
to each indevidual construct?
Streams: SocketStream
FileStreamWriter::Flush : improve.
Ability to give the CreateStreamReader/CreateStreamWriter function an ability to reconginze
socket / filehandle / pointer to string.
Union need to be extended to bit-structs?
use some nice exception system
Fix the Graphics-EMF library :
Find out if the EMF file should work or not. it fails on the statment:
Const(ULInt32("signature"), 0x464D4520)
And complain that it gets "0".
Make BitField a meta construct?
=head1 Thread Safety
This is a pure perl module. there should be not problems.
=head1 BUGS
Currently L/BFloat64 does not work if you don't have 64 bit numbers support
compiled in your Perl
=head1 SEE ALSO
Original PyConstructs homepage: http://construct.wikispaces.com/
=head1 AUTHOR
Fomberg Shmuel, E<lt>owner@semuel.co.ilE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright 2008 by Shmuel Fomberg.
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
|