This file is indexed.

/usr/share/doc/libghc-intern-doc/html/intern.txt is in libghc-intern-doc 0.9.1.4-1build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Efficient hash-consing for arbitrary data types
--   
--   Changes from 0.8 to 0.9
--   
--   <ul>
--   <li>Removed <a>identity</a> from the Interned class, to support
--   applications where the identity is obtained by other means (e.g. a
--   unique Ptr value)</li>
--   </ul>
--   
--   Changes from 0.7 to 0.8
--   
--   <ul>
--   <li>Disabled cache removal as it was causing problems on large data
--   sets. There is no good way to ensure that both references remain alive
--   long enough to finish comparisons.</li>
--   <li>Switched to IORef from MVar</li>
--   </ul>
--   
--   Changes from 0.6 to 0.7
--   
--   <ul>
--   <li>Fixed problem where comparisons could happen between data
--   structures while one was still a thunk, leading to equal structures
--   comparing as inequal in limited circumstances, by appropriately using
--   strictness annotations.</li>
--   </ul>
--   
--   Efficient hash-consing for arbitrary data types
--   
--   Changes from 0.5.2 to 0.6
--   
--   <ul>
--   <li>Widened the caches so they don't go through a single MVar per
--   type. This has made a dramatic impact on performance. However, this
--   broke the previous invariant that newer entries always had higher Ids
--   than older entries.</li>
--   </ul>
--   
--   Changes from 0.5.1 to 0.5.2
--   
--   <ul>
--   <li>Added Data.Interned.IntSet</li>
--   </ul>
@package intern
@version 0.9.1.4

module Data.Interned.Internal
class (Eq (Description t), Hashable (Description t)) => Interned t where data family Description t type family Uninterned t seedIdentity _ = 0 cacheWidth _ = defaultCacheWidth modifyAdvice = id
describe :: Interned t => Uninterned t -> Description t
identify :: Interned t => Id -> Uninterned t -> t
seedIdentity :: Interned t => p t -> Id
cacheWidth :: Interned t => p t -> Int
modifyAdvice :: Interned t => IO t -> IO t
cache :: Interned t => Cache t
class Interned t => Uninternable t
unintern :: Uninternable t => t -> Uninterned t
mkCache :: Interned t => Cache t
newtype Cache t
Cache :: Array Int (IORef (CacheState t)) -> Cache t
[getCache] :: Cache t -> Array Int (IORef (CacheState t))
data CacheState t
CacheState :: {-# UNPACK #-} !Id -> !(HashMap (Description t) t) -> CacheState t
[fresh] :: CacheState t -> {-# UNPACK #-} !Id
[content] :: CacheState t -> !(HashMap (Description t) t)
cacheSize :: Cache t -> IO Int
type Id = Int
intern :: Interned t => Uninterned t -> t
recover :: Interned t => Description t -> IO (Maybe t)


-- | An efficient implementation of integer sets.
--   
--   Since many function names (but not the type name) clash with
--   <a>Prelude</a> names, this module is usually imported
--   <tt>qualified</tt>, e.g.
--   
--   <pre>
--   import Data.IntSet (IntSet)
--   import qualified Data.IntSet as IntSet
--   </pre>
--   
--   The implementation is based on <i>big-endian patricia trees</i>. This
--   data structure performs especially well on binary operations like
--   <a>union</a> and <a>intersection</a>. However, my benchmarks show that
--   it is also (much) faster on insertions and deletions when compared to
--   a generic size-balanced set implementation (see <a>Data.Set</a>).
--   
--   <ul>
--   <li>Chris Okasaki and Andy Gill, "<i>Fast Mergeable Integer Maps</i>",
--   Workshop on ML, September 1998, pages 77-86,
--   <a>http://citeseer.ist.psu.edu/okasaki98fast.html</a></li>
--   <li>D.R. Morrison, "/PATRICIA -- Practical Algorithm To Retrieve
--   Information Coded In Alphanumeric/", Journal of the ACM, 15(4),
--   October 1968, pages 514-534.</li>
--   </ul>
--   
--   Many operations have a worst-case complexity of <i>O(min(n,W))</i>.
--   This means that the operation can become linear in the number of
--   elements with a maximum of <i>W</i> -- the number of bits in an
--   <a>Int</a> (32 or 64).
--   
--   Unlike the reference implementation in Data.IntSet,
--   Data.Interned.IntSet uses hash consing to ensure that there is only
--   ever one copy of any given IntSet in memory. This is enabled by the
--   normal form of the PATRICIA trie.
--   
--   This can mean a drastic reduction in the memory footprint of a program
--   in exchange for much more costly set manipulation.
module Data.Interned.IntSet

-- | A set of integers.
data IntSet

-- | <i>O(n+m)</i>. See <a>difference</a>.
(\\) :: IntSet -> IntSet -> IntSet

-- | <i>O(1)</i>. Is the set empty?
null :: IntSet -> Bool

-- | <i>O(1)</i>. Cardinality of the set.
size :: IntSet -> Int

-- | <i>O(min(n,W))</i>. Is the value a member of the set?
member :: Int -> IntSet -> Bool

-- | <i>O(min(n,W))</i>. Is the element not in the set?
notMember :: Int -> IntSet -> Bool

-- | <i>O(n+m)</i>. Is this a subset? <tt>(s1 <a>isSubsetOf</a> s2)</tt>
--   tells whether <tt>s1</tt> is a subset of <tt>s2</tt>.
isSubsetOf :: IntSet -> IntSet -> Bool

-- | <i>O(n+m)</i>. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: IntSet -> IntSet -> Bool

-- | <i>O(1)</i>. The empty set.
empty :: IntSet

-- | <i>O(1)</i>. A set of one element.
singleton :: Int -> IntSet

-- | <i>O(min(n,W))</i>. Add a value to the set. When the value is already
--   an element of the set, it is replaced by the new one, ie.
--   <a>insert</a> is left-biased.
insert :: Int -> IntSet -> IntSet

-- | <i>O(min(n,W))</i>. Delete a value in the set. Returns the original
--   set when the value was not present.
delete :: Int -> IntSet -> IntSet

-- | <i>O(n+m)</i>. The union of two sets.
union :: IntSet -> IntSet -> IntSet

-- | The union of a list of sets.
unions :: [IntSet] -> IntSet

-- | <i>O(n+m)</i>. Difference between two sets.
difference :: IntSet -> IntSet -> IntSet

-- | <i>O(n+m)</i>. The intersection of two sets.
intersection :: IntSet -> IntSet -> IntSet

-- | <i>O(n)</i>. Filter all elements that satisfy some predicate.
filter :: (Int -> Bool) -> IntSet -> IntSet

-- | <i>O(n)</i>. partition the set according to some predicate.
partition :: (Int -> Bool) -> IntSet -> (IntSet, IntSet)

-- | <i>O(min(n,W))</i>. The expression (<tt><a>split</a> x set</tt>) is a
--   pair <tt>(set1,set2)</tt> where <tt>set1</tt> comprises the elements
--   of <tt>set</tt> less than <tt>x</tt> and <tt>set2</tt> comprises the
--   elements of <tt>set</tt> greater than <tt>x</tt>.
--   
--   <pre>
--   split 3 (fromList [1..5]) == (fromList [1,2], fromList [4,5])
--   </pre>
split :: Int -> IntSet -> (IntSet, IntSet)

-- | <i>O(min(n,W))</i>. Performs a <a>split</a> but also returns whether
--   the pivot element was found in the original set.
splitMember :: Int -> IntSet -> (IntSet, Bool, IntSet)

-- | <i>O(min(n,W))</i>. The minimal element of the set.
findMin :: IntSet -> Int

-- | <i>O(min(n,W))</i>. The maximal element of a set.
findMax :: IntSet -> Int

-- | <i>O(min(n,W))</i>. Delete the minimal element.
deleteMin :: IntSet -> IntSet

-- | <i>O(min(n,W))</i>. Delete the maximal element.
deleteMax :: IntSet -> IntSet

-- | <i>O(min(n,W))</i>. Delete and find the minimal element.
--   
--   <pre>
--   deleteFindMin set = (findMin set, deleteMin set)
--   </pre>
deleteFindMin :: IntSet -> (Int, IntSet)

-- | <i>O(min(n,W))</i>. Delete and find the maximal element.
--   
--   <pre>
--   deleteFindMax set = (findMax set, deleteMax set)
--   </pre>
deleteFindMax :: IntSet -> (Int, IntSet)

-- | <i>O(min(n,W))</i>. Retrieves the maximal key of the set, and the set
--   stripped of that element, or <a>Nothing</a> if passed an empty set.
maxView :: IntSet -> Maybe (Int, IntSet)

-- | <i>O(min(n,W))</i>. Retrieves the minimal key of the set, and the set
--   stripped of that element, or <a>Nothing</a> if passed an empty set.
minView :: IntSet -> Maybe (Int, IntSet)

-- | <i>O(n*min(n,W))</i>. <tt><a>map</a> f s</tt> is the set obtained by
--   applying <tt>f</tt> to each element of <tt>s</tt>.
--   
--   It's worth noting that the size of the result may be smaller if, for
--   some <tt>(x,y)</tt>, <tt>x /= y &amp;&amp; f x == f y</tt>
map :: (Int -> Int) -> IntSet -> IntSet

-- | <i>O(n)</i>. Fold over the elements of a set in an unspecified order.
--   
--   <pre>
--   sum set   == fold (+) 0 set
--   elems set == fold (:) [] set
--   </pre>
fold :: (Int -> b -> b) -> b -> IntSet -> b

-- | <i>O(n)</i>. The elements of a set. (For sets, this is equivalent to
--   toList)
elems :: IntSet -> [Int]

-- | <i>O(n)</i>. Convert the set to a list of elements.
toList :: IntSet -> [Int]

-- | <i>O(n*min(n,W))</i>. Create a set from a list of integers.
fromList :: [Int] -> IntSet

-- | <i>O(n)</i>. Convert the set to an ascending list of elements.
toAscList :: IntSet -> [Int]

-- | <i>O(n)</i>. Build a set from an ascending list of elements. <i>The
--   precondition (input list is ascending) is not checked.</i>
fromAscList :: [Int] -> IntSet

-- | <i>O(n)</i>. Build a set from an ascending list of distinct elements.
--   <i>The precondition (input list is strictly ascending) is not
--   checked.</i>
fromDistinctAscList :: [Int] -> IntSet

-- | <i>O(n)</i>. Show the tree that implements the set. The tree is shown
--   in a compressed, hanging format.
showTree :: IntSet -> String

-- | <i>O(n)</i>. The expression (<tt><a>showTreeWith</a> hang wide
--   map</tt>) shows the tree that implements the set. If <tt>hang</tt> is
--   <a>True</a>, a <i>hanging</i> tree is shown otherwise a rotated tree
--   is shown. If <tt>wide</tt> is <a>True</a>, an extra wide version is
--   shown.
showTreeWith :: Bool -> Bool -> IntSet -> String
instance GHC.Classes.Eq (Data.Interned.Internal.Description Data.Interned.IntSet.IntSet)
instance Data.Interned.Internal.Interned Data.Interned.IntSet.IntSet
instance Data.Hashable.Class.Hashable (Data.Interned.Internal.Description Data.Interned.IntSet.IntSet)
instance Data.Interned.Internal.Uninternable Data.Interned.IntSet.IntSet
instance GHC.Base.Monoid Data.Interned.IntSet.IntSet
instance GHC.Classes.Eq Data.Interned.IntSet.IntSet
instance GHC.Classes.Ord Data.Interned.IntSet.IntSet
instance GHC.Show.Show Data.Interned.IntSet.IntSet
instance GHC.Read.Read Data.Interned.IntSet.IntSet

module Data.Interned
class (Eq (Description t), Hashable (Description t)) => Interned t where data family Description t type family Uninterned t seedIdentity _ = 0 cacheWidth _ = defaultCacheWidth modifyAdvice = id
describe :: Interned t => Uninterned t -> Description t
identify :: Interned t => Id -> Uninterned t -> t
seedIdentity :: Interned t => p t -> Id
cacheWidth :: Interned t => p t -> Int
modifyAdvice :: Interned t => IO t -> IO t
cache :: Interned t => Cache t
class Interned t => Uninternable t
unintern :: Uninternable t => t -> Uninterned t
mkCache :: Interned t => Cache t
data Cache t
cacheSize :: Cache t -> IO Int
type Id = Int
intern :: Interned t => Uninterned t -> t

module Data.Interned.Internal.ByteString
data InternedByteString
InternedByteString :: {-# UNPACK #-} !Id -> {-# UNPACK #-} !ByteString -> InternedByteString
[internedByteStringId] :: InternedByteString -> {-# UNPACK #-} !Id
[uninternByteString] :: InternedByteString -> {-# UNPACK #-} !ByteString
instance Data.Hashable.Class.Hashable (Data.Interned.Internal.Description Data.Interned.Internal.ByteString.InternedByteString)
instance GHC.Classes.Eq (Data.Interned.Internal.Description Data.Interned.Internal.ByteString.InternedByteString)
instance Data.String.IsString Data.Interned.Internal.ByteString.InternedByteString
instance GHC.Classes.Eq Data.Interned.Internal.ByteString.InternedByteString
instance GHC.Classes.Ord Data.Interned.Internal.ByteString.InternedByteString
instance GHC.Show.Show Data.Interned.Internal.ByteString.InternedByteString
instance Data.Interned.Internal.Interned Data.Interned.Internal.ByteString.InternedByteString
instance Data.Interned.Internal.Uninternable Data.Interned.Internal.ByteString.InternedByteString

module Data.Interned.ByteString
data InternedByteString

module Data.Interned.Internal.String
data InternedString
IS :: {-# UNPACK #-} !Id -> String -> InternedString
[internedStringId] :: InternedString -> {-# UNPACK #-} !Id
[uninternString] :: InternedString -> String
instance GHC.Classes.Eq (Data.Interned.Internal.Description Data.Interned.Internal.String.InternedString)
instance Data.String.IsString Data.Interned.Internal.String.InternedString
instance GHC.Classes.Eq Data.Interned.Internal.String.InternedString
instance GHC.Classes.Ord Data.Interned.Internal.String.InternedString
instance GHC.Show.Show Data.Interned.Internal.String.InternedString
instance Data.Interned.Internal.Interned Data.Interned.Internal.String.InternedString
instance Data.Interned.Internal.Uninternable Data.Interned.Internal.String.InternedString
instance Data.Hashable.Class.Hashable (Data.Interned.Internal.Description Data.Interned.Internal.String.InternedString)

module Data.Interned.String
data InternedString

module Data.Interned.Internal.Text
data InternedText
InternedText :: {-# UNPACK #-} !Id -> {-# UNPACK #-} !Text -> InternedText
[internedTextId] :: InternedText -> {-# UNPACK #-} !Id
[uninternedText] :: InternedText -> {-# UNPACK #-} !Text
instance GHC.Classes.Eq (Data.Interned.Internal.Description Data.Interned.Internal.Text.InternedText)
instance Data.String.IsString Data.Interned.Internal.Text.InternedText
instance GHC.Classes.Eq Data.Interned.Internal.Text.InternedText
instance GHC.Classes.Ord Data.Interned.Internal.Text.InternedText
instance GHC.Show.Show Data.Interned.Internal.Text.InternedText
instance Data.Interned.Internal.Interned Data.Interned.Internal.Text.InternedText
instance Data.Interned.Internal.Uninternable Data.Interned.Internal.Text.InternedText
instance Data.Hashable.Class.Hashable (Data.Interned.Internal.Description Data.Interned.Internal.Text.InternedText)

module Data.Interned.Text
data InternedText