This file is indexed.

/usr/include/opengm/inference/dualdecomposition/dualdecomposition_bundle.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#pragma once
#ifndef OPENGM_DUALDDECOMPOSITION_BUNDLE_HXX
#define OPENGM_DUALDDECOMPOSITION_BUNDLE_HXX

#include <vector>
#include <list>
#include <typeinfo>
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
#include "opengm/inference/dualdecomposition/dualdecomposition_base.hxx"

#ifdef WITH_OPENMP
#include <omp.h>
#endif
#ifdef WITH_CONICBUNDLE
#include <CBSolver.hxx>

namespace opengm {

   /// \brief Dual-Decomposition-Bundle\n\n
   /// Inference based on dual decomposition using bundle methods\n
   /// Reference:\n
   /// Kappes, J. H. and Savchynskyy, B. and Schnoerr, C.:
   /// "A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation".
   /// In CVPR 2012, 2012. 
   /// \ingroup inference 
   template<class GM, class INF, class DUALBLOCK >
   class DualDecompositionBundle 
      : public Inference<GM,typename INF::AccumulationType>,  
        public DualDecompositionBase<GM, DUALBLOCK>,
        public ConicBundle::FunctionOracle
   {
   public:
      typedef GM                                                 GmType; 
      typedef GM                                                 GraphicalModelType;
      typedef typename INF::AccumulationType                     AccumulationType;
      OPENGM_GM_TYPE_TYPEDEFS;
      typedef visitors::VerboseVisitor<DualDecompositionBundle<GM, INF,DUALBLOCK> > VerboseVisitorType;
      typedef visitors::TimingVisitor<DualDecompositionBundle<GM, INF,DUALBLOCK> >  TimingVisitorType;
      typedef visitors::EmptyVisitor<DualDecompositionBundle<GM, INF,DUALBLOCK> >   EmptyVisitorType;
      typedef INF                                                InfType;
      typedef DUALBLOCK                                          DualBlockType;
      typedef typename DualBlockType::DualVariableType           DualVariableType;
      typedef DualDecompositionBase<GmType, DualBlockType>       DDBaseType;    
     
      typedef typename DDBaseType::SubGmType                     SubGmType;
      typedef typename DualBlockType::SubFactorType              SubFactorType;
      typedef typename DualBlockType::SubFactorListType          SubFactorListType; 
      typedef typename DDBaseType::SubVariableType               SubVariableType;
      typedef typename DDBaseType::SubVariableListType           SubVariableListType; 

      class Parameter : public DualDecompositionBaseParameter{
      public: 
         /// The relative accuracy which have to be garantee to stop with an approximative solution (set 0 for optimality)
         double minimalRelAccuracy_;
         /// Parameter for Subproblems
         typename InfType::Parameter subPara_;
         /// Relative Precision of dual bound
         double relativeDualBoundPrecision_;
         /// Maximal size of bundle
         size_t maxBundlesize_;
         /// Some variables will be fixed automatically to the center value if their bounds are strongly active (i.e., the corresponding multipliers are big).  
         bool activeBoundFixing_;
         /// Lower bound on the weight for the quadratic term of the augmented subproblem. 
         double minDualWeight_;
         /// Upper bound on the weight for the quadratic term of the augmented subproblem. 
         double maxDualWeight_;
         /// Use a special solver that only employs a minimal bundle consisting of just one new and one aggregate gradient so that there is no real bundle available.
         bool noBundle_;
         /// Uses heuristic for stepsize/trustregion-radius
         bool useHeuristicStepsize_;
       
         Parameter() 
            : relativeDualBoundPrecision_(0.0),
              maxBundlesize_(100),
              activeBoundFixing_(false),
              minDualWeight_(-1),
              maxDualWeight_(-1),
              noBundle_(false),
              useHeuristicStepsize_(true)
            {};
      };

      using  DualDecompositionBase<GmType, DualBlockType >::gm_;
      using  DualDecompositionBase<GmType, DualBlockType >::subGm_;
      using  DualDecompositionBase<GmType, DualBlockType >::dualBlocks_;
      using  DualDecompositionBase<GmType, DualBlockType >::numDualsOvercomplete_;
      using  DualDecompositionBase<GmType, DualBlockType >::numDualsMinimal_;
      
      ~DualDecompositionBundle();
      DualDecompositionBundle(const GmType&);
      DualDecompositionBundle(const GmType&, const Parameter&);
      virtual std::string name() const {return "DualDecompositionSubGradient";};
      virtual const GmType& graphicalModel() const {return gm_;};
      virtual InferenceTermination infer();
      template<class VisitorType>
      InferenceTermination infer(VisitorType&);
      virtual ValueType bound() const;
      virtual ValueType value() const;
      virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1)const;
      virtual int evaluate(const ConicBundle::DVector&, double, double&, ConicBundle::DVector&, std::vector<ConicBundle::DVector>&,
                           std::vector<ConicBundle::PrimalData*>&, ConicBundle::PrimalExtender*&);
    
   private: 
      virtual void allocate();
      virtual DualDecompositionBaseParameter& parameter();
      int dualStep(const size_t iteration);
     template <class T_IndexType, class T_LabelType>
      void getPartialSubGradient(const size_t, const std::vector<T_IndexType>&, std::vector<T_LabelType>&)const;
      double euclideanSubGradientNorm();

      // Members
      std::vector<std::vector<LabelType> >  subStates_;
      ConicBundle::CBSolver* solver;
      size_t nullStepCounter_;

      Accumulation<ValueType,LabelType,AccumulationType> acUpperBound_;
      Accumulation<ValueType,LabelType,AccumulationType> acNegLowerBound_;
      ValueType upperBound_;
      ValueType lowerBound_;

      Parameter              para_;
      std::vector<ValueType> mem_; 
      std::vector<ValueType> mem2_;

      opengm::Timer primalTimer_;
      opengm::Timer dualTimer_;
      double primalTime_;
      double dualTime_;

   };  
      
//**********************************************************************************
   template<class GM, class INF, class DUALBLOCK>
   DualDecompositionBundle<GM,INF,DUALBLOCK>::~DualDecompositionBundle()
   {
      delete solver;
   }

   template<class GM, class INF, class DUALBLOCK>
   DualDecompositionBundle<GM,INF,DUALBLOCK>::DualDecompositionBundle(const GmType& gm)
      : DualDecompositionBase<GmType, DualBlockType >(gm)
   {
      this->init(para_);
      subStates_.resize(subGm_.size());
      for(size_t i=0; i<subGm_.size(); ++i)
         subStates_[i].resize(subGm_[i].numberOfVariables());
  
      solver = new ConicBundle::CBSolver(para_.noBundle_);
      // Setup bundle-solver
      solver->init_problem(numDualsMinimal_);
      solver->add_function(*this); 
      solver->set_out(&std::cout,0);//1=output
     
      solver->set_max_bundlesize(*this,para_.maxBundlesize_);
      //solver->set_eval_limit(1000); 
      //solver->set_inner_update_limit(1);
      solver->set_active_bounds_fixing(para_.activeBoundFixing_);
      solver->set_term_relprec(para_.relativeDualBoundPrecision_); 
      solver->set_min_weight(para_.minDualWeight_);
      solver->set_max_weight(para_.maxDualWeight_);
      nullStepCounter_ =0;
   }
   
   template<class GM, class INF, class DUALBLOCK>
   DualDecompositionBundle<GM,INF,DUALBLOCK>::DualDecompositionBundle(const GmType& gm, const Parameter& para)
      :  DualDecompositionBase<GmType, DualBlockType >(gm)
   {
      para_ = para;
      this->init(para_); 
 
      subStates_.resize(subGm_.size());
      for(size_t i=0; i<subGm_.size(); ++i)
         subStates_[i].resize(subGm_[i].numberOfVariables()); 
 
      solver = new ConicBundle::CBSolver(para_.noBundle_);
      // Setup bundle-solver
      solver->init_problem(numDualsMinimal_);
      solver->add_function(*this); 
      solver->set_out(&std::cout,0);//1=output
      solver->set_max_bundlesize(*this,para_.maxBundlesize_);
      //solver->set_eval_limit(1000);
      //solver->set_inner_update_limit(1);
      solver->set_active_bounds_fixing(para.activeBoundFixing_);
      solver->set_term_relprec(para_.relativeDualBoundPrecision_); 
      solver->set_min_weight(para_.minDualWeight_);
      solver->set_max_weight(para_.maxDualWeight_);
      nullStepCounter_ =0;
 }


////////////////////////////////////////////////////////////////////

   template <class GM, class INF, class DUALBLOCK> 
   void DualDecompositionBundle<GM,INF,DUALBLOCK>::allocate()  
   { 
      mem_.resize(numDualsOvercomplete_,0);
      mem2_.resize(numDualsOvercomplete_,0);
      ValueType *data1Front = &mem_[0];
      ValueType *data1Back  = &mem_[numDualsOvercomplete_];
      ValueType *data2Front = &mem2_[0];
      ValueType *data2Back  = &mem2_[numDualsOvercomplete_];
      for(typename std::vector<DualBlockType>::iterator it=dualBlocks_.begin(); it!=dualBlocks_.end(); ++it){
         for(size_t i=0; i<(*it).duals_.size(); ++i){
            DualVariableType& dv1 = (*it).duals_[i];
            DualVariableType& dv2 = (*it).duals2_[i];
            if(i+1==(*it).duals_.size()){
               data1Back -= dv1.size(); 
               data2Back -= dv2.size(); 
               dv1.assign( dv1.shapeBegin(),dv1.shapeEnd(),data1Back); 
               dv2.assign( dv2.shapeBegin(),dv2.shapeEnd(),data2Back); 
            }
            else{
               dv1.assign( dv1.shapeBegin(),dv1.shapeEnd(),data1Front); 
               dv2.assign( dv2.shapeBegin(),dv2.shapeEnd(),data2Front); 
               data1Front += dv1.size(); 
               data2Front += dv2.size();
            } 
         }
      }
      OPENGM_ASSERT(data1Front ==  data1Back );
      OPENGM_ASSERT(data2Front ==  data2Back ); 
      OPENGM_ASSERT(data1Front ==  &mem_[0]+numDualsMinimal_);
      OPENGM_ASSERT(data2Front ==  &mem2_[0]+numDualsMinimal_ );
   }   

   template <class GM, class INF, class DUALBLOCK> 
   DualDecompositionBaseParameter& DualDecompositionBundle<GM,INF,DUALBLOCK>::parameter()
   {
      return para_;
   }

/////////////////////////
  
   template<class GM, class INF, class DUALBLOCK>
   InferenceTermination DualDecompositionBundle<GM,INF,DUALBLOCK>::
   infer() 
   {
      EmptyVisitorType visitor;
      return infer(visitor);
   }

   template<class GM, class INF, class DUALBLOCK>
   template<class VisitorType>
   InferenceTermination DualDecompositionBundle<GM,INF,DUALBLOCK>::
   infer(VisitorType& visitor) 
   {
      std::cout.precision(15);
      visitor.begin(*this);    
      for(size_t iteration=0; iteration<para_.maximalNumberOfIterations_; ++iteration){  
         // Dual Step 
         ////dualTimer_.tic();
         int ret;
         if(dualBlocks_.size() == 0){
            // Solve subproblems
            for(size_t subModelId=0; subModelId<subGm_.size(); ++subModelId){ 
               InfType inf(subGm_[subModelId],para_.subPara_);
               inf.infer(); 
               inf.arg(subStates_[subModelId]); 
            } 

            // Calculate lower-bound
            std::vector<LabelType> temp;  
            std::vector<LabelType> temp2; 
            const std::vector<SubVariableListType>& subVariableLists = para_.decomposition_.getVariableLists();
            (*this).template getBounds<AccumulationType>(subStates_, subVariableLists, lowerBound_, upperBound_, temp);
            acNegLowerBound_(-lowerBound_,temp2);
            acUpperBound_(upperBound_, temp);
            ret=128;
         }
         else{
            ret = dualStep(iteration);
         }
         ////dualTimer_.toc();
         ////dualTime_ = dualTimer_.elapsedTime() - primalTime_;
         std::cout.precision(15);
         if(visitor(*this)!=0){
	   break;
	 } 
         //visitor((*this),lowerBound_,-acNegLowerBound_.value(), upperBound_, acUpperBound_.value(), primalTime_, dualTime_);

         ////dualTime_  = 0;
         ////primalTime_ = 0;


         // Test for Convergence
         ValueType o;
         AccumulationType::iop(0.0001,-0.0001,o);
         OPENGM_ASSERT(AccumulationType::bop(lowerBound_, upperBound_+o));
         OPENGM_ASSERT(AccumulationType::bop(-acNegLowerBound_.value(), acUpperBound_.value()+o));
         
         if(   fabs(acUpperBound_.value() + acNegLowerBound_.value())                       <= para_.minimalAbsAccuracy_
            || fabs((acUpperBound_.value()+ acNegLowerBound_.value())/acUpperBound_.value()) <= para_.minimalRelAccuracy_
            || ret ==1){
            visitor.end(*this); 
            return NORMAL;
         } 
         if(ret>0){
            break;
         }
      } 
      visitor.end(*this); 
      return NORMAL;
   }

   template<class GM, class INF, class DUALBLOCK>
   InferenceTermination DualDecompositionBundle<GM,INF,DUALBLOCK>::
   arg(std::vector<LabelType>& conf, const size_t n)const 
   {
      if(n!=1){
         return UNKNOWN;
      }
      else{ 
         acUpperBound_.state(conf);
         return NORMAL;
      }
   }

   template<class GM, class INF, class DUALBLOCK>
   typename GM::ValueType DualDecompositionBundle<GM,INF,DUALBLOCK>::value() const 
   {
      return acUpperBound_.value();
   }

   template<class GM, class INF, class DUALBLOCK>
   typename GM::ValueType DualDecompositionBundle<GM,INF,DUALBLOCK>::bound() const 
   {
      return -acNegLowerBound_.value();
   }


///////////////////////////////////////////////////////////////
 
   template <class GM, class INF, class DUALBLOCK> 
   int DualDecompositionBundle<GM,INF,DUALBLOCK>::dualStep(const size_t iteration)
   { 
      int retval; 
      if(para_.useHeuristicStepsize_){ 
         solver->set_min_weight(para_.minDualWeight_);
         solver->set_max_weight(para_.maxDualWeight_);
      }
      else if(iteration == 0){
         solver->set_min_weight(100);
         solver->set_max_weight(100);
      }
      else{
         if(solver->get_objval() == solver->get_candidate_value() || iteration==1){
            //Serious Step
            double primalDualGap   = fabs(acUpperBound_.value() + acNegLowerBound_.value());
           
            double subgradientNorm =  (*this).euclideanSubGradientNorm();
            double stepsize = (primalDualGap)/subgradientNorm * para_.stepsizeStride_;
           
            if(para_.minDualWeight_>=0)     
               stepsize = std::min(1/para_.minDualWeight_, stepsize);
            if(para_.maxDualWeight_>=0)
               stepsize = std::max(1/para_.maxDualWeight_, stepsize);
                 
            double t   = 1/stepsize;
            solver->set_next_weight(t);
            solver->set_min_weight(t);
            solver->set_max_weight(t);
            nullStepCounter_ =0;
         }
         else{
            // Null Step  
            ++nullStepCounter_;
         }
      }

      retval=solver->do_descent_step(1);

      if (retval){
         std::cout<<"descent_step returned "<<retval<<std::endl;
      }
      //std::cout << solver->get_last_weight() << std::endl;
      return solver->termination_code();
   } 

   template <class GM, class INF, class DUALBLOCK> 
   int DualDecompositionBundle<GM,INF,DUALBLOCK>::evaluate
   (  
      const ConicBundle::DVector&            dual, // Argument/Lagrange multipliers 
      double                                 relprec,
      double&                                objective_value,
      ConicBundle::DVector&                  cut_vals,
      std::vector<ConicBundle::DVector>&     subgradients,
      std::vector<ConicBundle::PrimalData*>& primal_solutions,
      ConicBundle::PrimalExtender*&          primal_extender
      )
   { 
      typename std::vector<DualBlockType>::iterator it;
      typename SubFactorListType::const_iterator lit;
   
      for(size_t i=0; i<numDualsMinimal_; ++i){
         mem_[i] = dual[i];
      }
      for(it = dualBlocks_.begin(); it != dualBlocks_.end(); ++it){
         const size_t numDuals = (*it).duals_.size();
         (*it).duals_[numDuals-1] = -(*it).duals_[0];
         for(size_t i=1; i<numDuals-1;++i){
            (*it).duals_[numDuals-1] -= (*it).duals_[i];
         }
      } 
      // Solve Subproblems 
      objective_value=0;
      primalTimer_.tic();
   
//#ifdef WITH_OPENMP 
//      omp_set_num_threads(para_.numberOfThreads_);
//#pragma omp parallel for
//#endif
      for(size_t subModelId=0; subModelId<subGm_.size(); ++subModelId){ 
         InfType inf(subGm_[subModelId],para_.subPara_);
         inf.infer(); 
         inf.arg(subStates_[subModelId]); 
      } 
      primalTimer_.toc();
      primalTime_ +=  primalTimer_.elapsedTime();

      // Calculate lower-bound
      std::vector<LabelType> temp;  
      std::vector<LabelType> temp2; 
      const std::vector<SubVariableListType>& subVariableLists = para_.decomposition_.getVariableLists();
      (*this).template getBounds<AccumulationType>(subStates_, subVariableLists, lowerBound_, upperBound_, temp);
      acNegLowerBound_(-lowerBound_,temp2);
      acUpperBound_(upperBound_, temp);
      objective_value = -lowerBound_;

      // Store subgradient
      std::vector<size_t> s;
      mem2_.assign(mem2_.size(),0);
      for(it = dualBlocks_.begin(); it != dualBlocks_.end(); ++it){
         const size_t numDuals = (*it).duals_.size();
         lit = (*((*it).subFactorList_)).begin();
         s.resize((*lit).subIndices_.size());
         for(size_t i=0; i<numDuals; ++i){
            getPartialSubGradient((*lit).subModelId_, (*lit).subIndices_, s); 
            ++lit;              
            (*it).duals2_[i](s.begin()) += -1.0;
         }
         for(size_t i=0; i<numDuals-1; ++i){ 
            (*it).duals2_[i] -=  (*it).duals2_[numDuals-1] ;
         }   
      }  

      //construct first subgradient and objective value
      ConicBundle::PrimalDVector h(numDualsMinimal_,0);
      cut_vals.push_back(objective_value);
      for(size_t i=0; i<numDualsMinimal_; ++i){
         h[i] = mem2_[i];
      }
      subgradients.push_back(h);
      //  primal_solutions.push_back(h.clone_primal_data());
      return 0;
   }



   template <class GM, class INF, class DUALBLOCK> 
   template <class T_IndexType, class T_LabelType>
   inline void DualDecompositionBundle<GM,INF,DUALBLOCK>::getPartialSubGradient 
   ( 
      const size_t                             subModelId,
      const std::vector<T_IndexType>&    subIndices, 
      std::vector<T_LabelType> &                 s
   )const 
   {
      OPENGM_ASSERT(subIndices.size() == s.size());
      for(size_t n=0; n<s.size(); ++n){
         s[n] = subStates_[subModelId][subIndices[n]];
      }
   } 

   template <class GM, class INF, class DUALBLOCK> 
   double DualDecompositionBundle<GM,INF,DUALBLOCK>::euclideanSubGradientNorm()
   { 
      double norm = 0;
      std::vector<size_t> s,s2;
      typename std::vector<DUALBLOCK>::const_iterator it;
      typename SubFactorListType::const_iterator                  lit;
      for(it = dualBlocks_.begin(); it != dualBlocks_.end(); ++it){
         const size_t numDuals = (*it).duals_.size(); 
         const SubFactorType& sf = (*((*it).subFactorList_)).back();
         lit = (*((*it).subFactorList_)).begin();
         s.resize((*lit).subIndices_.size());
         s2.resize((*lit).subIndices_.size());
         getPartialSubGradient(sf.subModelId_, sf.subIndices_, s2);   
         for(size_t i=0; i<numDuals-1; ++i){
            getPartialSubGradient((*lit).subModelId_, (*lit).subIndices_, s); 
            ++lit; 
            if(s!=s2)
               norm += 2;
         }
      }
      return sqrt(norm);
   } 



}
#endif // WITH_CONICBUNDLE   
#endif