/usr/share/doc/libghc-semigroups-doc/html/semigroups.txt is in libghc-semigroups-doc 0.18.0.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | -- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Anything that associates
--
-- In mathematics, a semigroup is an algebraic structure consisting of a
-- set together with an associative binary operation. A semigroup
-- generalizes a monoid in that there might not exist an identity
-- element. It also (originally) generalized a group (a monoid with all
-- inverses) to a type where every element did not have to have an
-- inverse, thus the name semigroup.
@package semigroups
@version 0.18.0.1
-- | A NonEmpty list forms a monad as per list, but always contains at
-- least one element.
module Data.List.NonEmpty
data NonEmpty a
(:|) :: a -> [a] -> NonEmpty a
-- | Map a function over a <a>NonEmpty</a> stream.
map :: (a -> b) -> NonEmpty a -> NonEmpty b
-- | 'intersperse x xs' alternates elements of the list with copies of
-- <tt>x</tt>.
--
-- <pre>
-- intersperse 0 (1 :| [2,3]) == 1 :| [0,2,0,3]
-- </pre>
intersperse :: a -> NonEmpty a -> NonEmpty a
-- | <a>scanl</a> is similar to <a>foldl</a>, but returns a stream of
-- successive reduced values from the left:
--
-- <pre>
-- scanl f z [x1, x2, ...] == z :| [z `f` x1, (z `f` x1) `f` x2, ...]
-- </pre>
--
-- Note that
--
-- <pre>
-- last (scanl f z xs) == foldl f z xs.
-- </pre>
scanl :: Foldable f => (b -> a -> b) -> b -> f a -> NonEmpty b
-- | <a>scanr</a> is the right-to-left dual of <a>scanl</a>. Note that
--
-- <pre>
-- head (scanr f z xs) == foldr f z xs.
-- </pre>
scanr :: Foldable f => (a -> b -> b) -> b -> f a -> NonEmpty b
-- | <a>scanl1</a> is a variant of <a>scanl</a> that has no starting value
-- argument:
--
-- <pre>
-- scanl1 f [x1, x2, ...] == x1 :| [x1 `f` x2, x1 `f` (x2 `f` x3), ...]
-- </pre>
scanl1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a
-- | <a>scanr1</a> is a variant of <a>scanr</a> that has no starting value
-- argument.
scanr1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a
-- | <a>transpose</a> for <a>NonEmpty</a>, behaves the same as
-- <a>transpose</a> The rows/columns need not be the same length, in
-- which case > transpose . transpose /= id
transpose :: NonEmpty (NonEmpty a) -> NonEmpty (NonEmpty a)
-- | <a>sortBy</a> for <a>NonEmpty</a>, behaves the same as <a>sortBy</a>
sortBy :: (a -> a -> Ordering) -> NonEmpty a -> NonEmpty a
-- | <a>sortWith</a> for <a>NonEmpty</a>, behaves the same as:
--
-- <pre>
-- sortBy . comparing
-- </pre>
sortWith :: Ord o => (a -> o) -> NonEmpty a -> NonEmpty a
length :: NonEmpty a -> Int
-- | Extract the first element of the stream.
head :: NonEmpty a -> a
-- | Extract the possibly-empty tail of the stream.
tail :: NonEmpty a -> [a]
-- | Extract the last element of the stream.
last :: NonEmpty a -> a
-- | Extract everything except the last element of the stream.
init :: NonEmpty a -> [a]
-- | Prepend an element to the stream.
(<|) :: a -> NonEmpty a -> NonEmpty a
-- | Synonym for <a><|</a>.
cons :: a -> NonEmpty a -> NonEmpty a
-- | <a>uncons</a> produces the first element of the stream, and a stream
-- of the remaining elements, if any.
uncons :: NonEmpty a -> (a, Maybe (NonEmpty a))
unfoldr :: (a -> (b, Maybe a)) -> a -> NonEmpty b
-- | Sort a stream.
sort :: Ord a => NonEmpty a -> NonEmpty a
-- | <a>reverse</a> a finite NonEmpty stream.
reverse :: NonEmpty a -> NonEmpty a
-- | The <a>inits</a> function takes a stream <tt>xs</tt> and returns all
-- the finite prefixes of <tt>xs</tt>.
inits :: Foldable f => f a -> NonEmpty [a]
-- | The <a>tails</a> function takes a stream <tt>xs</tt> and returns all
-- the suffixes of <tt>xs</tt>.
tails :: Foldable f => f a -> NonEmpty [a]
-- | <tt><a>iterate</a> f x</tt> produces the infinite sequence of repeated
-- applications of <tt>f</tt> to <tt>x</tt>.
--
-- <pre>
-- iterate f x = x :| [f x, f (f x), ..]
-- </pre>
iterate :: (a -> a) -> a -> NonEmpty a
-- | <tt><a>repeat</a> x</tt> returns a constant stream, where all elements
-- are equal to <tt>x</tt>.
repeat :: a -> NonEmpty a
-- | <tt><a>cycle</a> xs</tt> returns the infinite repetition of
-- <tt>xs</tt>:
--
-- <pre>
-- cycle [1,2,3] = 1 :| [2,3,1,2,3,...]
-- </pre>
cycle :: NonEmpty a -> NonEmpty a
-- | <a>unfold</a> produces a new stream by repeatedly applying the
-- unfolding function to the seed value to produce an element of type
-- <tt>b</tt> and a new seed value. When the unfolding function returns
-- <a>Nothing</a> instead of a new seed value, the stream ends.
unfold :: (a -> (b, Maybe a)) -> a -> NonEmpty b
-- | <tt><a>insert</a> x xs</tt> inserts <tt>x</tt> into the last position
-- in <tt>xs</tt> where it is still less than or equal to the next
-- element. In particular, if the list is sorted beforehand, the result
-- will also be sorted.
insert :: (Foldable f, Ord a) => a -> f a -> NonEmpty a
-- | <tt><a>some1</a> x</tt> sequences <tt>x</tt> one or more times.
some1 :: Alternative f => f a -> f (NonEmpty a)
-- | <tt><a>take</a> n xs</tt> returns the first <tt>n</tt> elements of
-- <tt>xs</tt>.
take :: Int -> NonEmpty a -> [a]
-- | <tt><a>drop</a> n xs</tt> drops the first <tt>n</tt> elements off the
-- front of the sequence <tt>xs</tt>.
drop :: Int -> NonEmpty a -> [a]
-- | <tt><a>splitAt</a> n xs</tt> returns a pair consisting of the prefix
-- of <tt>xs</tt> of length <tt>n</tt> and the remaining stream
-- immediately following this prefix.
--
-- <pre>
-- 'splitAt' n xs == ('take' n xs, 'drop' n xs)
-- xs == ys ++ zs where (ys, zs) = 'splitAt' n xs
-- </pre>
splitAt :: Int -> NonEmpty a -> ([a], [a])
-- | <tt><a>takeWhile</a> p xs</tt> returns the longest prefix of the
-- stream <tt>xs</tt> for which the predicate <tt>p</tt> holds.
takeWhile :: (a -> Bool) -> NonEmpty a -> [a]
-- | <tt><a>dropWhile</a> p xs</tt> returns the suffix remaining after
-- <tt><a>takeWhile</a> p xs</tt>.
dropWhile :: (a -> Bool) -> NonEmpty a -> [a]
-- | <tt><a>span</a> p xs</tt> returns the longest prefix of <tt>xs</tt>
-- that satisfies <tt>p</tt>, together with the remainder of the stream.
--
-- <pre>
-- 'span' p xs == ('takeWhile' p xs, 'dropWhile' p xs)
-- xs == ys ++ zs where (ys, zs) = 'span' p xs
-- </pre>
span :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | The <tt><a>break</a> p</tt> function is equivalent to <tt><a>span</a>
-- (not . p)</tt>.
break :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | <tt><a>filter</a> p xs</tt> removes any elements from <tt>xs</tt> that
-- do not satisfy <tt>p</tt>.
filter :: (a -> Bool) -> NonEmpty a -> [a]
-- | The <a>partition</a> function takes a predicate <tt>p</tt> and a
-- stream <tt>xs</tt>, and returns a pair of lists. The first list
-- corresponds to the elements of <tt>xs</tt> for which <tt>p</tt> holds;
-- the second corresponds to the elements of <tt>xs</tt> for which
-- <tt>p</tt> does not hold.
--
-- <pre>
-- 'partition' p xs = ('filter' p xs, 'filter' (not . p) xs)
-- </pre>
partition :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | The <a>group</a> function takes a stream and returns a list of streams
-- such that flattening the resulting list is equal to the argument.
-- Moreover, each stream in the resulting list contains only equal
-- elements. For example, in list notation:
--
-- <pre>
-- 'group' $ 'cycle' "Mississippi" = "M" : "i" : "ss" : "i" : "ss" : "i" : "pp" : "i" : "M" : "i" : ...
-- </pre>
group :: (Foldable f, Eq a) => f a -> [NonEmpty a]
-- | <a>groupBy</a> operates like <a>group</a>, but uses the provided
-- equality predicate instead of <a>==</a>.
groupBy :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a]
-- | <a>groupWith</a> operates like <a>group</a>, but uses the provided
-- projection when comparing for equality
groupWith :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a]
-- | <a>groupAllWith</a> operates like <a>groupWith</a>, but sorts the list
-- first so that each equivalence class has, at most, one list in the
-- output
groupAllWith :: (Ord b) => (a -> b) -> [a] -> [NonEmpty a]
-- | <a>group1</a> operates like <a>group</a>, but uses the knowledge that
-- its input is non-empty to produce guaranteed non-empty output.
group1 :: Eq a => NonEmpty a -> NonEmpty (NonEmpty a)
-- | <a>groupBy1</a> is to <a>group1</a> as <a>groupBy</a> is to
-- <a>group</a>.
groupBy1 :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty (NonEmpty a)
-- | <a>groupWith1</a> is to <a>group1</a> as <a>groupWith</a> is to
-- <a>group</a>
groupWith1 :: (Eq b) => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a)
-- | <a>groupAllWith1</a> is to <a>groupWith1</a> as <a>groupAllWith</a> is
-- to <a>groupWith</a>
groupAllWith1 :: (Ord b) => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a)
-- | The <tt>isPrefix</tt> function returns <tt>True</tt> if the first
-- argument is a prefix of the second.
isPrefixOf :: Eq a => [a] -> NonEmpty a -> Bool
-- | The <a>nub</a> function removes duplicate elements from a list. In
-- particular, it keeps only the first occurence of each element. (The
-- name <a>nub</a> means 'essence'.) It is a special case of
-- <a>nubBy</a>, which allows the programmer to supply their own
-- inequality test.
nub :: Eq a => NonEmpty a -> NonEmpty a
-- | The <a>nubBy</a> function behaves just like <a>nub</a>, except it uses
-- a user-supplied equality predicate instead of the overloaded <a>==</a>
-- function.
nubBy :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty a
-- | <tt>xs !! n</tt> returns the element of the stream <tt>xs</tt> at
-- index <tt>n</tt>. Note that the head of the stream has index 0.
--
-- <i>Beware</i>: a negative or out-of-bounds index will cause an error.
(!!) :: NonEmpty a -> Int -> a
-- | The <a>zip</a> function takes two streams and returns a stream of
-- corresponding pairs.
zip :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b)
-- | The <a>zipWith</a> function generalizes <a>zip</a>. Rather than
-- tupling the elements, the elements are combined using the function
-- passed as the first argument.
zipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
-- | The <a>unzip</a> function is the inverse of the <a>zip</a> function.
unzip :: Functor f => f (a, b) -> (f a, f b)
-- | Converts a normal list to a <a>NonEmpty</a> stream.
--
-- Raises an error if given an empty list.
fromList :: [a] -> NonEmpty a
-- | Convert a stream to a normal list efficiently.
toList :: NonEmpty a -> [a]
-- | <a>nonEmpty</a> efficiently turns a normal list into a <a>NonEmpty</a>
-- stream, producing <a>Nothing</a> if the input is empty.
nonEmpty :: [a] -> Maybe (NonEmpty a)
xor :: NonEmpty Bool -> Bool
instance GHC.Generics.Constructor Data.List.NonEmpty.C1_0NonEmpty
instance GHC.Generics.Datatype Data.List.NonEmpty.D1NonEmpty
instance GHC.Generics.Generic1 Data.List.NonEmpty.NonEmpty
instance GHC.Generics.Generic (Data.List.NonEmpty.NonEmpty a)
instance Data.Data.Data a => Data.Data.Data (Data.List.NonEmpty.NonEmpty a)
instance GHC.Read.Read a => GHC.Read.Read (Data.List.NonEmpty.NonEmpty a)
instance GHC.Show.Show a => GHC.Show.Show (Data.List.NonEmpty.NonEmpty a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.List.NonEmpty.NonEmpty a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.List.NonEmpty.NonEmpty a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.List.NonEmpty.NonEmpty a)
instance GHC.Exts.IsList (Data.List.NonEmpty.NonEmpty a)
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.List.NonEmpty.NonEmpty a)
instance Control.Monad.Fix.MonadFix Data.List.NonEmpty.NonEmpty
instance Control.Monad.Zip.MonadZip Data.List.NonEmpty.NonEmpty
instance GHC.Base.Functor Data.List.NonEmpty.NonEmpty
instance GHC.Base.Applicative Data.List.NonEmpty.NonEmpty
instance GHC.Base.Monad Data.List.NonEmpty.NonEmpty
instance Data.Traversable.Traversable Data.List.NonEmpty.NonEmpty
instance Data.Foldable.Foldable Data.List.NonEmpty.NonEmpty
-- | In mathematics, a semigroup is an algebraic structure consisting of a
-- set together with an associative binary operation. A semigroup
-- generalizes a monoid in that there might not exist an identity
-- element. It also (originally) generalized a group (a monoid with all
-- inverses) to a type where every element did not have to have an
-- inverse, thus the name semigroup.
--
-- The use of <tt>(<>)</tt> in this module conflicts with an
-- operator with the same name that is being exported by Data.Monoid.
-- However, this package re-exports (most of) the contents of
-- Data.Monoid, so to use semigroups and monoids in the same package just
--
-- <pre>
-- import Data.Semigroup
-- </pre>
module Data.Semigroup
class Semigroup a where (<>) = mappend sconcat (a :| as) = go a as where go b (c : cs) = b <> go c cs go b [] = b stimes y0 x0 | y0 <= 0 = error "stimes: positive multiplier expected" | otherwise = f x0 y0 where f x y | even y = f (x <> x) (y `quot` 2) | y == 1 = x | otherwise = g (x <> x) (pred y `quot` 2) x g x y z | even y = g (x <> x) (y `quot` 2) z | y == 1 = x <> z | otherwise = g (x <> x) (pred y `quot` 2) (x <> z)
-- | An associative operation.
--
-- <pre>
-- (a <a><></a> b) <a><></a> c = a <a><></a> (b <a><></a> c)
-- </pre>
--
-- If <tt>a</tt> is also a <a>Monoid</a> we further require
--
-- <pre>
-- (<a><></a>) = <a>mappend</a>
-- </pre>
(<>) :: Semigroup a => a -> a -> a
-- | Reduce a non-empty list with <tt><></tt>
--
-- The default definition should be sufficient, but this can be
-- overridden for efficiency.
sconcat :: Semigroup a => NonEmpty a -> a
-- | Repeat a value <tt>n</tt> times.
--
-- Given that this works on a <a>Semigroup</a> it is allowed to fail if
-- you request 0 or fewer repetitions, and the default definition will do
-- so.
--
-- By making this a member of the class, idempotent semigroups and
-- monoids can upgrade this to execute in <i>O(1)</i> by picking
-- <tt>stimes = stimesIdempotent</tt> or <tt>stimes =
-- stimesIdempotentMonoid</tt> respectively.
stimes :: (Semigroup a, Integral b) => b -> a -> a
-- | This is a valid definition of <a>stimes</a> for a <a>Monoid</a>.
--
-- Unlike the default definition of <a>stimes</a>, it is defined for 0
-- and so it should be preferred where possible.
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
-- | This is a valid definition of <a>stimes</a> for an idempotent
-- <a>Semigroup</a>.
--
-- When <tt>x <> x = x</tt>, this definition should be preferred,
-- because it works in <i>O(1)</i> rather than <i>O(log n)</i>.
stimesIdempotent :: Integral b => b -> a -> a
-- | This is a valid definition of <a>stimes</a> for an idempotent
-- <a>Monoid</a>.
--
-- When <tt>mappend x x = x</tt>, this definition should be preferred,
-- because it works in <i>O(1)</i> rather than <i>O(log n)</i>
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
-- | Repeat a value <tt>n</tt> times.
--
-- <pre>
-- mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
-- </pre>
--
-- Implemented using <a>stimes</a> and <a>mempty</a>.
--
-- This is a suitable definition for an <tt>mtimes</tt> member of
-- <a>Monoid</a>.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
newtype Min a
Min :: a -> Min a
[getMin] :: Min a -> a
newtype Max a
Max :: a -> Max a
[getMax] :: Max a -> a
-- | Use <tt><a>Option</a> (<a>First</a> a)</tt> to get the behavior of
-- <a>First</a> from <tt>Data.Monoid</tt>.
newtype First a
First :: a -> First a
[getFirst] :: First a -> a
-- | Use <tt><a>Option</a> (<a>Last</a> a)</tt> to get the behavior of
-- <a>Last</a> from <tt>Data.Monoid</tt>
newtype Last a
Last :: a -> Last a
[getLast] :: Last a -> a
-- | Provide a Semigroup for an arbitrary Monoid.
newtype WrappedMonoid m
WrapMonoid :: m -> WrappedMonoid m
[unwrapMonoid] :: WrappedMonoid m -> m
-- | The class of monoids (types with an associative binary operation that
-- has an identity). Instances should satisfy the following laws:
--
-- <ul>
-- <li><pre>mappend mempty x = x</pre></li>
-- <li><pre>mappend x mempty = x</pre></li>
-- <li><pre>mappend x (mappend y z) = mappend (mappend x y) z</pre></li>
-- <li><pre>mconcat = <a>foldr</a> mappend mempty</pre></li>
-- </ul>
--
-- The method names refer to the monoid of lists under concatenation, but
-- there are many other instances.
--
-- Some types can be viewed as a monoid in more than one way, e.g. both
-- addition and multiplication on numbers. In such cases we often define
-- <tt>newtype</tt>s and make those instances of <a>Monoid</a>, e.g.
-- <tt>Sum</tt> and <tt>Product</tt>.
class Monoid a
-- | Identity of <a>mappend</a>
mempty :: Monoid a => a
-- | An associative operation
mappend :: Monoid a => a -> a -> a
-- | Fold a list using the monoid. For most types, the default definition
-- for <a>mconcat</a> will be used, but the function is included in the
-- class definition so that an optimized version can be provided for
-- specific types.
mconcat :: Monoid a => [a] -> a
-- | The dual of a <a>Monoid</a>, obtained by swapping the arguments of
-- <a>mappend</a>.
newtype Dual a :: * -> *
Dual :: a -> Dual a
[getDual] :: Dual a -> a
-- | The monoid of endomorphisms under composition.
newtype Endo a :: * -> *
Endo :: (a -> a) -> Endo a
[appEndo] :: Endo a -> a -> a
-- | Boolean monoid under conjunction (<a>&&</a>).
newtype All :: *
All :: Bool -> All
[getAll] :: All -> Bool
-- | Boolean monoid under disjunction (<a>||</a>).
newtype Any :: *
Any :: Bool -> Any
[getAny] :: Any -> Bool
-- | Monoid under addition.
newtype Sum a :: * -> *
Sum :: a -> Sum a
[getSum] :: Sum a -> a
-- | Monoid under multiplication.
newtype Product a :: * -> *
Product :: a -> Product a
[getProduct] :: Product a -> a
-- | <a>Option</a> is effectively <a>Maybe</a> with a better instance of
-- <a>Monoid</a>, built off of an underlying <a>Semigroup</a> instead of
-- an underlying <a>Monoid</a>.
--
-- Ideally, this type would not exist at all and we would just fix the
-- <a>Monoid</a> instance of <a>Maybe</a>
newtype Option a
Option :: Maybe a -> Option a
[getOption] :: Option a -> Maybe a
-- | Fold an <a>Option</a> case-wise, just like <a>maybe</a>.
option :: b -> (a -> b) -> Option a -> b
-- | This lets you use a difference list of a <a>Semigroup</a> as a
-- <a>Monoid</a>.
diff :: Semigroup m => m -> Endo m
-- | A generalization of <a>cycle</a> to an arbitrary <a>Semigroup</a>. May
-- fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
-- | <a>Arg</a> isn't itself a <a>Semigroup</a> in its own right, but it
-- can be placed inside <a>Min</a> and <a>Max</a> to compute an arg min
-- or arg max.
data Arg a b
Arg :: a -> b -> Arg a b
type ArgMin a b = Min (Arg a b)
type ArgMax a b = Max (Arg a b)
instance GHC.Generics.Selector Data.Semigroup.S1_0_0Option
instance GHC.Generics.Constructor Data.Semigroup.C1_0Option
instance GHC.Generics.Datatype Data.Semigroup.D1Option
instance GHC.Generics.Selector Data.Semigroup.S1_0_0WrappedMonoid
instance GHC.Generics.Constructor Data.Semigroup.C1_0WrappedMonoid
instance GHC.Generics.Datatype Data.Semigroup.D1WrappedMonoid
instance GHC.Generics.Selector Data.Semigroup.S1_0_0Last
instance GHC.Generics.Constructor Data.Semigroup.C1_0Last
instance GHC.Generics.Datatype Data.Semigroup.D1Last
instance GHC.Generics.Selector Data.Semigroup.S1_0_0First
instance GHC.Generics.Constructor Data.Semigroup.C1_0First
instance GHC.Generics.Datatype Data.Semigroup.D1First
instance GHC.Generics.Constructor Data.Semigroup.C1_0Arg
instance GHC.Generics.Datatype Data.Semigroup.D1Arg
instance GHC.Generics.Selector Data.Semigroup.S1_0_0Max
instance GHC.Generics.Constructor Data.Semigroup.C1_0Max
instance GHC.Generics.Datatype Data.Semigroup.D1Max
instance GHC.Generics.Selector Data.Semigroup.S1_0_0Min
instance GHC.Generics.Constructor Data.Semigroup.C1_0Min
instance GHC.Generics.Datatype Data.Semigroup.D1Min
instance GHC.Generics.Generic1 Data.Semigroup.Option
instance GHC.Generics.Generic (Data.Semigroup.Option a)
instance Data.Data.Data a => Data.Data.Data (Data.Semigroup.Option a)
instance GHC.Read.Read a => GHC.Read.Read (Data.Semigroup.Option a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Semigroup.Option a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.Option a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.Option a)
instance GHC.Generics.Generic1 Data.Semigroup.WrappedMonoid
instance GHC.Generics.Generic (Data.Semigroup.WrappedMonoid m)
instance Data.Data.Data m => Data.Data.Data (Data.Semigroup.WrappedMonoid m)
instance GHC.Read.Read m => GHC.Read.Read (Data.Semigroup.WrappedMonoid m)
instance GHC.Show.Show m => GHC.Show.Show (Data.Semigroup.WrappedMonoid m)
instance GHC.Classes.Ord m => GHC.Classes.Ord (Data.Semigroup.WrappedMonoid m)
instance GHC.Classes.Eq m => GHC.Classes.Eq (Data.Semigroup.WrappedMonoid m)
instance GHC.Generics.Generic1 Data.Semigroup.Last
instance GHC.Generics.Generic (Data.Semigroup.Last a)
instance Data.Data.Data a => Data.Data.Data (Data.Semigroup.Last a)
instance GHC.Read.Read a => GHC.Read.Read (Data.Semigroup.Last a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Semigroup.Last a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.Last a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.Last a)
instance GHC.Generics.Generic1 Data.Semigroup.First
instance GHC.Generics.Generic (Data.Semigroup.First a)
instance Data.Data.Data a => Data.Data.Data (Data.Semigroup.First a)
instance GHC.Read.Read a => GHC.Read.Read (Data.Semigroup.First a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Semigroup.First a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.First a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.First a)
instance GHC.Generics.Generic1 (Data.Semigroup.Arg a)
instance GHC.Generics.Generic (Data.Semigroup.Arg a b)
instance (Data.Data.Data a, Data.Data.Data b) => Data.Data.Data (Data.Semigroup.Arg a b)
instance (GHC.Read.Read a, GHC.Read.Read b) => GHC.Read.Read (Data.Semigroup.Arg a b)
instance (GHC.Show.Show a, GHC.Show.Show b) => GHC.Show.Show (Data.Semigroup.Arg a b)
instance GHC.Generics.Generic1 Data.Semigroup.Max
instance GHC.Generics.Generic (Data.Semigroup.Max a)
instance Data.Data.Data a => Data.Data.Data (Data.Semigroup.Max a)
instance GHC.Read.Read a => GHC.Read.Read (Data.Semigroup.Max a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Semigroup.Max a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.Max a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.Max a)
instance GHC.Generics.Generic1 Data.Semigroup.Min
instance GHC.Generics.Generic (Data.Semigroup.Min a)
instance Data.Data.Data a => Data.Data.Data (Data.Semigroup.Min a)
instance GHC.Read.Read a => GHC.Read.Read (Data.Semigroup.Min a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Semigroup.Min a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.Min a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.Min a)
instance Data.Semigroup.Semigroup ()
instance Data.Semigroup.Semigroup b => Data.Semigroup.Semigroup (a -> b)
instance Data.Semigroup.Semigroup [a]
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (GHC.Base.Maybe a)
instance Data.Semigroup.Semigroup (Data.Either.Either a b)
instance (Data.Semigroup.Semigroup a, Data.Semigroup.Semigroup b) => Data.Semigroup.Semigroup (a, b)
instance (Data.Semigroup.Semigroup a, Data.Semigroup.Semigroup b, Data.Semigroup.Semigroup c) => Data.Semigroup.Semigroup (a, b, c)
instance (Data.Semigroup.Semigroup a, Data.Semigroup.Semigroup b, Data.Semigroup.Semigroup c, Data.Semigroup.Semigroup d) => Data.Semigroup.Semigroup (a, b, c, d)
instance (Data.Semigroup.Semigroup a, Data.Semigroup.Semigroup b, Data.Semigroup.Semigroup c, Data.Semigroup.Semigroup d, Data.Semigroup.Semigroup e) => Data.Semigroup.Semigroup (a, b, c, d, e)
instance Data.Semigroup.Semigroup GHC.Types.Ordering
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Monoid.Dual a)
instance Data.Semigroup.Semigroup (Data.Monoid.Endo a)
instance Data.Semigroup.Semigroup Data.Monoid.All
instance Data.Semigroup.Semigroup Data.Monoid.Any
instance GHC.Num.Num a => Data.Semigroup.Semigroup (Data.Monoid.Sum a)
instance GHC.Num.Num a => Data.Semigroup.Semigroup (Data.Monoid.Product a)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Control.Applicative.Const a b)
instance Data.Semigroup.Semigroup (Data.Monoid.First a)
instance Data.Semigroup.Semigroup (Data.Monoid.Last a)
instance GHC.Base.Alternative f => Data.Semigroup.Semigroup (Data.Monoid.Alt f a)
instance Data.Semigroup.Semigroup Data.Void.Void
instance Data.Semigroup.Semigroup (Data.List.NonEmpty.NonEmpty a)
instance GHC.Enum.Bounded a => GHC.Enum.Bounded (Data.Semigroup.Min a)
instance GHC.Enum.Enum a => GHC.Enum.Enum (Data.Semigroup.Min a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.Min a)
instance GHC.Classes.Ord a => Data.Semigroup.Semigroup (Data.Semigroup.Min a)
instance (GHC.Classes.Ord a, GHC.Enum.Bounded a) => GHC.Base.Monoid (Data.Semigroup.Min a)
instance GHC.Base.Functor Data.Semigroup.Min
instance Data.Foldable.Foldable Data.Semigroup.Min
instance Data.Traversable.Traversable Data.Semigroup.Min
instance GHC.Base.Applicative Data.Semigroup.Min
instance GHC.Base.Monad Data.Semigroup.Min
instance Control.Monad.Fix.MonadFix Data.Semigroup.Min
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Semigroup.Min a)
instance GHC.Num.Num a => GHC.Num.Num (Data.Semigroup.Min a)
instance GHC.Enum.Bounded a => GHC.Enum.Bounded (Data.Semigroup.Max a)
instance GHC.Enum.Enum a => GHC.Enum.Enum (Data.Semigroup.Max a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.Max a)
instance GHC.Classes.Ord a => Data.Semigroup.Semigroup (Data.Semigroup.Max a)
instance (GHC.Classes.Ord a, GHC.Enum.Bounded a) => GHC.Base.Monoid (Data.Semigroup.Max a)
instance GHC.Base.Functor Data.Semigroup.Max
instance Data.Foldable.Foldable Data.Semigroup.Max
instance Data.Traversable.Traversable Data.Semigroup.Max
instance GHC.Base.Applicative Data.Semigroup.Max
instance GHC.Base.Monad Data.Semigroup.Max
instance Control.Monad.Fix.MonadFix Data.Semigroup.Max
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Semigroup.Max a)
instance GHC.Num.Num a => GHC.Num.Num (Data.Semigroup.Max a)
instance GHC.Base.Functor (Data.Semigroup.Arg a)
instance Data.Foldable.Foldable (Data.Semigroup.Arg a)
instance Data.Traversable.Traversable (Data.Semigroup.Arg a)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Semigroup.Arg a b)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Semigroup.Arg a b)
instance (Control.DeepSeq.NFData a, Control.DeepSeq.NFData b) => Control.DeepSeq.NFData (Data.Semigroup.Arg a b)
instance (Data.Hashable.Class.Hashable a, Data.Hashable.Class.Hashable b) => Data.Hashable.Class.Hashable (Data.Semigroup.Arg a b)
instance Data.Bifunctor.Bifunctor Data.Semigroup.Arg
instance GHC.Enum.Bounded a => GHC.Enum.Bounded (Data.Semigroup.First a)
instance GHC.Enum.Enum a => GHC.Enum.Enum (Data.Semigroup.First a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.First a)
instance Data.Semigroup.Semigroup (Data.Semigroup.First a)
instance GHC.Base.Functor Data.Semigroup.First
instance Data.Foldable.Foldable Data.Semigroup.First
instance Data.Traversable.Traversable Data.Semigroup.First
instance GHC.Base.Applicative Data.Semigroup.First
instance GHC.Base.Monad Data.Semigroup.First
instance Control.Monad.Fix.MonadFix Data.Semigroup.First
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Semigroup.First a)
instance GHC.Enum.Bounded a => GHC.Enum.Bounded (Data.Semigroup.Last a)
instance GHC.Enum.Enum a => GHC.Enum.Enum (Data.Semigroup.Last a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.Last a)
instance Data.Semigroup.Semigroup (Data.Semigroup.Last a)
instance GHC.Base.Functor Data.Semigroup.Last
instance Data.Foldable.Foldable Data.Semigroup.Last
instance Data.Traversable.Traversable Data.Semigroup.Last
instance GHC.Base.Applicative Data.Semigroup.Last
instance GHC.Base.Monad Data.Semigroup.Last
instance Control.Monad.Fix.MonadFix Data.Semigroup.Last
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Semigroup.Last a)
instance Data.Semigroup.Semigroup Data.ByteString.Internal.ByteString
instance Data.Semigroup.Semigroup Data.ByteString.Lazy.Internal.ByteString
instance Data.Semigroup.Semigroup Data.ByteString.Builder.Internal.Builder
instance Data.Semigroup.Semigroup Data.ByteString.Short.Internal.ShortByteString
instance Data.Semigroup.Semigroup Data.Text.Internal.Text
instance Data.Semigroup.Semigroup Data.Text.Internal.Lazy.Text
instance Data.Semigroup.Semigroup Data.Text.Internal.Builder.Builder
instance (Data.Hashable.Class.Hashable k, GHC.Classes.Eq k) => Data.Semigroup.Semigroup (Data.HashMap.Base.HashMap k a)
instance (Data.Hashable.Class.Hashable a, GHC.Classes.Eq a) => Data.Semigroup.Semigroup (Data.HashSet.HashSet a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.WrappedMonoid a)
instance GHC.Base.Monoid m => Data.Semigroup.Semigroup (Data.Semigroup.WrappedMonoid m)
instance GHC.Base.Monoid m => GHC.Base.Monoid (Data.Semigroup.WrappedMonoid m)
instance GHC.Enum.Bounded a => GHC.Enum.Bounded (Data.Semigroup.WrappedMonoid a)
instance GHC.Enum.Enum a => GHC.Enum.Enum (Data.Semigroup.WrappedMonoid a)
instance Control.DeepSeq.NFData m => Control.DeepSeq.NFData (Data.Semigroup.WrappedMonoid m)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Semigroup.Option a)
instance GHC.Base.Functor Data.Semigroup.Option
instance GHC.Base.Applicative Data.Semigroup.Option
instance GHC.Base.Monad Data.Semigroup.Option
instance GHC.Base.Alternative Data.Semigroup.Option
instance GHC.Base.MonadPlus Data.Semigroup.Option
instance Control.Monad.Fix.MonadFix Data.Semigroup.Option
instance Data.Foldable.Foldable Data.Semigroup.Option
instance Data.Traversable.Traversable Data.Semigroup.Option
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Semigroup.Option a)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Semigroup.Option a)
instance Data.Semigroup.Semigroup a => GHC.Base.Monoid (Data.Semigroup.Option a)
instance Data.Semigroup.Semigroup (Data.Sequence.Seq a)
instance Data.Semigroup.Semigroup Data.IntSet.Base.IntSet
instance GHC.Classes.Ord a => Data.Semigroup.Semigroup (Data.Set.Base.Set a)
instance Data.Semigroup.Semigroup (Data.IntMap.Base.IntMap v)
instance GHC.Classes.Ord k => Data.Semigroup.Semigroup (Data.Map.Base.Map k v)
instance forall (k :: BOX) (s :: k). Data.Semigroup.Semigroup (Data.Proxy.Proxy s)
instance forall (k :: BOX) (s :: k) a. Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Tagged.Tagged s a)
-- | This module provides generic deriving tools for monoids and semigroups
-- for product-like structures.
module Data.Semigroup.Generic
class GSemigroup f
-- | Generically generate a <a>Semigroup</a> (<a><></a>) operation
-- for any type implementing <a>Generic</a>. This operation will append
-- two values by point-wise appending their component fields. It is only
-- defined for product types.
--
-- <pre>
-- <a>gmappend</a> a (<a>gmappend</a> b c) = <a>gmappend</a> (<a>gmappend</a> a b) c
-- </pre>
gmappend :: (Generic a, GSemigroup (Rep a)) => a -> a -> a
class GSemigroup f => GMonoid f
-- | Generically generate a <a>Monoid</a> <a>mempty</a> for any
-- product-like type implementing <a>Generic</a>.
--
-- It is only defined for product types.
--
-- <pre>
-- <a>gmappend</a> <a>gmempty</a> a = a = <a>gmappend</a> a <a>gmempty</a>
-- </pre>
gmempty :: (Generic a, GMonoid (Rep a)) => a
instance Data.Semigroup.Generic.GSemigroup GHC.Generics.U1
instance Data.Semigroup.Generic.GSemigroup GHC.Generics.V1
instance Data.Semigroup.Semigroup a => Data.Semigroup.Generic.GSemigroup (GHC.Generics.K1 i a)
instance Data.Semigroup.Generic.GSemigroup f => Data.Semigroup.Generic.GSemigroup (GHC.Generics.M1 i c f)
instance (Data.Semigroup.Generic.GSemigroup f, Data.Semigroup.Generic.GSemigroup g) => Data.Semigroup.Generic.GSemigroup (f GHC.Generics.:*: g)
instance Data.Semigroup.Generic.GMonoid GHC.Generics.U1
instance (Data.Semigroup.Semigroup a, GHC.Base.Monoid a) => Data.Semigroup.Generic.GMonoid (GHC.Generics.K1 i a)
instance Data.Semigroup.Generic.GMonoid f => Data.Semigroup.Generic.GMonoid (GHC.Generics.M1 i c f)
instance (Data.Semigroup.Generic.GMonoid f, Data.Semigroup.Generic.GMonoid g) => Data.Semigroup.Generic.GMonoid (f GHC.Generics.:*: g)
|