This file is indexed.

/usr/share/ncarg/nclex/ngmath/nm21n.ncl is in libncarg-data 6.3.0-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
;
;      $Id: nm21n.ncl,v 1.8 2010-03-15 22:49:24 haley Exp $
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                                       ;
;                Copyright (C)  2000                                    ;
;        University Corporation for Atmospheric Research                ;
;                All Rights Reserved                                    ;
;                                                                       ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
;   File:         nm21n.ncl
;
;   Author:       Fred Clare
;                 National Center for Atmospheric Research
;                 PO 3000, Boulder, Colorado
;
;   Date:         Thu Jun  3 15:16:01 MDT 1999
;
;   Description:  This program illustrates the use of the interpolation
;                 capabilities of the cssgrid package.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"

procedure nrand(first:integer, nextn:integer, result:float)
;
;  Portable random number generator.  This is here in place
;  of the built-in random number generator "rand"
;  so that the results for this example will be the same
;  as for the equivalent Fortran and C examples.
;
;  Arguments
;    first  - is 0 if this is the first call to the procedure, 1 otherwise
;    nextn  - a temporary storage variable that should be the same for
;             all calls.
;    result - the desired random number 
;  
local mplier, modlus, mobymp, momdmp, hvlue, lvlue, testv
begin

  mplier =      16807
  modlus = 2147483647
  mobymp =     127773
  momdmp =       2836

  if (first .eq. 0) then
    nextn = 9
  end if

  hvlue = nextn / mobymp
  lvlue = nextn%mobymp;
  testv = mplier*lvlue - momdmp*hvlue;
  if (testv .gt. 0) then
    nextn = testv;
  else 
    nextn = testv + modlus;
  end if

  result = (1. * nextn) / (1. * modlus)
end

procedure genrs(rlat[*]:float, rlon[*]:float)
;
;  Generate random positions on a sphere in latitudes and longitudes
;  (latitude values between -90. and 90. and longitude values
;  between -180. and 180).
;
;  First select a random longitude, and then select a random value
;  on the Z axis -R to R (-1 to 1 in the case of the unit sphere).
;  From the random Z value, calculate the latitude.
;
local size, tmpa, rslt, rz

begin
  size = dimsizes(rlat)
  tmpa = new(1,integer)
  rslt = new(1,float)
  nrand(0,tmpa,rslt)
  rlon(0) = -180.+360.*rslt
  nrand(1,tmpa,rslt)
  rz = 2.*rslt-1.
  rlat(0) = 57.29578*asin(rz)
  do i=1,size-1
    nrand(1,tmpa,rslt)
    rlon(i) = -180.+360.*rslt
    nrand(1,tmpa,rslt)
    rz = 2.*rslt-1.
    rlat(i) = 57.29578*asin(rz)
  end do
end

function max2a(a1[*]:numeric, a2[*]:numeric)
begin
  if (a1 .lt. a2) then
    return(a2)
  else
    return(a1)
  end if
end
function min2a(a1[*]:numeric, a2[*]:numeric)
begin
  if (a1 .lt. a2) then
    return(a1)
  else
    return(a2)
  end if
end

procedure geni(mlow[1]:integer, mhgh[1]:integer, \
               dlow[1]:float, dhgh[1]:float, space[645]:float)
;
;  The procedure geni and the function genpnt are used to generate 
;  test ;  data on the globe.  The data generated will have 
;  approximately "mlow" lows and "mhgh" highs within each of 
;  the twenty areas defined by an inscribed icosahedron, a minimum 
;  value of approximately "dlow" and a maximum value of approximately
;  "dhgh".  "space" is a storage area for communication between geni
;  and genpnt.  geni is called to initialize the process and
;  the function genpnt returns a value of the function at
;  the point (rlat,rlon).
;
;  The function used is a sum of exponentials.
;
;  Versions of these codes were originally written in Fortran
;  David Kennison at NCAR.
;

local D2R, R2D, r0, r1, r2, xcvi, ycvi, zcvi, ivof, nlow, nhgh,   \
      ncnt, indx, wgt1, wgt2, wgt3, wsum, xtmp, ytmp, ztmp, tmmp, \
      ilon, ilat, rlon, crln, srln, rlat, crlt, srlt, rval, dist, \
      angl, xcoc, ycoc, zcoc, rmul, rhgh, rlow
begin

  D2R =  0.017453293
  R2D = 57.295780000

  r0 = (/                                                          \
     .968,.067,.478,.910,.352,.933,.654,.021,.512,.202,.940,.204,  \
     .379,.793,.288,.267,.357,.128,.703,.737,.803,.915,.511,.762,  \
     .456,.471,.300,.613,.073,.498,.220,.041,.565,.698,.951,.917,  \
     .630,.605,.938,.143,.807,.878,.347,.186,.671,.635,.453,.028,  \
     .763,.157,.765,.566,.072,.276,.328,.528,.747,.627,.141,.821,  \
     .126,.360,.862,.690,.058,.813,.607,.689,.419,.545,.831,.226,  \
     .422,.178,.412,.093,.813,.866,.121,.576,.023,.886,.142,.095,  \
     .162,.470,.623,.910,.097,.764,.730,.223,.124,.593,.913,.183,  \
     .406,.520,.871,.825,.065,.703,.051,.488,.881,.463,.581,.694,  \
     .329,.702,.270,.352,.587,.412,.446,.750,.882,.069,.659,.979,  \
     .833,.390,.202,.957,.982,.115,.140,.389,.635,.011,.213,.701,  \
     .714,.264,.188,.594,.727,.769,.288,.056,.471,.558,.408,.058,  \
     .970,.854,.808,.851,.923,.467,.830,.756,.857,.032,.713,.839,  \
     .147,.852,.228,.783,.863,.441,.483,.577,.705,.671,.171,.432,  \
     .441,.459,.489,.911,.017,.897,.969,.987,.751,.777,.838,.674,  \
     .244,.669,.430,.101,.701,.143,.940,.848,.995,.168,.631,.858,  \
     .608,.114,.435,.313,.785,.606,.746,.226,.065,.234,.137,.082,  \
     .131,.106,.069,.882,.883,.907,.556,.127,.576,.986,.228,.276,  \
     .128,.168,.124,.123                                           \
    /)

  r1 = (/                                                          \
     .023,.003,.880,.088,.237,.017,.170,.368,.123,.239,.250,.006,  \
     .146,.806,.134,.722,.791,.361,.998,.920,.529,.122,.043,.864,  \
     .877,.025,.808,.746,.442,.065,.400,.464,.068,.280,.552,.305,  \
     .297,.722,.673,.420,.961,.923,.426,.107,.729,.560,.829,.520,  \
     .921,.827,.440,.451,.950,.483,.315,.827,.508,.123,.573,.949,  \
     .188,.973,.414,.256,.253,.966,.561,.550,.689,.234,.970,.650,  \
     .157,.396,.757,.885,.956,.587,.405,.877,.414,.845,.328,.363,  \
     .328,.643,.190,.836,.766,.763,.786,.954,.737,.199,.211,.990,  \
     .165,.772,.540,.854,.006,.510,.504,.163,.906,.261,.048,.862,  \
     .848,.454,.740,.262,.299,.068,.625,.627,.711,.815,.464,.477,  \
     .579,.249,.431,.315,.449,.642,.305,.614,.414,.845,.468,.420,  \
     .355,.972,.582,.261,.234,.631,.123,.082,.084,.863,.343,.383,  \
     .930,.968,.011,.641,.784,.474,.118,.362,.723,.549,.678,.172,  \
     .191,.983,.786,.605,.828,.254,.024,.183,.226,.607,.444,.460,  \
     .237,.567,.541,.322,.430,.885,.705,.361,.853,.715,.002,.637,  \
     .190,.119,.999,.913,.668,.677,.085,.859,.660,.871,.464,.488,  \
     .124,.489,.671,.350,.095,.115,.810,.333,.683,.351,.654,.113,  \
     .236,.359,.473,.089,.075,.475,.726,.264,.594,.725,.177,.263,  \
     .402,.262,.122,.062                                           \
    /)

  r2 = (/                                                          \
     .337,.417,.503,.020,.769,.158,.133,.005,.517,.606,.094,.591,  \
     .081,.820,.855,.675,.545,.033,.938,.947,.294,.060,.009,.427,  \
     .646,.559,.684,.721,.781,.291,.892,.118,.708,.395,.138,.476,  \
     .552,.270,.481,.069,.877,.575,.660,.957,.395,.516,.633,.939,  \
     .548,.570,.886,.843,.630,.895,.270,.276,.455,.953,.998,.236,  \
     .244,.889,.354,.952,.284,.492,.428,.837,.762,.909,.906,.639,  \
     .484,.566,.596,.879,.082,.229,.818,.631,.799,.704,.473,.430,  \
     .600,.743,.706,.055,.696,.704,.291,.940,.593,.645,.892,.877,  \
     .137,.321,.714,.899,.230,.620,.538,.714,.186,.134,.593,.268,  \
     .364,.411,.899,.163,.116,.372,.593,.716,.115,.298,.770,.812,  \
     .002,.061,.752,.595,.706,.645,.472,.843,.965,.186,.742,.195,  \
     .806,.280,.910,.992,.414,.503,.260,.778,.915,.159,.941,.030,  \
     .531,.533,.746,.647,.832,.516,.458,.834,.577,.211,.429,.283,  \
     .855,.901,.126,.821,.087,.868,.016,.893,.148,.926,.885,.562,  \
     .429,.145,.340,.343,.304,.281,.374,.835,.814,.120,.482,.646,  \
     .636,.940,.479,.213,.151,.908,.497,.006,.809,.623,.827,.895,  \
     .490,.843,.788,.638,.769,.673,.200,.198,.817,.540,.541,.121,  \
     .821,.915,.956,.635,.035,.438,.280,.671,.377,.760,.884,.528,  \
     .668,.381,.534,.477                                           \
    /)

  xcvi = (/                                                        \
     .9510565162952 , -.9510565162951 ,  .4253254041760 ,          \
    -.4253254041760 ,  .4253254041760 , -.4253254041760 ,          \
     .4253254041760 , -.4253254041760 ,  .4253254041760 ,          \
    -.4253254041760 ,  .4253254041760 , -.4253254041760            \
    /)

  ycvi = (/                                                        \
     .0000000000000 ,  .0000000000000 ,  .8506508083520 ,          \
    -.8506508083520 ,  .2628655560596 , -.2628655560596 ,          \
    -.6881909602356 ,  .6881909602356 , -.6881909602356 ,          \
     .6881909602356 ,  .2628655560595 , -.2628655560596            \
    /)

  zcvi = (/                                                        \
     .0000000000000 ,  .0000000000000 ,  .0000000000000 ,          \
     .0000000000000 ,  .8090169943749 , -.8090169943749 ,          \
     .5000000000000 , -.5000000000000 , -.5000000000000 ,          \
     .5000000000000 , -.8090169943749 ,  .8090169943749            \
    /)

  ivof = (/                                                        \
            (/0, 2, 4/)  , (/0, 4, 6/)  , (/0, 6, 8/) ,            \
            (/0, 8,10/)  , (/0, 2,10/)  , (/2, 7,10/) ,            \
            (/2, 7, 9/)  , (/2, 4, 9/)  , (/4, 9,11/) ,            \
            (/4, 6,11/)  , (/6, 3,11/)  , (/3, 6, 8/) ,            \
            (/3, 5, 8/)  , (/5, 8,10/)  , (/5, 7,10/) ,            \
            (/5, 1, 7/)  , (/1, 3, 5/)  , (/1, 3,11/) ,            \
            (/1, 9,11/)  , (/1, 7, 9/)                             \
         /)

  nlow = max2a(0,min2a(4,mlow))
  nhgh = max2a(0,min2a(4,mhgh))
  ncnt = 20*(nlow+nhgh)
  space(644) = 1.*ncnt
  do k=0,ncnt-1
    indx = k%20
    wgt1 = r0(k)
    wgt2 = r1(k)
    wgt3 = r2(k)
    wsum = wgt1+wgt2+wgt3
    wgt1 = wgt1/wsum 
    wgt2 = wgt2/wsum 
    wgt3 = wgt3/wsum 
    xtmp = wgt1*xcvi(ivof(indx,0)) +   \
           wgt2*xcvi(ivof(indx,1)) +   \
           wgt3*xcvi(ivof(indx,2))
    ytmp = wgt1*ycvi(ivof(indx,0)) +   \
           wgt2*ycvi(ivof(indx,1)) +   \
           wgt3*ycvi(ivof(indx,2))
    ztmp = wgt1*zcvi(ivof(indx,0)) +   \
           wgt2*zcvi(ivof(indx,1)) +   \
           wgt3*zcvi(ivof(indx,2))
    temp = sqrt(xtmp*xtmp +ytmp*ytmp + ztmp*ztmp)
    space(160+k) = xtmp/temp
    space(320+k) = ytmp/temp
    space(480+k) = ztmp/temp
  end do
  bp = 20*nlow-1
  space(0:bp) = -1.
  space(bp+1:ncnt-1) =  1.

  space(640) = dlow;
  space(641) = dhgh;
  space(642) =  1.e+36;
  space(643) = -1.e+36;
  
  xcoc = space(160:160+ncnt-1)
  ycoc = space(320:320+ncnt-1)
  zcoc = space(480:480+ncnt-1)
  rmul = space(0:ncnt-1)
  rhgh = space(641)
  rlow = space(640)
  do i=0,71
    ilon = -180.+5.*i
    rlon = D2R * 1.*ilon
    crln = cos(rlon)
    srln = sin(rlon)
    do j=0,34
      rlat = D2R*(-85.+5.*j)
      crlt = cos(rlat)
      srlt = sin(rlat)
      rval = 0.5*(rhgh+rlow)
      dist = sqrt((crln*crlt-xcoc)^2 + (srln*crlt-ycoc)^2 + (srlt-zcoc)^2)
      angl = 2.*R2D*asin(0.5*dist)
      dist = angl/18.
      tval = 0.5*(rhgh-rlow)*rmul*2.7182818^(-dist*dist)*(2.-sin(6.283*dist)/2.)
      rval = rval + sum(tval)
      space(642) = min2a(space(642),rval)
      space(643) = max2a(space(643),rval)
    end do
  end do
end

function genpnt(rlat[1]:float, rlon[1]:float, space[645]:float)
;
;  This function returns a functional value at the specified
;  lat/lon coordinate.  The function is determined by the
;  initial call to geni (see above).
;
local crlt, crln, srln, srlt, rval, dist, angl, ncnt, R2D,  \
      xcoc, ycoc, zcoc, rmul, rhgh, rlow
begin
  R2D = 57.295780000

  crlt = cos(rlat)
  crln = cos(rlon)
  srlt = sin(rlat)
  srln = sin(rlon)
  rhgh = space(641)
  rlow = space(640)
  ncnt = floattointeger(space(644))
  xcoc = space(160:160+ncnt-1)
  ycoc = space(320:320+ncnt-1)
  zcoc = space(480:480+ncnt-1)
  rmul = space(0:ncnt-1)
  rval = 0.5*(rhgh+rlow)
  dist = sqrt((crln*crlt-xcoc)^2 + (srln*crlt-ycoc)^2 + (srlt-zcoc)^2)
  angl = 2.*R2D*asin(0.5*dist)
  dist = angl/18.
  tval = 0.5*(rhgh-rlow)*rmul*2.7182818^(-dist*dist)*(2.-sin(6.283*dist)/2.)
  rval = rval + sum(tval)
  return(space(640)+(space(641)-space(640))*  \
         (rval-space(642))/(space(643)-space(642)))
end

;
;  Main program
;
begin
 
  D2R =  0.017453293
  R2D = 57.295780000

;
;  Define random points and functional values on the globe,
;  triangulate, interpolate to a uniform grid, then draw a 
;  contour plot on a map.
;

;
;  Number of input data values.
;
  N = 500

;
;  Number of points to use for drawing arcs on the globe.
;
  NARC = 50

;
;  Array sizes for the interpolation grid.
;
  NI =  73
  NJ = 145

;
;  Generate a default set of nodes as latitudinal and longitudinal
;  coordinates (latitudes in the range -90. to 90. and longitudes
;  in the range -180. to 180).
;
  rlat = new(N,float)
  rlon = new(N,float)
  genrs(rlat, rlon)

;
;  Generate functional values at the input nodes.
;
  fval = new(N,float)
  tmp_space = new(645,float)
  geni(5, 10, -200., 500., tmp_space)
  do i=0,N-1
    fval(i) = genpnt(D2R*rlat(i), D2R*rlon(i), tmp_space)
  end do

;
;  Create the triangulation.
;
  triangles = csstri(rlat,rlon)
  tri_sizes = dimsizes(triangles)
  num_triangles = tri_sizes(0)

;
;  Get the circumcenters for the Delaunay triangles and store
;  them in arrays plat and plon.  "nca" is the actual number 
;  of circles found.
;
  plat = new(2*N,float)
  plon = new(2*N,float)
  rc = new(2*N,float)
  nca = new(1,integer)
  numv = new(1,integer)
  nv = new(N,integer)
  csvoro(rlat,rlon,0,1,plat,plon,rc,nca,numv,nv)

;  Draw a plot of the triangulation and the Voronoi polygons.
;

;
;  Define a color map and open a workstation.
;
  cmap = (/                      \
            (/ 1., 1., 1. /),    \
            (/ 0., 0., 0. /),    \
            (/ 1., 0., 0. /),    \
            (/ 0., 0., 1. /),    \
            (/ 1., 0., 0. /),    \
            (/ 0., 1., 0. /),    \
            (/ 0., .8, 0. /),    \
            (/ .65, .65, .65 /)  \
         /)

  wks_type = "ncgm"
  wks = gsn_open_wks(wks_type,"nm21n")
  gsn_define_colormap(wks,cmap)

;
;  Define some resources and draw a globe as a background for 
;  the plot.
;
  map_resources = True
  map_resources@gsnFrame = False
  map_resources@mpOutlineBoundarySets = "National"
  map_resources@mpNationalLineColor = 1
  map_resources@mpGeophysicalLineColor = 7

  map_resources@mpLimbLineColor = 7
  map_resources@mpGridLineColor = 0
  map_resources@mpGridAndLimbDrawOrder = "PreDraw"

  map_resources@mpCenterLatF =   40.
  map_resources@mpCenterLonF = -105.
  map_resources@vpXF = 0.06
  map_resources@vpYF = 0.90
  map_resources@vpWidthF = 0.88
  map_resources@vpHeightF = 0.88
  map_resources@mpSatelliteDistF  = 4.0

  map_resources@mpGreatCircleLinesOn = True

  map = gsn_map(wks,"Satellite",map_resources)

;
;  Draw the Voronoi polygons.
;
  gsres = True
  gsres@gsLineColor = 3
  rlatn = new(2,float)
  rlonn = new(2,float)
  do i=0,N-1
    csvoro(rlat,rlon,i,0,plat,plon,rc,nca,numv,nv)
    do j=1,numv-1
      rlatn(0) = plat(nv(j-1))
      rlonn(0) = plon(nv(j-1))
      rlatn(1) = plat(nv(j))
      rlonn(1) = plon(nv(j))
      gsn_polyline(wks,map,rlonn,rlatn,gsres)
    end do
  end do

;
;  Draw the triangles.
;
  qlat = new(4,float)
  qlon = new(4,float)
  gsres@gsLineColor = 2
  do np=0,num_triangles-1
    qlat(0) = rlat(triangles(np,0))
    qlon(0) = rlon(triangles(np,0))
    qlat(1) = rlat(triangles(np,1))
    qlon(1) = rlon(triangles(np,1))
    qlat(2) = rlat(triangles(np,2))
    qlon(2) = rlon(triangles(np,2))
    qlat(3) = rlat(triangles(np,0))
    qlon(3) = rlon(triangles(np,0))
    gsn_polyline(wks,map,qlon,qlat,gsres)
  end do

;
;  Mark the original data points with black circles.
;
  gsres@gsLineColor = 1
  arclat = new(NARC, float)
  arclon = new(NARC, float)
  do i=0,N-1
    do j=1,6
      nggcog(rlat(i),rlon(i),0.15*j,arclat,arclon)
      gsn_polyline(wks,map,arclon,arclat,gsres)
    end do
  end do

;
;  Title
;
  txres = True
  txres@txFontHeightF = 0.035
  txres@txFontColor = 1
  txres@txJust = "CenterCenter"
  gsn_text_ndc(wks, "~F26~Triangulation", 0.5, 0.95, txres)

  frame(wks)

;
;  Set up the latitudes and longitudes for the interpolated grid.
;
  platn = new(NI,float) 
  plonn = new(NJ,float) 
  do i=0,NI-1
    platn(i) = -90.+i*2.5
  end do
  do j=0,NJ-1
    plonn(j) = -180.+j*2.5
  end do

;
;  Interpolate to the regular grid.
;
  ff = cssgrid(rlat,rlon,fval,platn,plonn)

;
;  Draw a contour map of the interpolated values using the same 
;  map projection and resource settings as used for drawing the 
;  triangulation above.
;
  map_resources = True
  map_resources@mpOutlineBoundarySets = "National"
  map_resources@mpOutlineSpecifiers = "USStatesLand"
  map_resources@mpNationalLineColor = 7
  map_resources@mpUSStateLineColor = 7
  map_resources@mpGeophysicalLineColor = 7
  map_resources@cnLineColor = 3
 
  map_resources@cnLevelSelectionMode = "AutomaticLevels"
  map_resources@cnLevelSpacingF  = 40.
  map_resources@cnMaxLevelCount = 16
  map_resources@cnLineLabelPlacementMode = "Constant"
  map_resources@cnLineLabelFontHeightF = 0.01
  map_resources@cnLineLabelInterval = 5
  map_resources@cnLevelFlags = (/ 1,1,1,1,3,1,1,1,1,3,1,1,1,1,3,1,1,1,1,3 /)
  map_resources@cnLineLabelFontColor = 3
  map_resources@cnLineLabelFont = 13

  map_resources@cnInfoLabelOn = False
 
  map_resources@mpCenterLatF =   40.
  map_resources@mpCenterLonF = -105.
  map_resources@vpXF = 0.06
  map_resources@vpYF = 0.90
  map_resources@vpWidthF  = 0.88
  map_resources@vpHeightF = 0.88
 
  map_resources@mpProjection = "Satellite"
  map_resources@mpSatelliteDistF  = 4.
  map_resources@sfXCStartV = -180.
  map_resources@sfXCEndV   =  180.
  map_resources@sfYCStartV =  -90.
  map_resources@sfYCEndV   =   90.
 
  map_resources@cnSmoothingOn = True
  map_resources@cnSmoothingTensionF = 0.02
 
  map_resources@mpGridLineColor = 0
  map_resources@mpLimbLineColor = 3
  map_resources@mpGridAndLimbDrawOrder = "PreDraw"
 
  map = gsn_contour_map(wks,ff,map_resources)

;
;  Title
;
  txres = True
  txres@txFontHeightF = 0.035
  txres@txFontColor = 1
  txres@txJust = "CenterCenter"
  gsn_text_ndc(wks, "~F26~Contour Plot of Gridded Data", 0.5, 0.95, txres)

  frame(wks)

end