This file is indexed.

/usr/include/opengm/inference/auxiliary/minstcutboost.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#pragma once
#ifndef OPENGM_MINSTCUTBOOST_HXX
#define OPENGM_MINSTCUTBOOST_HXX

#ifndef BOOST_DISABLE_ASSERTS
#define BOOST_DISABLE_ASSERTS
#define USED_BOOST_DISABLE_ASSERTS
#endif  

#include <queue>
#include <cassert>

#include <boost/graph/graph_traits.hpp>
#include <boost/graph/one_bit_color_map.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/typeof/typeof.hpp>

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/edmonds_karp_max_flow.hpp>
#include <boost/graph/push_relabel_max_flow.hpp>
#include <boost/graph/boykov_kolmogorov_max_flow.hpp>

namespace opengm {

   enum BoostMaxFlowAlgorithm {
      PUSH_RELABEL, EDMONDS_KARP, KOLMOGOROV
   };

   /// \brief Boost solvers for the min st-cut framework GraphCut
   template<class NType, class VType, BoostMaxFlowAlgorithm mfalg>
   class MinSTCutBoost {
   public:
      // Type-Definitions
      typedef NType node_type;
      typedef VType ValueType;
      typedef boost::vecS OutEdgeList;
      typedef boost::vecS VertexList;
      typedef boost::adjacency_list_traits<OutEdgeList, VertexList, boost::directedS> graph_traits;
      typedef graph_traits::edge_descriptor edge_descriptor;
      typedef graph_traits::vertex_descriptor vertex_descriptor;

      /// \cond HIDDEN_SYMBOLS
      struct Edge {
         Edge() : capacity(ValueType()), residual(ValueType()), reverse(edge_descriptor()) 
            {}
         ValueType capacity;
         ValueType residual;
         edge_descriptor reverse;
      };
      /// \endcond

      typedef boost::adjacency_list<OutEdgeList, VertexList, boost::directedS, size_t, Edge> graph_type;
      typedef typename boost::graph_traits<graph_type>::edge_iterator edge_iterator;
      typedef typename boost::graph_traits<graph_type>::out_edge_iterator out_edge_iterator;

      // Methods
      MinSTCutBoost();
      MinSTCutBoost(size_t numberOfNodes, size_t numberOfEdges);
      void addEdge(node_type, node_type, ValueType);
      void calculateCut(std::vector<bool>&);

   private:
      // Members
      graph_type graph_;
      size_t numberOfNodes_;
      size_t numberOfEdges_;
      static const NType S = 0;
      static const NType T = 1;
   };

   //*********************
   //** Implementation  **
   //*********************

   template<class NType, class VType, BoostMaxFlowAlgorithm mfalg>
   MinSTCutBoost<NType, VType, mfalg>::MinSTCutBoost() {
      numberOfNodes_ = 2;
      numberOfEdges_ = 0;
   }

   template<class NType, class VType, BoostMaxFlowAlgorithm mfalg>
   MinSTCutBoost<NType, VType, mfalg>::MinSTCutBoost(size_t numberOfNodes, size_t numberOfEdges) {
      numberOfNodes_ = numberOfNodes;
      numberOfEdges_ = numberOfEdges;
      graph_ = graph_type(numberOfNodes_);
      //std::cout << "#nodes : " << numberOfNodes_ << std::endl;
   }

   template<class NType, class VType, BoostMaxFlowAlgorithm mfalg>
   void MinSTCutBoost<NType, VType, mfalg>::addEdge(node_type n1, node_type n2, ValueType cost) {
      assert(n1 < numberOfNodes_);
      assert(n2 < numberOfNodes_);
      assert(cost >= 0);
      std::pair<edge_descriptor, bool> e = add_edge(n1, n2, graph_);
      std::pair<edge_descriptor, bool> er = add_edge(n2, n1, graph_);
      graph_[e.first].capacity += cost;
      graph_[e.first].reverse = er.first;
      graph_[er.first].reverse = e.first;
      //std::cout << n1 << "->" << n2 << " : " << cost << std::endl;
   }

   template<class NType, class VType, BoostMaxFlowAlgorithm mfalg>
   void MinSTCutBoost<NType, VType, mfalg>::calculateCut(std::vector<bool>& segmentation) {
      if (mfalg == KOLMOGOROV) {//Kolmogorov
         std::vector<boost::default_color_type> color(num_vertices(graph_));
         std::vector<edge_descriptor> pred(num_vertices(graph_));
         std::vector<vertex_descriptor> dist(num_vertices(graph_));
         boykov_kolmogorov_max_flow(graph_,
            get(&Edge::capacity, graph_),
            get(&Edge::residual, graph_),
            get(&Edge::reverse, graph_),
            &pred[0],
            &color[0],
            &dist[0],
            get(boost::vertex_index, graph_),
            S, T
            );
         // find (s,t)-cut set
         segmentation.resize(num_vertices(graph_));
         for (size_t j = 2; j < num_vertices(graph_); ++j) {
            if (color[j] == boost::black_color || color[j] == boost::gray_color) {
               segmentation[j] = false;
            } else if (color[j] == boost::white_color) {
               segmentation[j] = true;
            }
         }
      } 
      else if (mfalg == PUSH_RELABEL) {// PushRelable

         push_relabel_max_flow(graph_, S, T,
            get(&Edge::capacity, graph_),
            get(&Edge::residual, graph_),
            get(&Edge::reverse, graph_),
            get(boost::vertex_index_t(), graph_)
            );
         // find (s,t)-cut set 
         segmentation.resize(num_vertices(graph_), true);
         segmentation[S] = false; // source
         segmentation[T] = false; // sink
         typedef typename boost::property_map<graph_type, boost::vertex_index_t>::type VertexIndexMap;
         VertexIndexMap vertexIndexMap = get(boost::vertex_index, graph_);
         std::queue<vertex_descriptor> q;
         q.push(*(vertices(graph_).first)); // source
         while (!q.empty()) {
            out_edge_iterator current, end;
            tie(current, end) = out_edges(q.front(), graph_);
            q.pop();
            while (current != end) {
               if (graph_[*current].residual > 0) {
                  vertex_descriptor v = target(*current, graph_);
                  if (vertexIndexMap[v] > 1 && segmentation[vertexIndexMap[v]] == true) {
                     segmentation[vertexIndexMap[v]] = false;
                     q.push(v);
                  }
               }
               ++current;
            }
         }
      } 
      else if (mfalg == EDMONDS_KARP) {//EdmondsKarp
         std::vector<boost::default_color_type> color(num_vertices(graph_));
         std::vector<edge_descriptor> pred(num_vertices(graph_));
         edmonds_karp_max_flow(graph_, S, T,
            get(&Edge::capacity, graph_),
            get(&Edge::residual, graph_),
            get(&Edge::reverse, graph_),
            &color[0], &pred[0]
            );
         // find (s,t)-cut set
         segmentation.resize(num_vertices(graph_));
         for (size_t j = 2; j < num_vertices(graph_); ++j) {
            if (color[j] == boost::black_color) {
               segmentation[j] = false;
            } else if (color[j] == boost::white_color) {
               segmentation[j] = true;
            } else {
               throw std::runtime_error("At least one vertex is labeled neither black nor white.");
            }
         }
      } 
      else {//UNKNOWN MaxFlowalgorithm
         throw std::runtime_error("Unknown MaxFlow-algorithm in MinSTCutBoost.hxx");
      }
      return;
   }

} // namespace opengm

#ifdef USED_BOOST_DISABLE_ASSERTS
#undef BOOST_DISABLE_ASSERTS
#undef USED_BOOST_DISABLE_ASSERTS
#endif 


#endif // #ifndef OPENGM_MINSTCUTBOOST_HXX