/usr/share/doc/libghc-hashtables-doc/html/hashtables.txt is in libghc-hashtables-doc 1.2.1.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | -- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Mutable hash tables in the ST monad
--
-- This package provides a couple of different implementations of mutable
-- hash tables in the ST monad, as well as a typeclass abstracting their
-- common operations, and a set of wrappers to use the hash tables in the
-- IO monad.
--
-- <i>QUICK START</i>: documentation for the hash table operations is
-- provided in the <a>Data.HashTable.Class</a> module, and the IO
-- wrappers (which most users will probably prefer) are located in the
-- <a>Data.HashTable.IO</a> module.
--
-- This package currently contains three hash table implementations:
--
-- <ol>
-- <li><a>Data.HashTable.ST.Cuckoo</a> contains an implementation of
-- "cuckoo hashing" as introduced by Pagh and Rodler in 2001 (see
-- <a>http://en.wikipedia.org/wiki/Cuckoo_hashing</a>). Cuckoo hashing
-- has worst-case <i>O(1)</i> lookups and can reach a high "load factor",
-- in which the table can perform acceptably well even when approaching
-- 90% full. Randomized testing shows this implementation of cuckoo
-- hashing to be slightly faster on insert and slightly slower on lookup
-- than <a>Data.Hashtable.ST.Basic</a>, while being more space efficient
-- by about a half-word per key-value mapping. Cuckoo hashing, like the
-- basic hash table implementation using linear probing, can suffer from
-- long delays when the table is resized.</li>
-- <li><a>Data.HashTable.ST.Basic</a> contains a basic open-addressing
-- hash table using linear probing as the collision strategy. On a pure
-- speed basis it should currently be the fastest available Haskell hash
-- table implementation for lookups, although it has a higher memory
-- overhead than the other tables and can suffer from long delays when
-- the table is resized because all of the elements in the table need to
-- be rehashed.</li>
-- <li><a>Data.HashTable.ST.Linear</a> contains a linear hash table (see
-- <a>http://en.wikipedia.org/wiki/Linear_hashing</a>), which trades some
-- insert and lookup performance for higher space efficiency and much
-- shorter delays when expanding the table. In most cases, benchmarks
-- show this table to be currently slightly faster than
-- <tt>Data.HashTable</tt> from the Haskell base library.</li>
-- </ol>
--
-- It is recommended to create a concrete type alias in your code when
-- using this package, i.e.:
--
-- <pre>
-- import qualified Data.HashTable.IO as H
--
-- type HashTable k v = H.BasicHashTable k v
--
-- foo :: IO (HashTable Int Int)
-- foo = do
-- ht <- H.new
-- H.insert ht 1 1
-- return ht
-- </pre>
--
-- Firstly, this makes it easy to switch to a different hash table
-- implementation, and secondly, using a concrete type rather than
-- leaving your functions abstract in the HashTable class should allow
-- GHC to optimize away the typeclass dictionaries.
--
-- This package accepts a couple of different cabal flags:
--
-- <ul>
-- <li><tt>unsafe-tricks</tt>, default <i>ON</i>. If this flag is
-- enabled, we use some unsafe GHC-specific tricks to save indirections
-- (namely <tt>unsafeCoerce#</tt> and <tt>reallyUnsafePtrEquality#</tt>.
-- These techniques rely on assumptions about the behaviour of the GHC
-- runtime system and, although they've been tested and should be safe
-- under normal conditions, are slightly dangerous. Caveat emptor. In
-- particular, these techniques are incompatible with HPC code coverage
-- reports.</li>
-- <li><tt>sse42</tt>, default <i>OFF</i>. If this flag is enabled, we
-- use some SSE 4.2 instructions (see
-- <a>http://en.wikipedia.org/wiki/SSE4</a>, first available on Intel
-- Core 2 processors) to speed up cache-line searches for cuckoo
-- hashing.</li>
-- <li><tt>bounds-checking</tt>, default <i>OFF</i>. If this flag is
-- enabled, array accesses are bounds-checked.</li>
-- <li><tt>debug</tt>, default <i>OFF</i>. If turned on, we'll rudely
-- spew debug output to stdout.</li>
-- <li><tt>portable</tt>, default <i>OFF</i>. If this flag is enabled, we
-- use only pure Haskell code and try not to use unportable GHC
-- extensions. Turning this flag on forces <tt>unsafe-tricks</tt> and
-- <tt>sse42</tt> <i>OFF</i>.</li>
-- </ul>
--
-- Please send bug reports to
-- <a>https://github.com/gregorycollins/hashtables/issues</a>.
@package hashtables
@version 1.2.1.0
-- | This module contains a <a>HashTable</a> typeclass for the hash table
-- implementations in this package. This allows you to provide functions
-- which will work for any hash table implementation in this collection.
--
-- It is recommended to create a concrete type alias in your code when
-- using this package, i.e.:
--
-- <pre>
-- import qualified Data.HashTable.IO as H
--
-- type HashTable k v = H.BasicHashTable k v
--
-- foo :: IO (HashTable Int Int)
-- foo = do
-- ht <- H.new
-- H.insert ht 1 1
-- return ht
-- </pre>
--
-- or
--
-- <pre>
-- import qualified Data.HashTable.ST.Cuckoo as C
-- import qualified Data.HashTable.Class as H
--
-- type HashTable s k v = C.HashTable s k v
--
-- foo :: ST s (HashTable s k v)
-- foo = do
-- ht <- H.new
-- H.insert ht 1 1
-- return ht
-- </pre>
--
-- Firstly, this makes it easy to switch to a different hash table
-- implementation, and secondly, using a concrete type rather than
-- leaving your functions abstract in the <a>HashTable</a> class should
-- allow GHC to optimize away the typeclass dictionaries.
--
-- Note that the functions in this typeclass are in the <a>ST</a> monad;
-- if you want hash tables in <a>IO</a>, use the convenience wrappers in
-- <a>Data.HashTable.IO</a>.
module Data.HashTable.Class
-- | A typeclass for hash tables in the <a>ST</a> monad. The operations on
-- these hash tables are typically both key- and value-strict.
class HashTable h
-- | Creates a new, default-sized hash table. <i>O(1)</i>.
new :: HashTable h => ST s (h s k v)
-- | Creates a new hash table sized to hold <tt>n</tt> elements.
-- <i>O(n)</i>.
newSized :: HashTable h => Int -> ST s (h s k v)
-- | Inserts a key/value mapping into a hash table, replacing any existing
-- mapping for that key.
--
-- <i>O(n)</i> worst case, <i>O(1)</i> amortized.
insert :: (HashTable h, Eq k, Hashable k) => h s k v -> k -> v -> ST s ()
-- | Deletes a key-value mapping from a hash table. <i>O(n)</i> worst case,
-- <i>O(1)</i> amortized.
delete :: (HashTable h, Eq k, Hashable k) => h s k v -> k -> ST s ()
-- | Looks up a key-value mapping in a hash table. <i>O(n)</i> worst case,
-- (<i>O(1)</i> for cuckoo hash), <i>O(1)</i> amortized.
lookup :: (HashTable h, Eq k, Hashable k) => h s k v -> k -> ST s (Maybe v)
-- | A strict fold over the key-value records of a hash table in the
-- <a>ST</a> monad. <i>O(n)</i>.
foldM :: HashTable h => (a -> (k, v) -> ST s a) -> a -> h s k v -> ST s a
-- | A side-effecting map over the key-value records of a hash table.
-- <i>O(n)</i>.
mapM_ :: HashTable h => ((k, v) -> ST s b) -> h s k v -> ST s ()
-- | Computes the overhead (in words) per key-value mapping. Used for
-- debugging, etc; time complexity depends on the underlying hash table
-- implementation. <i>O(n)</i>.
computeOverhead :: HashTable h => h s k v -> ST s Double
-- | Create a hash table from a list of key-value pairs. <i>O(n)</i>.
fromList :: (HashTable h, Eq k, Hashable k) => [(k, v)] -> ST s (h s k v)
-- | Create a hash table from a list of key-value pairs, with a size hint.
-- <i>O(n)</i>.
fromListWithSizeHint :: (HashTable h, Eq k, Hashable k) => Int -> [(k, v)] -> ST s (h s k v)
-- | Given a hash table, produce a list of key-value pairs. <i>O(n)</i>.
toList :: (HashTable h) => h s k v -> ST s [(k, v)]
-- | A basic open-addressing hash table using linear probing. Use this hash
-- table if you...
--
-- <ul>
-- <li>want the fastest possible lookups, and very fast inserts.</li>
-- <li>don't care about wasting a little bit of memory to get it.</li>
-- <li>don't care that a table resize might pause for a long time to
-- rehash all of the key-value mappings.</li>
-- <li>have a workload which is not heavy with deletes; deletes clutter
-- the table with deleted markers and force the table to be completely
-- rehashed fairly often.</li>
-- </ul>
--
-- Of the hash tables in this collection, this hash table has the best
-- lookup performance, while maintaining competitive insert performance.
--
-- <i>Space overhead</i>
--
-- This table is not especially memory-efficient; firstly, the table has
-- a maximum load factor of 0.83 and will be resized if load exceeds this
-- value. Secondly, to improve insert and lookup performance, we store a
-- 16-bit hash code for each key in the table.
--
-- Each hash table entry requires at least 2.25 words (on a 64-bit
-- machine), two for the pointers to the key and value and one quarter
-- word for the hash code. We don't count key and value pointers as
-- overhead, because they have to be there -- so the overhead for a full
-- slot is at least one quarter word -- but empty slots in the hash table
-- count for a full 2.25 words of overhead. Define <tt>m</tt> as the
-- number of slots in the table, <tt>n</tt> as the number of key value
-- mappings, and <tt>ws</tt> as the machine word size in <i>bytes</i>. If
-- the load factor is <tt>k=n/m</tt>, the amount of space <i>wasted</i>
-- per mapping in words is:
--
-- <pre>
-- w(n) = (m*(2*ws + 2) - n*(2*ws)) / ws
-- </pre>
--
-- Since <tt>m=n/k</tt>,
--
-- <pre>
-- w(n) = n/k * (2*ws + 2) - n*(2*ws)
-- = (n * (2 + 2*ws*(1-k)) <i> k) </i> ws
-- </pre>
--
-- Solving for <tt>k=0.83</tt>, the maximum load factor, gives a
-- <i>minimum</i> overhead of 0.71 words per mapping on a 64-bit machine,
-- or 1.01 words per mapping on a 32-bit machine. If <tt>k=0.5</tt>,
-- which should be under normal usage the <i>maximum</i> overhead
-- situation, then the overhead would be 2.5 words per mapping on a
-- 64-bit machine, or 3.0 words per mapping on a 32-bit machine.
--
-- <i>Space overhead: experimental results</i>
--
-- In randomized testing on a 64-bit machine (see
-- <tt>test/compute-overhead/ComputeOverhead.hs</tt> in the source
-- distribution), mean overhead (that is, the number of words needed to
-- store the key-value mapping over and above the two words necessary for
-- the key and the value pointers) is approximately 1.24 machine words
-- per key-value mapping with a standard deviation of about 0.30 words,
-- and 1.70 words per mapping at the 95th percentile.
--
-- <i>Expensive resizes</i>
--
-- If enough elements are inserted into the table to make it exceed the
-- maximum load factor, the table is resized. A resize involves a
-- complete rehash of all the elements in the table, which means that any
-- given call to <a>insert</a> might take <i>O(n)</i> time in the size of
-- the table, with a large constant factor. If a long pause waiting for
-- the table to resize is unacceptable for your application, you should
-- choose the included linear hash table instead.
--
-- <i>References:</i>
--
-- <ul>
-- <li>Knuth, Donald E. <i>The Art of Computer Programming</i>, vol. 3
-- Sorting and Searching. Addison-Wesley Publishing Company, 1973.</li>
-- </ul>
module Data.HashTable.ST.Basic
-- | An open addressing hash table using linear probing.
data HashTable s k v
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:new</a>.
new :: ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:newSized</a>.
newSized :: Int -> ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:delete</a>.
delete :: (Hashable k, Eq k) => (HashTable s k v) -> k -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:lookup</a>.
lookup :: (Eq k, Hashable k) => (HashTable s k v) -> k -> ST s (Maybe v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:insert</a>.
insert :: (Eq k, Hashable k) => (HashTable s k v) -> k -> v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:mapM_</a>.
mapM_ :: ((k, v) -> ST s b) -> HashTable s k v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:foldM</a>.
foldM :: (a -> (k, v) -> ST s a) -> a -> HashTable s k v -> ST s a
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:computeOverhead</a>.
computeOverhead :: HashTable s k v -> ST s Double
instance GHC.Show.Show Data.HashTable.ST.Basic.Slot
instance Data.HashTable.Class.HashTable Data.HashTable.ST.Basic.HashTable
instance GHC.Show.Show (Data.HashTable.ST.Basic.HashTable s k v)
instance GHC.Base.Monoid Data.HashTable.ST.Basic.Slot
-- | A hash table using the cuckoo strategy. (See
-- <a>http://en.wikipedia.org/wiki/Cuckoo_hashing</a>). Use this hash
-- table if you...
--
-- <ul>
-- <li>want the fastest possible inserts, and very fast lookups.</li>
-- <li>are conscious of memory usage; this table has less space overhead
-- than <a>Data.HashTable.ST.Basic</a> or
-- <a>Data.HashTable.ST.Linear</a>.</li>
-- <li>don't care that a table resize might pause for a long time to
-- rehash all of the key-value mappings.</li>
-- </ul>
--
-- <i>Details:</i>
--
-- The basic idea of cuckoo hashing, first introduced by Pagh and Rodler
-- in 2001, is to use <i>d</i> hash functions instead of only one; in
-- this implementation d=2 and the strategy we use is to split up a flat
-- array of slots into <tt>k</tt> buckets, each cache-line-sized:
--
-- <pre>
-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+----------+
-- |x0|x1|x2|x3|x4|x5|x6|x7|y0|y1|y2|y3|y4|y5|y6|y7|z0|z1|z2........|
-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+----------+
-- [ ^^^ bucket 0 ^^^ ][ ^^^ bucket 1 ^^^ ]...
-- </pre>
--
-- There are actually three parallel arrays: one unboxed array of
-- <a>Int</a>s for hash codes, one boxed array for keys, and one boxed
-- array for values. When looking up a key-value mapping, we hash the key
-- using two hash functions and look in both buckets in the hash code
-- array for the key. Each bucket is cache-line sized, with its keys in
-- no particular order. Because the hash code array is unboxed, we can
-- search it for the key using a highly-efficient branchless strategy in
-- C code, using SSE instructions if available.
--
-- On insert, if both buckets are full, we knock out a randomly-selected
-- entry from one of the buckets (using a random walk ensures that "key
-- cycles" are broken with maximum probability) and try to repeat the
-- insert procedure. This process may not succeed; if all items have not
-- successfully found a home after some number of tries, we give up and
-- rehash all of the elements into a larger table.
--
-- <i>Space overhead: experimental results</i>
--
-- The implementation of cuckoo hash given here is almost as fast for
-- lookups as the basic open-addressing hash table using linear probing,
-- and on average is more space-efficient: in randomized testing on my
-- 64-bit machine (see <tt>test/compute-overhead/ComputeOverhead.hs</tt>
-- in the source distribution), mean overhead is 0.77 machine words per
-- key-value mapping, with a standard deviation of 0.29 words, and 1.23
-- words per mapping at the 95th percentile.
--
-- <i>References:</i>
--
-- <ul>
-- <li>A. Pagh and F. Rodler. Cuckoo hashing. In /Proceedings of the 9th
-- Annual European Symposium on Algorithms/, pp. 121-133, 2001.</li>
-- </ul>
module Data.HashTable.ST.Cuckoo
-- | A cuckoo hash table.
data HashTable s k v
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:new</a>.
new :: ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:newSized</a>.
newSized :: Int -> ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:delete</a>.
delete :: (Hashable k, Eq k) => HashTable s k v -> k -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:lookup</a>.
lookup :: (Eq k, Hashable k) => HashTable s k v -> k -> ST s (Maybe v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:insert</a>.
insert :: (Eq k, Hashable k) => HashTable s k v -> k -> v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:mapM_</a>.
mapM_ :: ((k, v) -> ST s a) -> HashTable s k v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:foldM</a>.
foldM :: (a -> (k, v) -> ST s a) -> a -> HashTable s k v -> ST s a
instance Data.HashTable.Class.HashTable Data.HashTable.ST.Cuckoo.HashTable
instance GHC.Show.Show (Data.HashTable.ST.Cuckoo.HashTable s k v)
-- | An implementation of linear hash tables. (See
-- <a>http://en.wikipedia.org/wiki/Linear_hashing</a>). Use this hash
-- table if you...
--
-- <ul>
-- <li>don't care that inserts and lookups are slower than the other hash
-- table implementations in this collection (this one is slightly faster
-- than <tt>Data.HashTable</tt> from the base library in most cases)</li>
-- <li>have a soft real-time or interactive application for which the
-- risk of introducing a long pause on insert while all of the keys are
-- rehashed is unacceptable.</li>
-- </ul>
--
-- <i>Details:</i>
--
-- Linear hashing allows for the expansion of the hash table one slot at
-- a time, by moving a "split" pointer across an array of pointers to
-- buckets. The number of buckets is always a power of two, and the
-- bucket to look in is defined as:
--
-- <pre>
-- bucket(level,key) = hash(key) mod (2^level)
-- </pre>
--
-- The "split pointer" controls the expansion of the hash table. If the
-- hash table is at level <tt>k</tt> (i.e. <tt>2^k</tt> buckets have been
-- allocated), we first calculate <tt>b=bucket(level-1,key)</tt>. If
-- <tt>b < splitptr</tt>, the destination bucket is calculated as
-- <tt>b'=bucket(level,key)</tt>, otherwise the original value <tt>b</tt>
-- is used.
--
-- The split pointer is incremented once an insert causes some bucket to
-- become fuller than some predetermined threshold; the bucket at the
-- split pointer (*not* the bucket which triggered the split!) is then
-- rehashed, and half of its keys can be expected to be rehashed into the
-- upper half of the table.
--
-- When the split pointer reaches the middle of the bucket array, the
-- size of the bucket array is doubled, the level increases, and the
-- split pointer is reset to zero.
--
-- Linear hashing, although not quite as fast for inserts or lookups as
-- the implementation of linear probing included in this package, is well
-- suited for interactive applications because it has much better worst
-- case behaviour on inserts. Other hash table implementations can suffer
-- from long pauses, because it is occasionally necessary to rehash all
-- of the keys when the table grows. Linear hashing, on the other hand,
-- only ever rehashes a bounded (effectively constant) number of keys
-- when an insert forces a bucket split.
--
-- <i>Space overhead: experimental results</i>
--
-- In randomized testing (see
-- <tt>test/compute-overhead/ComputeOverhead.hs</tt> in the source
-- distribution), mean overhead is approximately 1.51 machine words per
-- key-value mapping with a very low standard deviation of about 0.06
-- words, 1.60 words per mapping at the 95th percentile.
--
-- <i>Unsafe tricks</i>
--
-- Then the <tt>unsafe-tricks</tt> flag is on when this package is built
-- (and it is on by default), we use some unsafe tricks (namely
-- <tt>unsafeCoerce#</tt> and <tt>reallyUnsafePtrEquality#</tt>) to save
-- indirections in this table. These techniques rely on assumptions about
-- the behaviour of the GHC runtime system and, although they've been
-- tested and should be safe under normal conditions, are slightly
-- dangerous. Caveat emptor. In particular, these techniques are
-- incompatible with HPC code coverage reports.
--
-- References:
--
-- <ul>
-- <li>W. Litwin. Linear hashing: a new tool for file and table
-- addressing. In <i>Proc. 6th International Conference on Very Large
-- Data Bases, Volume 6</i>, pp. 212-223, 1980.</li>
-- <li>P-A. Larson. Dynamic hash tables. <i>Communications of the ACM</i>
-- 31: 446-457, 1988.</li>
-- </ul>
module Data.HashTable.ST.Linear
-- | A linear hash table.
data HashTable s k v
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:new</a>.
new :: ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:newSized</a>.
newSized :: Int -> ST s (HashTable s k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:delete</a>.
delete :: (Hashable k, Eq k) => (HashTable s k v) -> k -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:lookup</a>.
lookup :: (Eq k, Hashable k) => (HashTable s k v) -> k -> ST s (Maybe v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:insert</a>.
insert :: (Eq k, Hashable k) => (HashTable s k v) -> k -> v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:mapM_</a>.
mapM_ :: ((k, v) -> ST s b) -> HashTable s k v -> ST s ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:foldM</a>.
foldM :: (a -> (k, v) -> ST s a) -> a -> HashTable s k v -> ST s a
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:computeOverhead</a>.
computeOverhead :: HashTable s k v -> ST s Double
instance Data.HashTable.Class.HashTable Data.HashTable.ST.Linear.HashTable
instance GHC.Show.Show (Data.HashTable.ST.Linear.HashTable s k v)
-- | This module provides wrappers in <a>IO</a> around the functions from
-- <a>Data.HashTable.Class</a>.
--
-- This module exports three concrete hash table types, one for each hash
-- table implementation in this package:
--
-- <pre>
-- type BasicHashTable k v = IOHashTable (B.HashTable) k v
-- type CuckooHashTable k v = IOHashTable (Cu.HashTable) k v
-- type LinearHashTable k v = IOHashTable (L.HashTable) k v
-- </pre>
--
-- The <a>IOHashTable</a> type can be thought of as a wrapper around a
-- concrete hashtable type, which sets the <tt>ST</tt> monad state type
-- to <a>PrimState</a> <a>IO</a>, a.k.a. <tt>RealWorld</tt>:
--
-- <pre>
-- type IOHashTable tabletype k v = tabletype (PrimState IO) k v
-- </pre>
--
-- This module provides <a>stToIO</a> wrappers around the hashtable
-- functions (which are in <tt>ST</tt>) to make it convenient to use them
-- in <a>IO</a>. It is intended to be imported qualified and used with a
-- user-defined type alias, i.e.:
--
-- <pre>
-- import qualified Data.HashTable.IO as H
--
-- type HashTable k v = H.CuckooHashTable k v
--
-- foo :: IO (HashTable Int Int)
-- foo = do
-- ht <- H.new
-- H.insert ht 1 1
-- return ht
-- </pre>
--
-- Essentially, anywhere you see <tt><a>IOHashTable</a> h k v</tt> in the
-- type signatures below, you can plug in any of
-- <tt><a>BasicHashTable</a> k v</tt>, <tt><a>CuckooHashTable</a> k
-- v</tt>, or <tt><a>LinearHashTable</a> k v</tt>.
module Data.HashTable.IO
-- | A type alias for a basic open addressing hash table using linear
-- probing. See <a>Data.HashTable.ST.Basic</a>.
type BasicHashTable k v = IOHashTable (HashTable) k v
-- | A type alias for the cuckoo hash table. See
-- <a>Data.HashTable.ST.Cuckoo</a>.
type CuckooHashTable k v = IOHashTable (HashTable) k v
-- | A type alias for the linear hash table. See
-- <a>Data.HashTable.ST.Linear</a>.
type LinearHashTable k v = IOHashTable (HashTable) k v
-- | A type alias for our hash tables, which run in <tt>ST</tt>, to set the
-- state token type to <a>PrimState</a> <a>IO</a> (aka
-- <tt>RealWorld</tt>) so that we can use them in <a>IO</a>.
type IOHashTable tabletype k v = tabletype (PrimState IO) k v
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:new</a>.
new :: HashTable h => IO (IOHashTable h k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:newSized</a>.
newSized :: HashTable h => Int -> IO (IOHashTable h k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:insert</a>.
insert :: (HashTable h, Eq k, Hashable k) => IOHashTable h k v -> k -> v -> IO ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:delete</a>.
delete :: (HashTable h, Eq k, Hashable k) => IOHashTable h k v -> k -> IO ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:lookup</a>.
lookup :: (HashTable h, Eq k, Hashable k) => IOHashTable h k v -> k -> IO (Maybe v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:fromList</a>.
fromList :: (HashTable h, Eq k, Hashable k) => [(k, v)] -> IO (IOHashTable h k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:fromListWithSizeHint</a>.
fromListWithSizeHint :: (HashTable h, Eq k, Hashable k) => Int -> [(k, v)] -> IO (IOHashTable h k v)
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:toList</a>.
toList :: (HashTable h, Eq k, Hashable k) => IOHashTable h k v -> IO [(k, v)]
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:mapM_</a>.
mapM_ :: (HashTable h) => ((k, v) -> IO a) -> IOHashTable h k v -> IO ()
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:foldM</a>.
foldM :: (HashTable h) => (a -> (k, v) -> IO a) -> a -> IOHashTable h k v -> IO a
-- | See the documentation for this function in
-- <a>Data.HashTable.Class#v:computeOverhead</a>.
computeOverhead :: (HashTable h) => IOHashTable h k v -> IO Double
|