/usr/share/perl5/MCE/Examples.pod is in libmce-perl 1.608-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | =head1 NAME
MCE::Examples - A list of examples demonstrating Many-Core Engine
=head1 VERSION
This document describes MCE::Examples version 1.608
=head1 DESCRIPTION
MCE comes with various examples showing real-world scenarios on parallelizing
something as small as cat (try with -n) to searching for patterns and word
count aggregation. MCE 1.522 adds sampledb to the list demonstrating DBI
with MCE. MCE 1.600 adds biofasta (folder), mutex.pl, and relay.pl.
=head1 INCLUDED WITH THE DISTRIBUTION
A wrapper script for parallelizing the grep binary. Hence, processing is done
by the binary, not Perl. This wrapper resides under the bin directory.
mce_grep
A wrapper script with support for the following C binaries.
agrep, grep, egrep, fgrep, and tre-agrep
Chunking may be applied either at the [file] level, for large
file(s), or at the [list] level when parsing many files
recursively.
The gain in performance is noticeable for expensive patterns,
especially with agrep and tre-agrep.
The following scripts are located under the examples directory.
cat.pl, egrep.pl, wc.pl
Concatenation, egrep, and word count scripts similar to the
cat, egrep, and wc binaries respectively.
files_flow.pl, files_mce.pl, files_thr.pl
Demonstrates MCE::Flow, MCE::Queue, and Thread::Queue.
See MCE::Queue synopsis for another variation.
findnull.pl
A parallel script for reporting lines containing null fields.
It is many times faster than the egrep binary. Try this against
a large file containing very long lines.
flow_demo.pl, flow_model.pl
Demonstrates MCE::Flow, MCE::Queue, and MCE->gather.
foreach.pl, forseq.pl, forchunk.pl
These examples demonstrate the sqrt example from Parallel::Loops
(Parallel::Loops v0.07 utilizing Parallel::ForkManager v1.07).
Testing was on a Linux VM; Perl v5.20.1; Haswell i7 at 2.6 GHz.
The number indicates the size of input displayed in 1 second.
Output was directed to >/dev/null.
Parallel::Loops: 1,600 Forking each @input is expensive
MCE->foreach...: 23,000 Workers persist between each @input
MCE->forseq....: 200,000 Uses sequence of numbers as input
MCE->forchunk..: 800,000 IPC overhead is greatly reduced
interval.pl, mutex.pl, relay.pl
Demonstration of the interval option appearing in MCE 1.5.
Mutex locking and relaying data among workers.
iterator.pl
Similar to forseq.pl. Specifies an iterator for input_data.
A factory function is called which returns a closure.
pipe1.pl, pipe2.pl
Process STDIN or FILE in parallel. Processing is via Perl for
pipe1.pl, whereas an external command for pipe2.pl.
seq_demo.pl, step_demo.pl
Demonstration of the new sequence option appearing in MCE 1.3.
Run with seq_demo.pl | sort
Transparent use of MCE::Queue with MCE::Step.
sync.pl, utf8.pl
Barrier synchronization demonstration.
Process input containing unicode data.
The rest are organized into various sub directories.
biofasta/fasta_aidx.pl, fasta_rdr*.pl
Parallel demonstration for Bioinformatics.
matmult/matmult_base*.pl, matmult_mce*.pl, strassen_mce*.pl
Various matrix multiplication demonstrations benchmarking
PDL, PDL + MCE, as well as parallelizing Strassen's
divide-and-conquer algorithm. Included are 2 plain
Perl examples.
sampledb/create.pl, query*.pl, update*.pl
Examples demonstrating DBI (SQLite) with MCE.
tbray/wf_mce1.pl, wf_mce2.pl, wf_mce3.pl
An implementation of wide finder utilizing MCE.
As fast as MMAP IO when file resides in OS FS cache.
2x ~ 3x faster when reading directly from disk.
=head1 CHUNK_SIZE => 1 (in essence, wanting no chunking on input data)
Imagine a long running process and wanting to parallelize an array against a
pool of workers. The sequence option may be used if simply wanting to loop
through a sequence of numbers instead.
Below, a callback function is used for displaying results. The logic shows
how one can output results immediately while still preserving output order
as if processing serially. The %tmp hash is a temporary cache for
out-of-order results.
use MCE;
## Return an iterator for preserving output order.
sub preserve_order {
my (%result_n, %result_d); my $order_id = 1;
return sub {
my ($chunk_id, $n, $data) = @_;
$result_n{ $chunk_id } = $n;
$result_d{ $chunk_id } = $data;
while (1) {
last unless exists $result_d{$order_id};
printf "n: %5d sqrt(n): %7.3f\n",
$result_n{$order_id}, $result_d{$order_id};
delete $result_n{$order_id};
delete $result_d{$order_id};
$order_id++;
}
return;
};
}
## Use $chunk_ref->[0] or $_ to retrieve the element.
my @input_data = (0 .. 18000 - 1);
my $mce = MCE->new(
gather => preserve_order, input_data => \@input_data,
chunk_size => 1, max_workers => 3,
user_func => sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
MCE->gather($chunk_id, $_, sqrt($_));
}
);
$mce->run;
This does the same thing using the foreach "sugar" method.
use MCE;
sub preserve_order {
...
}
my $mce = MCE->new(
chunk_size => 1, max_workers => 3,
gather => preserve_order
);
## Use $chunk_ref->[0] or $_ to retrieve the element.
my @input_data = (0 .. 18000 - 1);
$mce->foreach( \@input_data, sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
MCE->gather($chunk_id, $_, sqrt($_));
});
The 2 examples described above were done using the Core API. MCE 1.5 comes
with several models. The L<MCE::Loop|MCE::Loop> model is used below.
use MCE::Loop;
sub preserve_order {
...
}
MCE::Loop::init {
chunk_size => 1, max_workers => 3,
gather => preserve_order
};
## Use $chunk_ref->[0] or $_ to retrieve the element.
my @input_data = (0 .. 18000 - 1);
mce_loop {
my ($mce, $chunk_ref, $chunk_id) = @_;
MCE->gather($chunk_id, $_, sqrt($_));
} @input_data;
MCE::Loop::finish;
=head1 CHUNKING INPUT_DATA
Chunking has the effect of reducing IPC overhead by many folds. A chunk
containing $chunk_size items is sent to the next available worker.
use MCE;
## Return an iterator for preserving output order.
sub preserve_order {
my (%result_n, %result_d, $size); my $order_id = 1;
return sub {
my ($chunk_id, $n_ref, $data_ref) = @_;
$result_n{ $chunk_id } = $n_ref;
$result_d{ $chunk_id } = $data_ref;
while (1) {
last unless exists $result_d{$order_id};
$size = @{ $result_d{$order_id} };
for (0 .. $size - 1) {
printf "n: %5d sqrt(n): %7.3f\n",
$result_n{$order_id}->[$_], $result_d{$order_id}->[$_];
}
delete $result_n{$order_id};
delete $result_d{$order_id};
$order_id++;
}
return;
};
}
## Chunking requires one to loop inside the code block.
my @input_data = (0 .. 18000 - 1);
my $mce = MCE->new(
gather => preserve_order, input_data => \@input_data,
chunk_size => 500, max_workers => 3,
user_func => sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
my (@n, @result);
foreach ( @{ $chunk_ref } ) {
push @n, $_;
push @result, sqrt($_);
}
MCE->gather($chunk_id, \@n, \@result);
}
);
$mce->run;
This does the same thing using the forchunk "sugar" method.
use MCE;
sub preserve_order {
...
}
my $mce = MCE->new(
chunk_size => 500, max_workers => 3,
gather => preserve_order
);
## Chunking requires one to loop inside the code block.
my @input_data = (0 .. 18000 - 1);
$mce->forchunk( \@input_data, sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
my (@n, @result);
foreach ( @{ $chunk_ref } ) {
push @n, $_;
push @result, sqrt($_);
}
MCE->gather($chunk_id, \@n, \@result);
});
Finally, chunking with the L<MCE::Loop|MCE::Loop> model.
use MCE::Loop;
sub preserve_order {
...
}
MCE::Loop::init {
chunk_size => 500, max_workers => 3,
gather => preserve_order
};
## Chunking requires one to loop inside the code block.
my @input_data = (0 .. 18000 - 1);
mce_loop {
my ($mce, $chunk_ref, $chunk_id) = @_;
my (@n, @result);
foreach ( @{ $chunk_ref } ) {
push @n, $_;
push @result, sqrt($_);
}
MCE->gather($chunk_id, \@n, \@result);
} @input_data;
MCE::Loop::finish;
=head1 DEMO APPLYING SEQUENCES WITH USER_TASKS
The following is an extract from the seq_demo.pl example included with MCE.
Think of having several MCEs running in parallel. The sequence and chunk_size
options may be specified uniquely per each task.
The input scalar $_ (not shown below) contains the same value as $seq_n in
user_func.
use MCE;
use Time::HiRes 'sleep';
## Run with seq_demo.pl | sort
sub user_func {
my ($mce, $seq_n, $chunk_id) = @_;
my $wid = MCE->wid;
my $task_id = MCE->task_id;
my $task_wid = MCE->task_wid;
if (ref $seq_n eq 'ARRAY') {
## seq_n or $_ is an array reference when chunk_size > 1
foreach (@{ $seq_n }) {
MCE->printf(
"task_id %d: seq_n %s: chunk_id %d: wid %d: task_wid %d\n",
$task_id, $_, $chunk_id, $wid, $task_wid
);
}
}
else {
MCE->printf(
"task_id %d: seq_n %s: chunk_id %d: wid %d: task_wid %d\n",
$task_id, $seq_n, $chunk_id, $wid, $task_wid
);
}
sleep 0.003;
return;
}
## Each task can be configured uniquely.
my $mce = MCE->new(
user_tasks => [{
max_workers => 2,
chunk_size => 1,
sequence => { begin => 11, end => 19, step => 1 },
user_func => \&user_func
},{
max_workers => 2,
chunk_size => 5,
sequence => { begin => 21, end => 29, step => 1 },
user_func => \&user_func
},{
max_workers => 2,
chunk_size => 3,
sequence => { begin => 31, end => 39, step => 1 },
user_func => \&user_func
}]
);
$mce->run;
-- Output
task_id 0: seq_n 11: chunk_id 1: wid 2: task_wid 2
task_id 0: seq_n 12: chunk_id 2: wid 1: task_wid 1
task_id 0: seq_n 13: chunk_id 3: wid 2: task_wid 2
task_id 0: seq_n 14: chunk_id 4: wid 1: task_wid 1
task_id 0: seq_n 15: chunk_id 5: wid 2: task_wid 2
task_id 0: seq_n 16: chunk_id 6: wid 1: task_wid 1
task_id 0: seq_n 17: chunk_id 7: wid 2: task_wid 2
task_id 0: seq_n 18: chunk_id 8: wid 1: task_wid 1
task_id 0: seq_n 19: chunk_id 9: wid 2: task_wid 2
task_id 1: seq_n 21: chunk_id 1: wid 3: task_wid 1
task_id 1: seq_n 22: chunk_id 1: wid 3: task_wid 1
task_id 1: seq_n 23: chunk_id 1: wid 3: task_wid 1
task_id 1: seq_n 24: chunk_id 1: wid 3: task_wid 1
task_id 1: seq_n 25: chunk_id 1: wid 3: task_wid 1
task_id 1: seq_n 26: chunk_id 2: wid 4: task_wid 2
task_id 1: seq_n 27: chunk_id 2: wid 4: task_wid 2
task_id 1: seq_n 28: chunk_id 2: wid 4: task_wid 2
task_id 1: seq_n 29: chunk_id 2: wid 4: task_wid 2
task_id 2: seq_n 31: chunk_id 1: wid 5: task_wid 1
task_id 2: seq_n 32: chunk_id 1: wid 5: task_wid 1
task_id 2: seq_n 33: chunk_id 1: wid 5: task_wid 1
task_id 2: seq_n 34: chunk_id 2: wid 6: task_wid 2
task_id 2: seq_n 35: chunk_id 2: wid 6: task_wid 2
task_id 2: seq_n 36: chunk_id 2: wid 6: task_wid 2
task_id 2: seq_n 37: chunk_id 3: wid 5: task_wid 1
task_id 2: seq_n 38: chunk_id 3: wid 5: task_wid 1
task_id 2: seq_n 39: chunk_id 3: wid 5: task_wid 1
=head1 GLOBALLY SCOPED VARIABLES AND MCE MODELS
It is possible that Perl may create a new code ref on subsequent runs causing
MCE models to re-spawn. One solution to this is to declare global variables,
referenced by workers, with "our" instead of "my".
Let's take a look. The $i variable is declared with my and being reference in
both user_begin and mce_loop blocks. This will cause Perl to create a new code
ref for mce_loop on subsequent runs.
use MCE::Loop;
my $i = 0; ## <-- this is the reason, try our instead
MCE::Loop::init {
user_begin => sub {
print "process_id: $$\n" if MCE->wid == 1;
$i++;
},
chunk_size => 1, max_workers => 'auto',
};
for (1..2) {
## Perl creates another code block ref causing workers
## to re-spawn on subsequent runs.
print "\n"; mce_loop { print "$i: $_\n" } 1..4;
}
MCE::Loop::finish;
-- Output
process_id: 51380
1: 1
1: 2
1: 3
1: 4
process_id: 51388
1: 1
1: 2
1: 3
1: 4
By making the one line change, we see that workers persist for the duration of
the script.
use MCE::Loop;
our $i = 0; ## <-- changed my to our
MCE::Loop::init {
user_begin => sub {
print "process_id: $$\n" if MCE->wid == 1;
$i++;
},
chunk_size => 1, max_workers => 'auto',
};
for (1..2) {
## Workers persist between runs. No re-spawning.
print "\n"; mce_loop { print "$i: $_\n" } 1..4;
}
-- Output
process_id: 51457
1: 1
1: 2
1: 4
1: 3
process_id: 51457
2: 1
2: 2
2: 3
2: 4
One may alternatively specify a code reference to existing routines for
user_begin and mce_loop. Take notice of the comma after \&_func though.
use MCE::Loop;
my $i = 0; ## my (ok)
sub _begin {
print "process_id: $$\n" if MCE->wid == 1;
$i++;
}
sub _func {
print "$i: $_\n";
}
MCE::Loop::init {
user_begin => \&_begin,
chunk_size => 1, max_workers => 'auto',
};
for (1..2) {
print "\n"; mce_loop \&_func, 1..4;
}
MCE::Loop::finish;
-- Output
process_id: 51626
1: 1
1: 2
1: 3
1: 4
process_id: 51626
2: 1
2: 2
2: 3
2: 4
=head1 MONTE CARLO SIMULATION
There is an article on the web (search for comp.lang.perl.misc MCE) suggesting
that MCE::Examples does not cover a simple simulation scenario. This section
demonstrates just that.
The serial code is based off the one by "gamo". A sleep is added to imitate
extra CPU time. The while loop is wrapped within a for loop to run 10 times.
The random number generator is seeded as well.
use Time::HiRes qw/sleep time/;
srand 5906;
my ($var, $foo, $bar) = (1, 2, 3);
my ($r, $a, $b);
my $start = time;
for (1..10) {
while (1) {
$r = rand;
$a = $r * ($var + $foo + $bar);
$b = sqrt($var + $foo + $bar);
last if ($a < $b + 0.001 && $a > $b - 0.001);
sleep 0.002;
}
print "$r -> $a\n";
}
my $end = time;
printf {*STDERR} "\n## compute time: %0.03f secs\n\n", $end - $start;
-- Output
0.408246276657106 -> 2.44947765994264
0.408099657137821 -> 2.44859794282693
0.408285842931324 -> 2.44971505758794
0.408342292008765 -> 2.45005375205259
0.408333076522673 -> 2.44999845913604
0.408344266898869 -> 2.45006560139321
0.408084104120526 -> 2.44850462472316
0.408197400014714 -> 2.44918440008828
0.408344783704855 -> 2.45006870222913
0.408248062985479 -> 2.44948837791287
## compute time: 93.049 secs
Next, we'd do the same with MCE. The demonstration requires at least MCE 1.509
to run properly. Folks on prior releases (1.505 - 1.508) will not see output
for the 2nd run and beyond.
use Time::HiRes qw/sleep time/;
use MCE::Loop;
srand 5906;
## Configure MCE. Move common variables inside the user_begin
## block when not needed by the manager process.
MCE::Loop::init {
user_begin => sub {
use vars qw($var $foo $bar);
our ($var, $foo, $bar) = (1, 2, 3);
},
chunk_size => 1, max_workers => 'auto',
input_data => \&_input, gather => \&_gather
};
## Callback functions.
my ($done, $r, $a);
sub _input {
return if $done;
return rand;
}
sub _gather {
my ($_r, $_a, $_b) = @_;
return if $done;
if ($_a < $_b + 0.001 && $_a > $_b - 0.001) {
($done, $r, $a) = (1, $_r, $_a);
}
return;
}
## Compute in parallel.
my $start = time;
for (1..10) {
$done = 0; ## Reset $done before running
mce_loop {
# my ($mce, $chunk_ref, $chunk_id) = @_;
# my $r = $chunk_ref->[0];
my $r = $_; ## Valid due to chunk_size => 1
my $a = $r * ($var + $foo + $bar);
my $b = sqrt($var + $foo + $bar);
MCE->gather($r, $a, $b);
sleep 0.002;
};
print "$r -> $a\n";
}
printf "\n## compute time: %0.03f secs\n\n", time - $start;
-- Output
0.408246276657106 -> 2.44947765994264
0.408099657137821 -> 2.44859794282693
0.408285842931324 -> 2.44971505758794
0.408342292008765 -> 2.45005375205259
0.408333076522673 -> 2.44999845913604
0.408344266898869 -> 2.45006560139321
0.408084104120526 -> 2.44850462472316
0.408197400014714 -> 2.44918440008828
0.408344783704855 -> 2.45006870222913
0.408248062985479 -> 2.44948837791287
## compute time: 12.990 secs
Well, there you have it. MCE is able to complete the same simulation many
times faster.
=head1 MANY WORKERS RUNNING IN PARALLEL
There are occasions when one wants several workers to run in parallel without
having to specify input_data or seqeunce. These two options are optional in
MCE. The "do" and "sendto" methods, for sending data to the manager process,
are demonstrated below. Both process serially by the manager process on a
first come, first serve basis.
use MCE::Flow max_workers => 4;
sub report_stats {
my ($wid, $msg, $h_ref) = @_;
print "Worker $wid says $msg: ", $h_ref->{"counter"}, "\n";
}
mce_flow sub {
my ($mce) = @_;
my $wid = MCE->wid;
if ($wid == 1) {
my %h = ("counter" => 0);
while (1) {
$h{"counter"} += 1;
MCE->do("report_stats", $wid, "Hey there", \%h);
last if ($h{"counter"} == 4);
sleep 2;
}
}
else {
my %h = ("counter" => 0);
while (1) {
$h{"counter"} += 1;
MCE->do("report_stats", $wid, "Welcome..", \%h);
last if ($h{"counter"} == 2);
sleep 4;
}
}
MCE->print(\*STDERR, "Worker $wid is exiting\n");
};
-- Output
Note how worker 2 comes first in the 2nd run below.
$ ./demo.pl
Worker 1 says Hey there: 1
Worker 2 says Welcome..: 1
Worker 3 says Welcome..: 1
Worker 4 says Welcome..: 1
Worker 1 says Hey there: 2
Worker 2 says Welcome..: 2
Worker 3 says Welcome..: 2
Worker 1 says Hey there: 3
Worker 2 is exiting
Worker 3 is exiting
Worker 4 says Welcome..: 2
Worker 4 is exiting
Worker 1 says Hey there: 4
Worker 1 is exiting
$ ./demo.pl
Worker 2 says Welcome..: 1
Worker 1 says Hey there: 1
Worker 4 says Welcome..: 1
Worker 3 says Welcome..: 1
Worker 1 says Hey there: 2
Worker 2 says Welcome..: 2
Worker 4 says Welcome..: 2
Worker 3 says Welcome..: 2
Worker 2 is exiting
Worker 4 is exiting
Worker 1 says Hey there: 3
Worker 3 is exiting
Worker 1 says Hey there: 4
Worker 1 is exiting
=head1 INDEX
L<MCE|MCE>
=head1 AUTHOR
Mario E. Roy, S<E<lt>marioeroy AT gmail DOT comE<gt>>
=cut
|