This file is indexed.

/usr/share/perl5/MCE/Examples.pod is in libmce-perl 1.608-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
=head1 NAME

MCE::Examples - A list of examples demonstrating Many-Core Engine

=head1 VERSION

This document describes MCE::Examples version 1.608

=head1 DESCRIPTION

MCE comes with various examples showing real-world scenarios on parallelizing
something as small as cat (try with -n) to searching for patterns and word
count aggregation. MCE 1.522 adds sampledb to the list demonstrating DBI
with MCE. MCE 1.600 adds biofasta (folder), mutex.pl, and relay.pl.

=head1 INCLUDED WITH THE DISTRIBUTION

A wrapper script for parallelizing the grep binary. Hence, processing is done
by the binary, not Perl. This wrapper resides under the bin directory.

   mce_grep
        A wrapper script with support for the following C binaries.
        agrep, grep, egrep, fgrep, and tre-agrep

        Chunking may be applied either at the [file] level, for large
        file(s), or at the [list] level when parsing many files
        recursively.

        The gain in performance is noticeable for expensive patterns,
        especially with agrep and tre-agrep.

The following scripts are located under the examples directory.

   cat.pl, egrep.pl, wc.pl
        Concatenation, egrep, and word count scripts similar to the
        cat, egrep, and wc binaries respectively.

   files_flow.pl, files_mce.pl, files_thr.pl
        Demonstrates MCE::Flow, MCE::Queue, and Thread::Queue.
        See MCE::Queue synopsis for another variation.

   findnull.pl
        A parallel script for reporting lines containing null fields.
        It is many times faster than the egrep binary. Try this against
        a large file containing very long lines.

   flow_demo.pl, flow_model.pl
        Demonstrates MCE::Flow, MCE::Queue, and MCE->gather.

   foreach.pl, forseq.pl, forchunk.pl
        These examples demonstrate the sqrt example from Parallel::Loops
        (Parallel::Loops v0.07 utilizing Parallel::ForkManager v1.07).

        Testing was on a Linux VM; Perl v5.20.1; Haswell i7 at 2.6 GHz.
        The number indicates the size of input displayed in 1 second.
        Output was directed to >/dev/null.

        Parallel::Loops:     1,600  Forking each @input is expensive
        MCE->foreach...:    23,000  Workers persist between each @input
        MCE->forseq....:   200,000  Uses sequence of numbers as input
        MCE->forchunk..:   800,000  IPC overhead is greatly reduced

   interval.pl, mutex.pl, relay.pl
        Demonstration of the interval option appearing in MCE 1.5.
        Mutex locking and relaying data among workers.

   iterator.pl
        Similar to forseq.pl. Specifies an iterator for input_data.
        A factory function is called which returns a closure.

   pipe1.pl, pipe2.pl
        Process STDIN or FILE in parallel. Processing is via Perl for
        pipe1.pl, whereas an external command for pipe2.pl.

   seq_demo.pl, step_demo.pl
        Demonstration of the new sequence option appearing in MCE 1.3.
        Run with seq_demo.pl | sort

        Transparent use of MCE::Queue with MCE::Step.

   sync.pl, utf8.pl
        Barrier synchronization demonstration.
        Process input containing unicode data.

The rest are organized into various sub directories.

   biofasta/fasta_aidx.pl, fasta_rdr*.pl
        Parallel demonstration for Bioinformatics.

   matmult/matmult_base*.pl, matmult_mce*.pl, strassen_mce*.pl
        Various matrix multiplication demonstrations benchmarking
        PDL, PDL + MCE, as well as parallelizing Strassen's
        divide-and-conquer algorithm. Included are 2 plain
        Perl examples.

   sampledb/create.pl, query*.pl, update*.pl
        Examples demonstrating DBI (SQLite) with MCE.

   tbray/wf_mce1.pl, wf_mce2.pl, wf_mce3.pl
        An implementation of wide finder utilizing MCE.
        As fast as MMAP IO when file resides in OS FS cache.
        2x ~ 3x faster when reading directly from disk.

=head1 CHUNK_SIZE => 1 (in essence, wanting no chunking on input data)

Imagine a long running process and wanting to parallelize an array against a
pool of workers. The sequence option may be used if simply wanting to loop
through a sequence of numbers instead.

Below, a callback function is used for displaying results. The logic shows
how one can output results immediately while still preserving output order
as if processing serially. The %tmp hash is a temporary cache for
out-of-order results.

   use MCE;

   ## Return an iterator for preserving output order.

   sub preserve_order {
      my (%result_n, %result_d); my $order_id = 1;

      return sub {
         my ($chunk_id, $n, $data) = @_;

         $result_n{ $chunk_id } = $n;
         $result_d{ $chunk_id } = $data;

         while (1) {
            last unless exists $result_d{$order_id};

            printf "n: %5d sqrt(n): %7.3f\n",
               $result_n{$order_id}, $result_d{$order_id};

            delete $result_n{$order_id};
            delete $result_d{$order_id};

            $order_id++;
         }

         return;
      };
   }

   ## Use $chunk_ref->[0] or $_ to retrieve the element.
   my @input_data = (0 .. 18000 - 1);

   my $mce = MCE->new(
      gather => preserve_order, input_data => \@input_data,
      chunk_size => 1, max_workers => 3,

      user_func => sub {
         my ($mce, $chunk_ref, $chunk_id) = @_;
         MCE->gather($chunk_id, $_, sqrt($_));
      }
   );

   $mce->run;

This does the same thing using the foreach "sugar" method. 

   use MCE;

   sub preserve_order {
      ...
   }

   my $mce = MCE->new(
      chunk_size => 1, max_workers => 3,
      gather => preserve_order
   );

   ## Use $chunk_ref->[0] or $_ to retrieve the element.
   my @input_data = (0 .. 18000 - 1);

   $mce->foreach( \@input_data, sub {
      my ($mce, $chunk_ref, $chunk_id) = @_;
      MCE->gather($chunk_id, $_, sqrt($_));
   });

The 2 examples described above were done using the Core API. MCE 1.5 comes
with several models. The L<MCE::Loop|MCE::Loop> model is used below.

   use MCE::Loop;

   sub preserve_order {
      ...
   }

   MCE::Loop::init {
      chunk_size => 1, max_workers => 3,
      gather => preserve_order
   };

   ## Use $chunk_ref->[0] or $_ to retrieve the element.
   my @input_data = (0 .. 18000 - 1);

   mce_loop {
      my ($mce, $chunk_ref, $chunk_id) = @_;
      MCE->gather($chunk_id, $_, sqrt($_));

   } @input_data;

   MCE::Loop::finish;

=head1 CHUNKING INPUT_DATA

Chunking has the effect of reducing IPC overhead by many folds. A chunk
containing $chunk_size items is sent to the next available worker.

   use MCE;

   ## Return an iterator for preserving output order.

   sub preserve_order {
      my (%result_n, %result_d, $size); my $order_id = 1;

      return sub {
         my ($chunk_id, $n_ref, $data_ref) = @_;

         $result_n{ $chunk_id } = $n_ref;
         $result_d{ $chunk_id } = $data_ref;

         while (1) {
            last unless exists $result_d{$order_id};
            $size = @{ $result_d{$order_id} };

            for (0 .. $size - 1) {
               printf "n: %5d sqrt(n): %7.3f\n",
                  $result_n{$order_id}->[$_], $result_d{$order_id}->[$_];
            }

            delete $result_n{$order_id};
            delete $result_d{$order_id};

            $order_id++;
         }

         return;
      };
   }

   ## Chunking requires one to loop inside the code block.
   my @input_data = (0 .. 18000 - 1);

   my $mce = MCE->new(
      gather => preserve_order, input_data => \@input_data,
      chunk_size => 500, max_workers => 3,

      user_func => sub {
         my ($mce, $chunk_ref, $chunk_id) = @_;
         my (@n, @result);

         foreach ( @{ $chunk_ref } ) {
            push @n, $_;
            push @result, sqrt($_);
         }

         MCE->gather($chunk_id, \@n, \@result);
      }
   );

   $mce->run;

This does the same thing using the forchunk "sugar" method. 

   use MCE;

   sub preserve_order {
      ...
   }

   my $mce = MCE->new(
      chunk_size => 500, max_workers => 3,
      gather => preserve_order
   );

   ## Chunking requires one to loop inside the code block.
   my @input_data = (0 .. 18000 - 1);

   $mce->forchunk( \@input_data, sub {
      my ($mce, $chunk_ref, $chunk_id) = @_;
      my (@n, @result);

      foreach ( @{ $chunk_ref } ) {
         push @n, $_;
         push @result, sqrt($_);
      }

      MCE->gather($chunk_id, \@n, \@result);
   });

Finally, chunking with the L<MCE::Loop|MCE::Loop> model.

   use MCE::Loop;

   sub preserve_order {
      ...
   }

   MCE::Loop::init {
      chunk_size => 500, max_workers => 3,
      gather => preserve_order
   };

   ## Chunking requires one to loop inside the code block.
   my @input_data = (0 .. 18000 - 1);

   mce_loop {
      my ($mce, $chunk_ref, $chunk_id) = @_;
      my (@n, @result);

      foreach ( @{ $chunk_ref } ) {
         push @n, $_;
         push @result, sqrt($_);
      }

      MCE->gather($chunk_id, \@n, \@result);

   } @input_data;

   MCE::Loop::finish;

=head1 DEMO APPLYING SEQUENCES WITH USER_TASKS

The following is an extract from the seq_demo.pl example included with MCE. 
Think of having several MCEs running in parallel. The sequence and chunk_size
options may be specified uniquely per each task.

The input scalar $_ (not shown below) contains the same value as $seq_n in
user_func.

   use MCE;
   use Time::HiRes 'sleep';

   ## Run with seq_demo.pl | sort

   sub user_func {
      my ($mce, $seq_n, $chunk_id) = @_;

      my $wid      = MCE->wid;
      my $task_id  = MCE->task_id;
      my $task_wid = MCE->task_wid;

      if (ref $seq_n eq 'ARRAY') {
         ## seq_n or $_ is an array reference when chunk_size > 1
         foreach (@{ $seq_n }) {
            MCE->printf(
               "task_id %d: seq_n %s: chunk_id %d: wid %d: task_wid %d\n",
               $task_id,    $_,       $chunk_id,   $wid,   $task_wid
            );
         }
      }
      else {
         MCE->printf(
            "task_id %d: seq_n %s: chunk_id %d: wid %d: task_wid %d\n",
            $task_id,    $seq_n,   $chunk_id,   $wid,   $task_wid
         );
      }

      sleep 0.003;

      return;
   }

   ## Each task can be configured uniquely.

   my $mce = MCE->new(
      user_tasks => [{
         max_workers => 2,
         chunk_size  => 1,
         sequence    => { begin => 11, end => 19, step => 1 },
         user_func   => \&user_func
      },{
         max_workers => 2,
         chunk_size  => 5,
         sequence    => { begin => 21, end => 29, step => 1 },
         user_func   => \&user_func
      },{
         max_workers => 2,
         chunk_size  => 3,
         sequence    => { begin => 31, end => 39, step => 1 },
         user_func   => \&user_func
      }]
   );

   $mce->run;

   -- Output

   task_id 0: seq_n 11: chunk_id 1: wid 2: task_wid 2
   task_id 0: seq_n 12: chunk_id 2: wid 1: task_wid 1
   task_id 0: seq_n 13: chunk_id 3: wid 2: task_wid 2
   task_id 0: seq_n 14: chunk_id 4: wid 1: task_wid 1
   task_id 0: seq_n 15: chunk_id 5: wid 2: task_wid 2
   task_id 0: seq_n 16: chunk_id 6: wid 1: task_wid 1
   task_id 0: seq_n 17: chunk_id 7: wid 2: task_wid 2
   task_id 0: seq_n 18: chunk_id 8: wid 1: task_wid 1
   task_id 0: seq_n 19: chunk_id 9: wid 2: task_wid 2
   task_id 1: seq_n 21: chunk_id 1: wid 3: task_wid 1
   task_id 1: seq_n 22: chunk_id 1: wid 3: task_wid 1
   task_id 1: seq_n 23: chunk_id 1: wid 3: task_wid 1
   task_id 1: seq_n 24: chunk_id 1: wid 3: task_wid 1
   task_id 1: seq_n 25: chunk_id 1: wid 3: task_wid 1
   task_id 1: seq_n 26: chunk_id 2: wid 4: task_wid 2
   task_id 1: seq_n 27: chunk_id 2: wid 4: task_wid 2
   task_id 1: seq_n 28: chunk_id 2: wid 4: task_wid 2
   task_id 1: seq_n 29: chunk_id 2: wid 4: task_wid 2
   task_id 2: seq_n 31: chunk_id 1: wid 5: task_wid 1
   task_id 2: seq_n 32: chunk_id 1: wid 5: task_wid 1
   task_id 2: seq_n 33: chunk_id 1: wid 5: task_wid 1
   task_id 2: seq_n 34: chunk_id 2: wid 6: task_wid 2
   task_id 2: seq_n 35: chunk_id 2: wid 6: task_wid 2
   task_id 2: seq_n 36: chunk_id 2: wid 6: task_wid 2
   task_id 2: seq_n 37: chunk_id 3: wid 5: task_wid 1
   task_id 2: seq_n 38: chunk_id 3: wid 5: task_wid 1
   task_id 2: seq_n 39: chunk_id 3: wid 5: task_wid 1

=head1 GLOBALLY SCOPED VARIABLES AND MCE MODELS

It is possible that Perl may create a new code ref on subsequent runs causing
MCE models to re-spawn. One solution to this is to declare global variables,
referenced by workers, with "our" instead of "my".

Let's take a look. The $i variable is declared with my and being reference in
both user_begin and mce_loop blocks. This will cause Perl to create a new code
ref for mce_loop on subsequent runs.

   use MCE::Loop;

   my $i = 0;   ## <-- this is the reason, try our instead

   MCE::Loop::init {
      user_begin => sub {
         print "process_id: $$\n" if MCE->wid == 1;
         $i++;
      },
      chunk_size => 1, max_workers => 'auto',
   };

   for (1..2) {
      ## Perl creates another code block ref causing workers
      ## to re-spawn on subsequent runs.
      print "\n"; mce_loop { print "$i: $_\n" } 1..4;
   }

   MCE::Loop::finish;

   -- Output

   process_id: 51380
   1: 1
   1: 2
   1: 3
   1: 4

   process_id: 51388
   1: 1
   1: 2
   1: 3
   1: 4

By making the one line change, we see that workers persist for the duration of
the script.

   use MCE::Loop;

   our $i = 0;  ## <-- changed my to our

   MCE::Loop::init {
      user_begin => sub {
         print "process_id: $$\n" if MCE->wid == 1;
         $i++;
      },
      chunk_size => 1, max_workers => 'auto',
   };

   for (1..2) {
      ## Workers persist between runs. No re-spawning.
      print "\n"; mce_loop { print "$i: $_\n" } 1..4;
   }

   -- Output

   process_id: 51457
   1: 1
   1: 2
   1: 4
   1: 3

   process_id: 51457
   2: 1
   2: 2
   2: 3
   2: 4

One may alternatively specify a code reference to existing routines for
user_begin and mce_loop. Take notice of the comma after \&_func though.

   use MCE::Loop;

   my $i = 0;  ## my (ok)

   sub _begin {
      print "process_id: $$\n" if MCE->wid == 1;
      $i++;
   }
   sub _func {
      print "$i: $_\n";
   }

   MCE::Loop::init {
      user_begin => \&_begin,
      chunk_size => 1, max_workers => 'auto',
   };

   for (1..2) {
      print "\n"; mce_loop \&_func, 1..4;
   }

   MCE::Loop::finish;

   -- Output

   process_id: 51626
   1: 1
   1: 2
   1: 3
   1: 4

   process_id: 51626
   2: 1
   2: 2
   2: 3
   2: 4

=head1 MONTE CARLO SIMULATION

There is an article on the web (search for comp.lang.perl.misc MCE) suggesting
that MCE::Examples does not cover a simple simulation scenario. This section
demonstrates just that.

The serial code is based off the one by "gamo". A sleep is added to imitate
extra CPU time. The while loop is wrapped within a for loop to run 10 times.
The random number generator is seeded as well.

   use Time::HiRes qw/sleep time/;

   srand 5906;

   my ($var, $foo, $bar) = (1, 2, 3);
   my ($r, $a, $b);

   my $start = time;

   for (1..10) {
      while (1) {
         $r = rand;

         $a = $r * ($var + $foo + $bar);
         $b = sqrt($var + $foo + $bar);

         last if ($a < $b + 0.001 && $a > $b - 0.001);
         sleep 0.002;
      }

      print "$r -> $a\n";
   }

   my $end = time;

   printf {*STDERR} "\n## compute time: %0.03f secs\n\n", $end - $start;

   -- Output

   0.408246276657106 -> 2.44947765994264
   0.408099657137821 -> 2.44859794282693
   0.408285842931324 -> 2.44971505758794
   0.408342292008765 -> 2.45005375205259
   0.408333076522673 -> 2.44999845913604
   0.408344266898869 -> 2.45006560139321
   0.408084104120526 -> 2.44850462472316
   0.408197400014714 -> 2.44918440008828
   0.408344783704855 -> 2.45006870222913
   0.408248062985479 -> 2.44948837791287

   ## compute time: 93.049 secs

Next, we'd do the same with MCE. The demonstration requires at least MCE 1.509
to run properly. Folks on prior releases (1.505 - 1.508) will not see output
for the 2nd run and beyond.

   use Time::HiRes qw/sleep time/;
   use MCE::Loop;

   srand 5906;

   ## Configure MCE. Move common variables inside the user_begin
   ## block when not needed by the manager process.

   MCE::Loop::init {
      user_begin => sub {
         use vars qw($var $foo $bar);
         our ($var, $foo, $bar) = (1, 2, 3);
      },
      chunk_size => 1, max_workers => 'auto',
      input_data => \&_input, gather => \&_gather
   };

   ## Callback functions.

   my ($done, $r, $a);

   sub _input {
      return if $done;
      return rand;
   }

   sub _gather {
      my ($_r, $_a, $_b) = @_;
      return if $done;

      if ($_a < $_b + 0.001 && $_a > $_b - 0.001) {
         ($done, $r, $a) = (1, $_r, $_a);
      }
      return;
   }

   ## Compute in parallel.

   my $start = time;

   for (1..10) {
      $done = 0;      ## Reset $done before running

      mce_loop {
       # my ($mce, $chunk_ref, $chunk_id) = @_;
       # my $r = $chunk_ref->[0];

         my $r = $_;  ## Valid due to chunk_size => 1

         my $a = $r * ($var + $foo + $bar);
         my $b = sqrt($var + $foo + $bar);

         MCE->gather($r, $a, $b);
         sleep 0.002;
      };

      print "$r -> $a\n";
   }

   printf "\n## compute time: %0.03f secs\n\n", time - $start;

   -- Output

   0.408246276657106 -> 2.44947765994264
   0.408099657137821 -> 2.44859794282693
   0.408285842931324 -> 2.44971505758794
   0.408342292008765 -> 2.45005375205259
   0.408333076522673 -> 2.44999845913604
   0.408344266898869 -> 2.45006560139321
   0.408084104120526 -> 2.44850462472316
   0.408197400014714 -> 2.44918440008828
   0.408344783704855 -> 2.45006870222913
   0.408248062985479 -> 2.44948837791287

   ## compute time: 12.990 secs

Well, there you have it. MCE is able to complete the same simulation many
times faster.

=head1 MANY WORKERS RUNNING IN PARALLEL

There are occasions when one wants several workers to run in parallel without
having to specify input_data or seqeunce. These two options are optional in
MCE. The "do" and "sendto" methods, for sending data to the manager process,
are demonstrated below. Both process serially by the manager process on a
first come, first serve basis.

   use MCE::Flow max_workers => 4;

   sub report_stats {
      my ($wid, $msg, $h_ref) = @_;
      print "Worker $wid says $msg: ", $h_ref->{"counter"}, "\n";
   }

   mce_flow sub {
      my ($mce) = @_;
      my $wid = MCE->wid;

      if ($wid == 1) {
         my %h = ("counter" => 0);
         while (1) {
            $h{"counter"} += 1;
            MCE->do("report_stats", $wid, "Hey there", \%h);
            last if ($h{"counter"} == 4);
            sleep 2;
         }
      }
      else {
         my %h = ("counter" => 0);
         while (1) {
            $h{"counter"} += 1;
            MCE->do("report_stats", $wid, "Welcome..", \%h);
            last if ($h{"counter"} == 2);
            sleep 4;
         }
      }

      MCE->print(\*STDERR, "Worker $wid is exiting\n");
   };

   -- Output

   Note how worker 2 comes first in the 2nd run below.

   $ ./demo.pl
   Worker 1 says Hey there: 1
   Worker 2 says Welcome..: 1
   Worker 3 says Welcome..: 1
   Worker 4 says Welcome..: 1
   Worker 1 says Hey there: 2
   Worker 2 says Welcome..: 2
   Worker 3 says Welcome..: 2
   Worker 1 says Hey there: 3
   Worker 2 is exiting
   Worker 3 is exiting
   Worker 4 says Welcome..: 2
   Worker 4 is exiting
   Worker 1 says Hey there: 4
   Worker 1 is exiting

   $ ./demo.pl
   Worker 2 says Welcome..: 1
   Worker 1 says Hey there: 1
   Worker 4 says Welcome..: 1
   Worker 3 says Welcome..: 1
   Worker 1 says Hey there: 2
   Worker 2 says Welcome..: 2
   Worker 4 says Welcome..: 2
   Worker 3 says Welcome..: 2
   Worker 2 is exiting
   Worker 4 is exiting
   Worker 1 says Hey there: 3
   Worker 3 is exiting
   Worker 1 says Hey there: 4
   Worker 1 is exiting

=head1 INDEX

L<MCE|MCE>

=head1 AUTHOR

Mario E. Roy, S<E<lt>marioeroy AT gmail DOT comE<gt>>

=cut