This file is indexed.

/usr/share/doc/libghc-base-compat-doc/html/base-compat.txt is in libghc-base-compat-doc 0.8.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | A compatibility layer for base
--   
--   Provides functions available in later versions of <tt>base</tt> to a
--   wider range of compilers, without requiring you to use CPP pragmas in
--   your code. See the <a>README</a> for what is covered. Also see the
--   <a>changelog</a> for recent changes.
--   
--   Note that <tt>base-compat</tt> does not add any orphan instances.
--   There is a separate package <tt><a>base-orphans</a></tt> for that.
@package base-compat
@version 0.8.2

module Text.Read.Compat

-- | Parsing of <a>String</a>s, producing values.
--   
--   Derived instances of <a>Read</a> make the following assumptions, which
--   derived instances of <a>Show</a> obey:
--   
--   <ul>
--   <li>If the constructor is defined to be an infix operator, then the
--   derived <a>Read</a> instance will parse only infix applications of the
--   constructor (not the prefix form).</li>
--   <li>Associativity is not used to reduce the occurrence of parentheses,
--   although precedence may be.</li>
--   <li>If the constructor is defined using record syntax, the derived
--   <a>Read</a> will parse only the record-syntax form, and furthermore,
--   the fields must be given in the same order as the original
--   declaration.</li>
--   <li>The derived <a>Read</a> instance allows arbitrary Haskell
--   whitespace between tokens of the input string. Extra parentheses are
--   also allowed.</li>
--   </ul>
--   
--   For example, given the declarations
--   
--   <pre>
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   </pre>
--   
--   the derived instance of <a>Read</a> in Haskell 2010 is equivalent to
--   
--   <pre>
--   instance (Read a) =&gt; Read (Tree a) where
--   
--           readsPrec d r =  readParen (d &gt; app_prec)
--                            (\r -&gt; [(Leaf m,t) |
--                                    ("Leaf",s) &lt;- lex r,
--                                    (m,t) &lt;- readsPrec (app_prec+1) s]) r
--   
--                         ++ readParen (d &gt; up_prec)
--                            (\r -&gt; [(u:^:v,w) |
--                                    (u,s) &lt;- readsPrec (up_prec+1) r,
--                                    (":^:",t) &lt;- lex s,
--                                    (v,w) &lt;- readsPrec (up_prec+1) t]) r
--   
--             where app_prec = 10
--                   up_prec = 5
--   </pre>
--   
--   Note that right-associativity of <tt>:^:</tt> is unused.
--   
--   The derived instance in GHC is equivalent to
--   
--   <pre>
--   instance (Read a) =&gt; Read (Tree a) where
--   
--           readPrec = parens $ (prec app_prec $ do
--                                    Ident "Leaf" &lt;- lexP
--                                    m &lt;- step readPrec
--                                    return (Leaf m))
--   
--                        +++ (prec up_prec $ do
--                                    u &lt;- step readPrec
--                                    Symbol ":^:" &lt;- lexP
--                                    v &lt;- step readPrec
--                                    return (u :^: v))
--   
--             where app_prec = 10
--                   up_prec = 5
--   
--           readListPrec = readListPrecDefault
--   </pre>
class Read a

-- | attempts to parse a value from the front of the string, returning a
--   list of (parsed value, remaining string) pairs. If there is no
--   successful parse, the returned list is empty.
--   
--   Derived instances of <a>Read</a> and <a>Show</a> satisfy the
--   following:
--   
--   <ul>
--   <li><tt>(x,"")</tt> is an element of <tt>(<a>readsPrec</a> d
--   (<a>showsPrec</a> d x ""))</tt>.</li>
--   </ul>
--   
--   That is, <a>readsPrec</a> parses the string produced by
--   <a>showsPrec</a>, and delivers the value that <a>showsPrec</a> started
--   with.
readsPrec :: Read a => Int -> ReadS a

-- | The method <a>readList</a> is provided to allow the programmer to give
--   a specialised way of parsing lists of values. For example, this is
--   used by the predefined <a>Read</a> instance of the <a>Char</a> type,
--   where values of type <a>String</a> should be are expected to use
--   double quotes, rather than square brackets.
readList :: Read a => ReadS [a]

-- | Proposed replacement for <a>readsPrec</a> using new-style parsers (GHC
--   only).
readPrec :: Read a => ReadPrec a

-- | Proposed replacement for <a>readList</a> using new-style parsers (GHC
--   only). The default definition uses <a>readList</a>. Instances that
--   define <a>readPrec</a> should also define <a>readListPrec</a> as
--   <a>readListPrecDefault</a>.
readListPrec :: Read a => ReadPrec [a]

-- | A parser for a type <tt>a</tt>, represented as a function that takes a
--   <a>String</a> and returns a list of possible parses as
--   <tt>(a,<a>String</a>)</tt> pairs.
--   
--   Note that this kind of backtracking parser is very inefficient;
--   reading a large structure may be quite slow (cf <a>ReadP</a>).
type ReadS a = String -> [(a, String)]

-- | equivalent to <a>readsPrec</a> with a precedence of 0.
reads :: Read a => ReadS a

-- | The <a>read</a> function reads input from a string, which must be
--   completely consumed by the input process.
read :: Read a => String -> a

-- | <tt><a>readParen</a> <a>True</a> p</tt> parses what <tt>p</tt> parses,
--   but surrounded with parentheses.
--   
--   <tt><a>readParen</a> <a>False</a> p</tt> parses what <tt>p</tt>
--   parses, but optionally surrounded with parentheses.
readParen :: Bool -> ReadS a -> ReadS a

-- | The <a>lex</a> function reads a single lexeme from the input,
--   discarding initial white space, and returning the characters that
--   constitute the lexeme. If the input string contains only white space,
--   <a>lex</a> returns a single successful `lexeme' consisting of the
--   empty string. (Thus <tt><a>lex</a> "" = [("","")]</tt>.) If there is
--   no legal lexeme at the beginning of the input string, <a>lex</a> fails
--   (i.e. returns <tt>[]</tt>).
--   
--   This lexer is not completely faithful to the Haskell lexical syntax in
--   the following respects:
--   
--   <ul>
--   <li>Qualified names are not handled properly</li>
--   <li>Octal and hexadecimal numerics are not recognized as a single
--   token</li>
--   <li>Comments are not treated properly</li>
--   </ul>
lex :: ReadS String
data Lexeme :: *

-- | Character literal
Char :: Char -> Lexeme

-- | String literal, with escapes interpreted
String :: String -> Lexeme

-- | Punctuation or reserved symbol, e.g. <tt>(</tt>, <tt>::</tt>
Punc :: String -> Lexeme

-- | Haskell identifier, e.g. <tt>foo</tt>, <tt>Baz</tt>
Ident :: String -> Lexeme

-- | Haskell symbol, e.g. <tt>&gt;&gt;</tt>, <tt>:%</tt>
Symbol :: String -> Lexeme

Number :: Number -> Lexeme
EOF :: Lexeme

-- | Parse a single lexeme
lexP :: ReadPrec Lexeme

-- | <tt>(parens p)</tt> parses "P", "(P0)", "((P0))", etc, where
--   <tt>p</tt> parses "P" in the current precedence context and parses
--   "P0" in precedence context zero
parens :: ReadPrec a -> ReadPrec a

-- | A possible replacement definition for the <a>readList</a> method (GHC
--   only). This is only needed for GHC, and even then only for <a>Read</a>
--   instances where <a>readListPrec</a> isn't defined as
--   <a>readListPrecDefault</a>.
readListDefault :: Read a => ReadS [a]

-- | A possible replacement definition for the <a>readListPrec</a> method,
--   defined using <a>readPrec</a> (GHC only).
readListPrecDefault :: Read a => ReadPrec [a]

-- | Parse a string using the <a>Read</a> instance. Succeeds if there is
--   exactly one valid result. A <a>Left</a> value indicates a parse error.
readEither :: Read a => String -> Either String a

-- | Parse a string using the <a>Read</a> instance. Succeeds if there is
--   exactly one valid result.
readMaybe :: Read a => String -> Maybe a

module System.Exit.Compat

-- | Write given error message to <a>stderr</a> and terminate with
--   <a>exitFailure</a>.
die :: String -> IO a


-- | Miscellaneous information about the system environment.
module System.Environment.Compat

-- | Computation <a>getArgs</a> returns a list of the program's command
--   line arguments (not including the program name).
getArgs :: IO [String]

-- | Computation <a>getProgName</a> returns the name of the program as it
--   was invoked.
--   
--   However, this is hard-to-impossible to implement on some non-Unix
--   OSes, so instead, for maximum portability, we just return the leafname
--   of the program as invoked. Even then there are some differences
--   between platforms: on Windows, for example, a program invoked as foo
--   is probably really <tt>FOO.EXE</tt>, and that is what
--   <a>getProgName</a> will return.
getProgName :: IO String

-- | Computation <a>getEnv</a> <tt>var</tt> returns the value of the
--   environment variable <tt>var</tt>. For the inverse, POSIX users can
--   use <a>putEnv</a>.
--   
--   This computation may fail with:
--   
--   <ul>
--   <li><a>isDoesNotExistError</a> if the environment variable does not
--   exist.</li>
--   </ul>
getEnv :: String -> IO String

-- | Return the value of the environment variable <tt>var</tt>, or
--   <tt>Nothing</tt> if there is no such value.
--   
--   For POSIX users, this is equivalent to <a>getEnv</a>.
lookupEnv :: String -> IO (Maybe String)

-- | <tt>setEnv name value</tt> sets the specified environment variable to
--   <tt>value</tt>.
--   
--   On Windows setting an environment variable to the <i>empty string</i>
--   removes that environment variable from the environment. For the sake
--   of compatibility we adopt that behavior. In particular
--   
--   <pre>
--   setEnv name ""
--   </pre>
--   
--   has the same effect as
--   
--   <pre>
--   <a>unsetEnv</a> name
--   </pre>
--   
--   If you don't care about Windows support and want to set an environment
--   variable to the empty string use <tt>System.Posix.Env.setEnv</tt> from
--   the <tt>unix</tt> package instead.
--   
--   Throws <a>IOException</a> if <tt>name</tt> is the empty string or
--   contains an equals sign.
setEnv :: String -> String -> IO ()

-- | <tt>unSet name</tt> removes the specified environment variable from
--   the environment of the current process.
--   
--   Throws <a>IOException</a> if <tt>name</tt> is the empty string or
--   contains an equals sign.
unsetEnv :: String -> IO ()

-- | <a>withArgs</a> <tt>args act</tt> - while executing action
--   <tt>act</tt>, have <a>getArgs</a> return <tt>args</tt>.
withArgs :: [String] -> IO a -> IO a

-- | <a>withProgName</a> <tt>name act</tt> - while executing action
--   <tt>act</tt>, have <a>getProgName</a> return <tt>name</tt>.
withProgName :: String -> IO a -> IO a

-- | <a>getEnvironment</a> retrieves the entire environment as a list of
--   <tt>(key,value)</tt> pairs.
--   
--   If an environment entry does not contain an <tt>'='</tt> character,
--   the <tt>key</tt> is the whole entry and the <tt>value</tt> is the
--   empty string.
getEnvironment :: IO [(String, String)]

module Prelude.Compat

module Numeric.Compat

-- | Show a signed <a>RealFloat</a> value using standard decimal notation
--   (e.g. <tt>245000</tt>, <tt>0.0015</tt>).
--   
--   This behaves as <a>showFFloat</a>, except that a decimal point is
--   always guaranteed, even if not needed.
showFFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS

-- | Show a signed <a>RealFloat</a> value using standard decimal notation
--   for arguments whose absolute value lies between <tt>0.1</tt> and
--   <tt>9,999,999</tt>, and scientific notation otherwise.
--   
--   This behaves as <a>showFFloat</a>, except that a decimal point is
--   always guaranteed, even if not needed.
showGFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS

module Foreign.Marshal.Utils.Compat

-- | Fill a given number of bytes in memory area with a byte value.
fillBytes :: Ptr a -> Word8 -> Int -> IO ()

module Foreign.Marshal.Array.Compat

-- | Like <a>mallocArray</a>, but allocated memory is filled with bytes of
--   value zero.
callocArray :: Storable a => Int -> IO (Ptr a)

-- | Like <a>callocArray0</a>, but allocated memory is filled with bytes of
--   value zero.
callocArray0 :: Storable a => Int -> IO (Ptr a)

module Foreign.Marshal.Alloc.Compat

-- | Like <a>malloc</a> but memory is filled with bytes of value zero.
calloc :: Storable a => IO (Ptr a)

-- | Llike <a>mallocBytes</a> but memory is filled with bytes of value
--   zero.
callocBytes :: Int -> IO (Ptr a)

module Foreign.Marshal.Compat

module Foreign.Compat

module Debug.Trace.Compat

-- | Like <a>trace</a> but returns the message instead of a third value.
traceId :: String -> String

-- | Like <a>traceShow</a> but returns the shown value instead of a third
--   value.
traceShowId :: Show a => a -> a

-- | Like <a>trace</a> but returning unit in an arbitrary monad. Allows for
--   convenient use in do-notation. Note that the application of
--   <a>trace</a> is not an action in the monad, as <a>traceIO</a> is in
--   the <a>IO</a> monad.
--   
--   <pre>
--   ... = do
--     x &lt;- ...
--     traceM $ "x: " ++ show x
--     y &lt;- ...
--     traceM $ "y: " ++ show y
--   </pre>
traceM :: Monad m => String -> m ()

-- | Like <a>traceM</a>, but uses <a>show</a> on the argument to convert it
--   to a <a>String</a>.
--   
--   <pre>
--   ... = do
--     x &lt;- ...
--     traceMShow $ x
--     y &lt;- ...
--     traceMShow $ x + y
--   </pre>
traceShowM :: (Show a, Monad m) => a -> m ()

module Data.Word.Compat

-- | Swap bytes in <a>Word16</a>.
byteSwap16 :: Word16 -> Word16

-- | Reverse order of bytes in <a>Word32</a>.
byteSwap32 :: Word32 -> Word32

-- | Reverse order of bytes in <a>Word64</a>.
byteSwap64 :: Word64 -> Word64

module Data.Version.Compat

-- | Construct tag-less <a>Version</a>
makeVersion :: [Int] -> Version

module Data.Monoid.Compat

-- | An infix synonym for <a>mappend</a>.
(<>) :: Monoid m => m -> m -> m

module Data.List.Compat

module Data.Functor.Compat

-- | The <a>Functor</a> class is used for types that can be mapped over.
--   Instances of <a>Functor</a> should satisfy the following laws:
--   
--   <pre>
--   fmap id  ==  id
--   fmap (f . g)  ==  fmap f . fmap g
--   </pre>
--   
--   The instances of <a>Functor</a> for lists, <a>Maybe</a> and <a>IO</a>
--   satisfy these laws.
class Functor (f :: * -> *)
fmap :: Functor f => (a -> b) -> f a -> f b

-- | Replace all locations in the input with the same value. The default
--   definition is <tt><a>fmap</a> . <a>const</a></tt>, but this may be
--   overridden with a more efficient version.
(<$) :: Functor f => a -> f b -> f a

-- | Flipped version of <a>&lt;$</a>.
--   
--   <h4><b>Examples</b></h4>
--   
--   Replace the contents of a <tt><tt>Maybe</tt> <tt>Int</tt></tt> with a
--   constant <tt>String</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; Nothing $&gt; "foo"
--   Nothing
--   
--   &gt;&gt;&gt; Just 90210 $&gt; "foo"
--   Just "foo"
--   </pre>
--   
--   Replace the contents of an <tt><tt>Either</tt> <tt>Int</tt>
--   <tt>Int</tt></tt> with a constant <tt>String</tt>, resulting in an
--   <tt><tt>Either</tt> <tt>Int</tt> <tt>String</tt></tt>:
--   
--   <pre>
--   &gt;&gt;&gt; Left 8675309 $&gt; "foo"
--   Left 8675309
--   
--   &gt;&gt;&gt; Right 8675309 $&gt; "foo"
--   Right "foo"
--   </pre>
--   
--   Replace each element of a list with a constant <tt>String</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; [1,2,3] $&gt; "foo"
--   ["foo","foo","foo"]
--   </pre>
--   
--   Replace the second element of a pair with a constant <tt>String</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; (1,2) $&gt; "foo"
--   (1,"foo")
--   </pre>
($>) :: Functor f => f a -> b -> f b

-- | <tt><a>void</a> value</tt> discards or ignores the result of
--   evaluation, such as the return value of an <a>IO</a> action.
--   
--   <h4><b>Examples</b></h4>
--   
--   Replace the contents of a <tt><tt>Maybe</tt> <tt>Int</tt></tt> with
--   unit:
--   
--   <pre>
--   &gt;&gt;&gt; void Nothing
--   Nothing
--   
--   &gt;&gt;&gt; void (Just 3)
--   Just ()
--   </pre>
--   
--   Replace the contents of an <tt><tt>Either</tt> <tt>Int</tt>
--   <tt>Int</tt></tt> with unit, resulting in an <tt><tt>Either</tt>
--   <tt>Int</tt> '()'</tt>:
--   
--   <pre>
--   &gt;&gt;&gt; void (Left 8675309)
--   Left 8675309
--   
--   &gt;&gt;&gt; void (Right 8675309)
--   Right ()
--   </pre>
--   
--   Replace every element of a list with unit:
--   
--   <pre>
--   &gt;&gt;&gt; void [1,2,3]
--   [(),(),()]
--   </pre>
--   
--   Replace the second element of a pair with unit:
--   
--   <pre>
--   &gt;&gt;&gt; void (1,2)
--   (1,())
--   </pre>
--   
--   Discard the result of an <a>IO</a> action:
--   
--   <pre>
--   &gt;&gt;&gt; mapM print [1,2]
--   1
--   2
--   [(),()]
--   
--   &gt;&gt;&gt; void $ mapM print [1,2]
--   1
--   2
--   </pre>
void :: Functor f => f a -> f ()

module Data.Function.Compat

-- | <a>&amp;</a> is a reverse application operator. This provides
--   notational convenience. Its precedence is one higher than that of the
--   forward application operator <a>$</a>, which allows <a>&amp;</a> to be
--   nested in <a>$</a>.
(&) :: a -> (a -> b) -> b

module Data.Foldable.Compat

module Data.Either.Compat

-- | Return <a>True</a> if the given value is a <a>Left</a>-value,
--   <a>False</a> otherwise.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; isLeft (Left "foo")
--   True
--   
--   &gt;&gt;&gt; isLeft (Right 3)
--   False
--   </pre>
--   
--   Assuming a <a>Left</a> value signifies some sort of error, we can use
--   <a>isLeft</a> to write a very simple error-reporting function that
--   does absolutely nothing in the case of success, and outputs "ERROR" if
--   any error occurred.
--   
--   This example shows how <a>isLeft</a> might be used to avoid pattern
--   matching when one does not care about the value contained in the
--   constructor:
--   
--   <pre>
--   &gt;&gt;&gt; import Control.Monad ( when )
--   
--   &gt;&gt;&gt; let report e = when (isLeft e) $ putStrLn "ERROR"
--   
--   &gt;&gt;&gt; report (Right 1)
--   
--   &gt;&gt;&gt; report (Left "parse error")
--   ERROR
--   </pre>
isLeft :: Either a b -> Bool

-- | Return <a>True</a> if the given value is a <a>Right</a>-value,
--   <a>False</a> otherwise.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; isRight (Left "foo")
--   False
--   
--   &gt;&gt;&gt; isRight (Right 3)
--   True
--   </pre>
--   
--   Assuming a <a>Left</a> value signifies some sort of error, we can use
--   <a>isRight</a> to write a very simple reporting function that only
--   outputs "SUCCESS" when a computation has succeeded.
--   
--   This example shows how <a>isRight</a> might be used to avoid pattern
--   matching when one does not care about the value contained in the
--   constructor:
--   
--   <pre>
--   &gt;&gt;&gt; import Control.Monad ( when )
--   
--   &gt;&gt;&gt; let report e = when (isRight e) $ putStrLn "SUCCESS"
--   
--   &gt;&gt;&gt; report (Left "parse error")
--   
--   &gt;&gt;&gt; report (Right 1)
--   SUCCESS
--   </pre>
isRight :: Either a b -> Bool

module Data.Bool.Compat

-- | Case analysis for the <a>Bool</a> type. <tt><a>bool</a> x y p</tt>
--   evaluates to <tt>x</tt> when <tt>p</tt> is <a>False</a>, and evaluates
--   to <tt>y</tt> when <tt>p</tt> is <a>True</a>.
--   
--   This is equivalent to <tt>if p then y else x</tt>; that is, one can
--   think of it as an if-then-else construct with its arguments reordered.
--   
--   <h4><b>Examples</b></h4>
--   
--   Basic usage:
--   
--   <pre>
--   &gt;&gt;&gt; bool "foo" "bar" True
--   "bar"
--   
--   &gt;&gt;&gt; bool "foo" "bar" False
--   "foo"
--   </pre>
--   
--   Confirm that <tt><a>bool</a> x y p</tt> and <tt>if p then y else
--   x</tt> are equivalent:
--   
--   <pre>
--   &gt;&gt;&gt; let p = True; x = "bar"; y = "foo"
--   
--   &gt;&gt;&gt; bool x y p == if p then y else x
--   True
--   
--   &gt;&gt;&gt; let p = False
--   
--   &gt;&gt;&gt; bool x y p == if p then y else x
--   True
--   </pre>
bool :: a -> a -> Bool -> a

module Data.Bits.Compat

-- | Default implementation for <a>bit</a>.
--   
--   Note that: <tt>bitDefault i = 1 <a>shiftL</a> i</tt>
bitDefault :: (Bits a, Num a) => Int -> a

-- | Default implementation for <a>testBit</a>.
--   
--   Note that: <tt>testBitDefault x i = (x .&amp;. bit i) /= 0</tt>
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool

-- | Default implementation for <a>popCount</a>.
--   
--   This implementation is intentionally naive. Instances are expected to
--   provide an optimized implementation for their size.
popCountDefault :: (Bits a, Num a) => a -> Int

-- | Attempt to convert an <a>Integral</a> type <tt>a</tt> to an
--   <a>Integral</a> type <tt>b</tt> using the size of the types as
--   measured by <a>Bits</a> methods.
--   
--   A simpler version of this function is:
--   
--   <pre>
--   toIntegral :: (Integral a, Integral b) =&gt; a -&gt; Maybe b
--   toIntegral x
--     | toInteger x == y = Just (fromInteger y)
--     | otherwise        = Nothing
--     where
--       y = toInteger x
--   </pre>
--   
--   This version requires going through <a>Integer</a>, which can be
--   inefficient. However, <tt>toIntegralSized</tt> is optimized to allow
--   GHC to statically determine the relative type sizes (as measured by
--   <a>bitSizeMaybe</a> and <a>isSigned</a>) and avoid going through
--   <a>Integer</a> for many types. (The implementation uses
--   <a>fromIntegral</a>, which is itself optimized with rules for
--   <tt>base</tt> types but may go through <a>Integer</a> for some type
--   pairs.)
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b

module Control.Monad.Compat

-- | The <a>Monad</a> class defines the basic operations over a
--   <i>monad</i>, a concept from a branch of mathematics known as
--   <i>category theory</i>. From the perspective of a Haskell programmer,
--   however, it is best to think of a monad as an <i>abstract datatype</i>
--   of actions. Haskell's <tt>do</tt> expressions provide a convenient
--   syntax for writing monadic expressions.
--   
--   Instances of <a>Monad</a> should satisfy the following laws:
--   
--   <ul>
--   <li><pre><a>return</a> a <a>&gt;&gt;=</a> k = k a</pre></li>
--   <li><pre>m <a>&gt;&gt;=</a> <a>return</a> = m</pre></li>
--   <li><pre>m <a>&gt;&gt;=</a> (x -&gt; k x <a>&gt;&gt;=</a> h) = (m
--   <a>&gt;&gt;=</a> k) <a>&gt;&gt;=</a> h</pre></li>
--   </ul>
--   
--   Furthermore, the <a>Monad</a> and <a>Applicative</a> operations should
--   relate as follows:
--   
--   <ul>
--   <li><pre><a>pure</a> = <a>return</a></pre></li>
--   <li><pre>(<a>&lt;*&gt;</a>) = <a>ap</a></pre></li>
--   </ul>
--   
--   The above laws imply:
--   
--   <ul>
--   <li><pre><a>fmap</a> f xs = xs <a>&gt;&gt;=</a> <a>return</a> .
--   f</pre></li>
--   <li><pre>(<a>&gt;&gt;</a>) = (<a>*&gt;</a>)</pre></li>
--   </ul>
--   
--   and that <a>pure</a> and (<a>&lt;*&gt;</a>) satisfy the applicative
--   functor laws.
--   
--   The instances of <a>Monad</a> for lists, <a>Maybe</a> and <a>IO</a>
--   defined in the <a>Prelude</a> satisfy these laws.
class Applicative m => Monad (m :: * -> *)

-- | Sequentially compose two actions, passing any value produced by the
--   first as an argument to the second.
(>>=) :: Monad m => m a -> (a -> m b) -> m b

-- | Sequentially compose two actions, discarding any value produced by the
--   first, like sequencing operators (such as the semicolon) in imperative
--   languages.
(>>) :: Monad m => m a -> m b -> m b

-- | Inject a value into the monadic type.
return :: Monad m => a -> m a

-- | Fail with a message. This operation is not part of the mathematical
--   definition of a monad, but is invoked on pattern-match failure in a
--   <tt>do</tt> expression.
fail :: Monad m => String -> m a

-- | Monads that also support choice and failure.
class (Alternative m, Monad m) => MonadPlus (m :: * -> *)

-- | the identity of <a>mplus</a>. It should also satisfy the equations
--   
--   <pre>
--   mzero &gt;&gt;= f  =  mzero
--   v &gt;&gt; mzero   =  mzero
--   </pre>
mzero :: MonadPlus m => m a

-- | an associative operation
mplus :: MonadPlus m => m a -> m a -> m a

module Control.Concurrent.MVar.Compat

-- | Like <a>withMVar</a>, but the <tt>IO</tt> action in the second
--   argument is executed with asynchronous exceptions masked.
withMVarMasked :: MVar a -> (a -> IO b) -> IO b