This file is indexed.

/usr/include/opengm/inference/auxiliary/lp_reparametrization.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/*
 * lp_reparametrization_storage.hxx
 *
 *  Created on: Sep 16, 2013
 *      Author: bsavchyn
 */

#ifndef LP_REPARAMETRIZATION_STORAGE_HXX_
#define LP_REPARAMETRIZATION_STORAGE_HXX_
#include <opengm/inference/trws/utilities2.hxx>
#include <opengm/graphicalmodel/graphicalmodel_factor_accumulator.hxx>


//#ifdef WITH_HDF5
//#include <opengm/inference/auxiliary/lp_reparametrization_hdf5.hxx>
//#endif


namespace opengm{

#ifdef TRWS_DEBUG_OUTPUT
using OUT::operator <<;
#endif


template<class GM>
class LPReparametrisationStorage{
public:
	typedef GM GraphicalModelType;
	typedef typename GM::ValueType ValueType;
	typedef typename GM::FactorType FactorType;
	typedef typename GM::IndexType IndexType;
	typedef typename GM::LabelType LabelType;

	//typedef std::valarray<ValueType> UnaryFactor;
	typedef std::vector<ValueType> UnaryFactor;
	typedef ValueType* uIterator;
	typedef std::vector<UnaryFactor> VecUnaryFactors;
	typedef std::map<IndexType,IndexType> VarIdMapType;
	LPReparametrisationStorage(const GM& gm);

	const UnaryFactor& get(IndexType factorIndex,IndexType relativeVarIndex)const//const access
	{
		OPENGM_ASSERT(factorIndex < _gm.numberOfFactors());
		OPENGM_ASSERT(relativeVarIndex < _dualVariables[factorIndex].size());
		return _dualVariables[factorIndex][relativeVarIndex];
	}
	std::pair<uIterator,uIterator> getIterators(IndexType factorIndex,IndexType relativeVarIndex)
				{
		OPENGM_ASSERT(factorIndex < _gm.numberOfFactors());
		OPENGM_ASSERT(relativeVarIndex < _dualVariables[factorIndex].size());
		UnaryFactor& uf=_dualVariables[factorIndex][relativeVarIndex];
		uIterator begin=&uf[0];
		return std::make_pair(begin,begin+uf.size());
				}

	template<class ITERATOR>
	ValueType getFactorValue(IndexType findex,ITERATOR it)const
	{
		OPENGM_ASSERT(findex < _gm.numberOfFactors());
		const typename GM::FactorType& factor=_gm[findex];

		ValueType res=0;//factor(it);
		if (factor.numberOfVariables()>1)
		{
			res=factor(it);
			for (IndexType varId=0;varId<factor.numberOfVariables();++varId)
			{
				OPENGM_ASSERT(varId < _dualVariables[findex].size());
				OPENGM_ASSERT(*(it+varId) < _dualVariables[findex][varId].size());
				res+=_dualVariables[findex][varId][*(it+varId)];
			}
		}else
		{
			res=getVariableValue(factor.variableIndex(0),*it);
		}
		return res;
	}

	ValueType getVariableValue(IndexType varIndex,LabelType label)const
	{
		OPENGM_ASSERT(varIndex < _gm.numberOfVariables());
		ValueType res=0.0;
		for (IndexType i=0;i<_gm.numberOfFactors(varIndex);++i)
		{
			IndexType factorId=_gm.factorOfVariable(varIndex,i);
			OPENGM_ASSERT(factorId < _gm.numberOfFactors());
			if (_gm[factorId].numberOfVariables()==1)
			{
				res+=_gm[factorId](&label);
				continue;
			}

			OPENGM_ASSERT( factorId < _dualVariables.size() );
			OPENGM_ASSERT(label < _dualVariables[factorId][localId(factorId,varIndex)].size());
			res-=_dualVariables[factorId][localId(factorId,varIndex)][label];
		}

		return res;
	}
#ifdef TRWS_DEBUG_OUTPUT
	void PrintTestData(std::ostream& fout)const;
#endif
	IndexType localId(IndexType factorId,IndexType varIndex)const{
		typename VarIdMapType::const_iterator it = _localIdMap[factorId].find(varIndex);
		trws_base::exception_check(it!=_localIdMap[factorId].end(),"LPReparametrisationStorage:localId() - factor and variable are not connected!");
		return it->second;};

	const GM& graphicalModel()const{return _gm;}

	template<class VECTOR>
	void serialize(VECTOR* pserialization)const;
	template<class VECTOR>
	void deserialize(const VECTOR& serialization);
private:
	LPReparametrisationStorage(const LPReparametrisationStorage&);//TODO: carefully implement, when needed
	LPReparametrisationStorage& operator=(const LPReparametrisationStorage&);//TODO: carefully implement, when needed
	const GM& _gm;
	std::vector<VecUnaryFactors> _dualVariables;
	std::vector<VarIdMapType> _localIdMap;
};

template<class GM>
LPReparametrisationStorage<GM>::LPReparametrisationStorage(const GM& gm)
:_gm(gm),_localIdMap(gm.numberOfFactors())
 {
	_dualVariables.resize(_gm.numberOfFactors());
	//for all factors with order > 1
	for (IndexType findex=0;findex<_gm.numberOfFactors();++findex)
	{
		IndexType numVars=_gm[findex].numberOfVariables();
		VarIdMapType& mapFindex=_localIdMap[findex];
		if (numVars>=2)
		{

			_dualVariables[findex].resize(numVars);
			//std::valarray<IndexType> v(numVars);
			std::vector<IndexType> v(numVars);
			_gm[findex].variableIndices(&v[0]);
			for (IndexType n=0;n<numVars;++n)
			{
				//_dualVariables[findex][n].assign(_gm.numberOfLabels(v[n]),0.0);//TODO. Do it like this
				_dualVariables[findex][n].resize(_gm.numberOfLabels(v[n]));
				mapFindex[v[n]]=n;
			}
		}
	}

 }

#ifdef TRWS_DEBUG_OUTPUT
template<class GM>
void LPReparametrisationStorage<GM>::PrintTestData(std::ostream& fout)const
{
	fout << "_dualVariables.size()=" << _dualVariables.size()<<std::endl;
	for (IndexType factorIndex=0;factorIndex<_dualVariables.size();++factorIndex )
	{
		fout <<"factorIndex="<<factorIndex<<": ---------------------------------"<<std::endl;
		for (IndexType varId=0;varId<_dualVariables[factorIndex].size();++varId)
			fout <<"varId="<<varId<<": "<< _dualVariables[factorIndex][varId]<<std::endl;
	}
}
#endif

template<class GM>
template<class VECTOR>
void LPReparametrisationStorage<GM>::serialize(VECTOR* pserialization)const
{
//computing total space needed:
size_t i=0;
for (IndexType factorId=0;factorId<_dualVariables.size();++factorId)
 for (IndexType localId=0;localId<_dualVariables[factorId].size();++localId)
  for (LabelType label=0;label<_dualVariables[factorId][localId].size();++label)
	  ++i;

 pserialization->resize(i);
 //serializing....
 i=0;
 for (IndexType factorId=0;factorId<_dualVariables.size();++factorId)
	 for (IndexType localId=0;localId<_dualVariables[factorId].size();++localId)
		for (LabelType label=0;label<_dualVariables[factorId][localId].size();++label)
		 (*pserialization)[i++]=_dualVariables[factorId][localId][label];
}

template<class GM>
template<class VECTOR>
void LPReparametrisationStorage<GM>::deserialize(const VECTOR& serialization)
{
	size_t i=0;
	 for (IndexType factorId=0;factorId<_gm.numberOfFactors();++factorId)
	 {
		 OPENGM_ASSERT(factorId<_dualVariables.size());
		 if (_gm[factorId].numberOfVariables()==1) continue;
		 for (IndexType localId=0;localId<_gm[factorId].numberOfVariables();++localId)
		 {
			OPENGM_ASSERT(localId<_dualVariables[factorId].size());
			for (LabelType label=0;label<_dualVariables[factorId][localId].size();++label)
			{
			 OPENGM_ASSERT(label<_dualVariables[factorId][localId].size());
			 if (i>=serialization.size())
				 throw std::runtime_error("LPReparametrisationStorage<GM>::deserialize(): Size of serialization is less than required for the graphical model! Deserialization failed.");
			 _dualVariables[factorId][localId][label]=serialization[i++];
			}
		 }
	 }
	 if (i!=serialization.size())
		 throw std::runtime_error("LPReparametrisationStorage<GM>::deserialize(): Size of serialization is greater than required for the graphical model! Deserialization failed.");
}
/*
#ifdef WITH_HDF5

template<class GM>
void save(const LPReparametrisationStorage<GM>& repa,const std::string& filename,const std::string& modelname)
{
		hid_t file = H5Fcreate(filename.c_str(), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
	    OPENGM_ASSERT(file >= 0);
		marray::Vector<typename GM::ValueType> marr;
		repa.serialize(&marr);
		marray::hdf5::save(file,modelname.c_str(),marr);
	    H5Fclose(file);
}

template<class GM>
void load(LPReparametrisationStorage<GM>* prepa, const std::string& filename, const std::string& modelname)
{
	hid_t file = H5Fopen(filename.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
	OPENGM_ASSERT(file>=0);
	marray::Vector<typename GM::ValueType> marr;
	marray::hdf5::load(file,modelname.c_str(),marr);
	prepa->deserialize(marr);
	H5Fclose(file);
};

#endif
*/

template<class GM, class REPASTORAGE>
class ReparametrizationView : public opengm::FunctionBase<ReparametrizationView<GM,REPASTORAGE>,
typename GM::ValueType,typename GM::IndexType, typename GM::LabelType>
{
public:
	typedef typename GM::ValueType ValueType;
	typedef ValueType value_type;
	typedef typename GM::FactorType FactorType;
	typedef typename GM::OperatorType OperatorType;
	typedef typename GM::IndexType IndexType;
	typedef typename GM::LabelType LabelType;

	typedef GM GraphicalModelType;
	typedef REPASTORAGE ReparametrizationStorageType;

	ReparametrizationView(const FactorType & factor,const REPASTORAGE& repaStorage,IndexType factorId)
	:_pfactor(&factor),_prepaStorage(&repaStorage),_factorId(factorId)
	{};

	template<class Iterator>
	ValueType operator()(Iterator begin)const
	{
		switch (_pfactor->numberOfVariables())
		{
		case 1: return _prepaStorage->getVariableValue(_pfactor->variableIndex(0),*begin);
		default: return _prepaStorage->getFactorValue(_factorId,begin);
		};
	}

	LabelType shape(const IndexType& index)const{return _pfactor->numberOfLabels(index);};
	IndexType dimension()const{return _pfactor->numberOfVariables();};
	IndexType size()const{return _pfactor->size();};

private:
	const FactorType* _pfactor;
	const REPASTORAGE* _prepaStorage;
	IndexType _factorId;
};

struct LPReparametrizer_Parameter
{
	LPReparametrizer_Parameter(){};
};

template<class GM, class ACC>
class LPReparametrizer
{
public:
	typedef GM GraphicalModelType;
	typedef typename GraphicalModelType::ValueType ValueType;
	typedef typename GraphicalModelType::IndexType IndexType;
	typedef typename GraphicalModelType::LabelType LabelType;
	typedef typename std::vector<bool> MaskType;
	typedef typename std::vector<MaskType>  ImmovableLabelingType;
	typedef LPReparametrisationStorage<GM> RepaStorageType;
	typedef opengm::GraphicalModel<ValueType,opengm::Adder,opengm::ReparametrizationView<GM,RepaStorageType>,
					 opengm::DiscreteSpace<IndexType,LabelType> > ReparametrizedGMType;
	typedef LPReparametrizer_Parameter Parameter;

	LPReparametrizer(const GM& gm):_gm(gm),_repastorage(_gm){};
	virtual ~LPReparametrizer(){};
	RepaStorageType& Reparametrization(){return _repastorage;};
	//TODO: To implement
	virtual void getArcConsistency(std::vector<bool>* pmask,std::vector<LabelType>* plabeling,IndexType modelorder=2);
	virtual void reparametrize(const MaskType* pmask=0){};
	void reparametrize(const ImmovableLabelingType& immovableLabeling){};
	virtual void getReparametrizedModel(ReparametrizedGMType& gm)const;
	const GM& graphicalModel()const{return _gm;}
private:
	const GM& _gm;
	RepaStorageType _repastorage;
};

template<class GM, class ACC>
void LPReparametrizer<GM,ACC>::getReparametrizedModel(ReparametrizedGMType& gm)const
{
	gm=ReparametrizedGMType(_gm.space());
	//copying factors
	for (typename GM::IndexType factorID=0;factorID<_gm.numberOfFactors();++factorID)
	{
		const typename GM::FactorType& f=_gm[factorID];
		opengm::ReparametrizationView<GM,RepaStorageType> repaView(f,_repastorage,factorID);
		typename ReparametrizedGMType::FunctionIdentifier fId=gm.addFunction(repaView);
		gm.addFactor(fId,f.variableIndicesBegin(), f.variableIndicesEnd());
	}
}

template<class GM, class ACC>
void LPReparametrizer<GM,ACC>::getArcConsistency(std::vector<bool>* pmask,std::vector<LabelType>* plabeling,IndexType modelorder)
{
	pmask->assign(_gm.numberOfVariables(),true);
	ReparametrizedGMType repagm;
	getReparametrizedModel(repagm);

/**	    for (all factors)
		compute optimal values and labels (label sequences)
		create the list of unary factors;
        find optimal label for each variable
**/

	std::vector<ValueType>  optimalValues(repagm.numberOfFactors());
	std::vector< std::vector<LabelType> > optimalLabelings(repagm.numberOfFactors(),std::vector<LabelType>(modelorder));
	//std::vector<LabelType> locallyOptimalLabels(repagm.numberOfVariables(),0);//in case there is no corresponding unary factor 0 is always one of optimal labels (all labels are optimal)
	std::vector<LabelType>& locallyOptimalLabels=*plabeling;
	locallyOptimalLabels.assign(repagm.numberOfVariables(),0);//in case there is no corresponding unary factor 0 is always one of optimal labels (all labels are optimal)

	std::vector<IndexType> unaryFactors;  unaryFactors.reserve(repagm.numberOfFactors());
	std::vector<ValueType> worstValue(repagm.numberOfFactors(),0);

//	std::cout << "First cycle:" <<std::endl;

	for (IndexType factorId=0;factorId<repagm.numberOfFactors();++factorId)
	{
		const typename ReparametrizedGMType::FactorType& factor=repagm[factorId];
		optimalLabelings[factorId].resize(factor.numberOfVariables());
		//accumulate.template<ACC>(factor,optimalValues[factorId],optimalLabelings[factorId]);
		accumulate<ACC,typename ReparametrizedGMType::FactorType,ValueType,LabelType>(factor,optimalValues[factorId],optimalLabelings[factorId]);

//		std::cout << "factorId=" << factorId<< ", optimalValues=" << optimalValues[factorId] << ", optimalLabelings=" << optimalLabelings[factorId] <<std::endl;

		if (factor.numberOfVariables() == 1)
		{
		  unaryFactors.push_back(factorId);
		  locallyOptimalLabels[factor.variableIndex(0)]=optimalLabelings[factorId][0];
//		  std::cout << "locallyOptimalLabels[" << factor.variableIndex(0)<<"]=" << locallyOptimalLabels[factor.variableIndex(0)] << std::endl;
		}else
		{
			if (ACC::bop(0,1))
				worstValue[factorId]=factor.max();
			else
				worstValue[factorId]=factor.min();
		}

	}

/**	for (unary factors and the optimal label)
	{
	 for (each NON-nary factor)
		 if NOT (locally optimal labels form an eps-optimal factor value
		    or the optimal label produces THE (very) optimal factor value)
		    mark the node as NON-consistent
	}
**/

	for (IndexType i=0;i<unaryFactors.size();++i)
	{
	 IndexType var=	repagm[unaryFactors[i]].variableIndex(0);
	 IndexType numOfFactors=repagm.numberOfFactors(var);

	 for (IndexType f=0;f<numOfFactors;++f)
	 {
		IndexType factorId=repagm.factorOfVariable(var,f);
		const typename ReparametrizedGMType::FactorType& factor=repagm[factorId];

//		std::cout << "factorId=" <<factorId <<", optimalValues="<< optimalValues[factorId]<< std::endl;

		if (factor.numberOfVariables() <= 1) continue;//!> only higher order factors are considered

		IndexType localVarIndex= std::find(factor.variableIndicesBegin(),factor.variableIndicesEnd(),var) -factor.variableIndicesBegin();//!>find the place of the variable

		OPENGM_ASSERT((IndexType)localVarIndex != (IndexType)(factor.variableIndicesEnd()-factor.variableIndicesBegin()));

		if (optimalLabelings[factorId][localVarIndex]==locallyOptimalLabels[var]) continue; //!>if the label belongs to the optimal configuration of the factor

		std::vector<LabelType> labeling(optimalLabelings[factorId].size());
		//labeling[localVarIndex]=locallyOptimalLabels[var];

		for (IndexType v=0;v<factor.numberOfVariables();++v)
			labeling[v]=locallyOptimalLabels[factor.variableIndex(v)];

//		std::cout <<"worstValue="<<worstValue[factorId] << ", localVarIndex=" <<localVarIndex <<", labeling="<< labeling<<std::endl;

		if (fabs(factor(labeling.begin())-optimalValues[factorId])
				<factor.numberOfVariables()*fabs(worstValue[factorId])*std::numeric_limits<ValueType>::epsilon()) continue;//!> if it is connected to other optimal labels with eps-optimal hyperedge

		/** else **/
//		std::cout << "False:("<<std::endl;

		(*pmask)[var]=false; break;
	 }
	}

}

}


#endif /* LP_REPARAMETRIZATION_STORAGE_HXX_ */