This file is indexed.

/usr/include/opengm/inference/external/ad3.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#pragma once
#ifndef OPENGM_EXTERNAL_AD3_HXX
#define OPENGM_EXTERNAL_AD3_HXX

#include "opengm/graphicalmodel/graphicalmodel.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"



#include "ad3/FactorGraph.h"
//#include "FactorSequence.h"


namespace opengm {
   namespace external {

      /// \brief AD3\n
      /// \ingroup inference 
      /// \ingroup external_inference

      template<class GM,class ACC>
      class AD3Inf : public Inference<GM, ACC> {

      public:
         typedef GM GraphicalModelType;
         typedef ACC AccumulationType;
         OPENGM_GM_TYPE_TYPEDEFS;
         typedef visitors::VerboseVisitor<AD3Inf<GM,ACC> > VerboseVisitorType;
         typedef visitors::EmptyVisitor<AD3Inf<GM,ACC> >   EmptyVisitorType;
         typedef visitors::TimingVisitor<AD3Inf<GM,ACC> >  TimingVisitorType;
         
         enum SolverType{
            AD3_LP,
            AD3_ILP,
            PSDD_LP
         };

         struct Parameter {
            Parameter(
               const SolverType  solverType        = AD3_ILP,
               const double      eta               = 0.1,
               const bool        adaptEta          = true,
               UInt64Type        steps             = 1000,
               const double      residualThreshold = 1e-6,
               const int         verbosity         = 0 
            ) :
               solverType_(solverType),
               eta_(eta),
               adaptEta_(adaptEta),
               steps_(steps),
               residualThreshold_(residualThreshold),
               verbosity_(verbosity)
            {  
            }

            SolverType  solverType_;

            double      eta_;
            bool        adaptEta_;
            UInt64Type  steps_;
            double      residualThreshold_;
            int         verbosity_;
         };

         // construction
         AD3Inf(const GraphicalModelType& gm, const Parameter para = Parameter());
         ~AD3Inf();

         // query
         std::string name() const;
         const GraphicalModelType& graphicalModel() const;
         // inference
         InferenceTermination infer();
         template<class VisitorType>
         InferenceTermination infer(VisitorType&);
         InferenceTermination arg(std::vector<LabelType>&, const size_t& = 1) const;

         ValueType value()const{
            return gm_.evaluate(arg_);
         }

         ValueType bound()const{
            if(inferenceDone_ && parameter_.solverType_==AD3_ILP ){
               return bound_;
            }
            else{
               return bound_;
            }
         }


         ValueType valueToMaxSum(const ValueType val)const{
            if( meta::Compare<OperatorType,Adder>::value && meta::Compare<AccumulationType,Minimizer>::value){
               return val*(-1.0);
            }
            else if( meta::Compare<OperatorType,Adder>::value && meta::Compare<AccumulationType,Maximizer>::value){
               return val;
            }
         }

         ValueType valueFromMaxSum(const ValueType val)const{
            if( meta::Compare<OperatorType,Adder>::value && meta::Compare<AccumulationType,Minimizer>::value){
               return val*(-1.0);
            }
            else if( meta::Compare<OperatorType,Adder>::value && meta::Compare<AccumulationType,Maximizer>::value){
               return val;
            }
         }


         // iterface to create a ad3 gm without a gm

         template<class N_LABELS_ITER>
         AD3Inf(N_LABELS_ITER nLabelsBegin,N_LABELS_ITER nLabelsEnd, const Parameter para = Parameter());


         AD3Inf(const UInt64Type nVar,const UInt64Type nLabels, const Parameter para,const bool foo);


         template<class VI_ITERATOR,class FUNCTION>
         void addFactor(VI_ITERATOR viBegin,VI_ITERATOR viEnd,const FUNCTION & function);


         const std::vector<double> & posteriors()const{
            return posteriors_;
         }

         const std::vector<double> & higherOrderPosteriors()const{
            return additional_posteriors_;
         }  


      private:
         const GraphicalModelType& gm_;
         Parameter parameter_;
         IndexType numVar_;

         // AD3Inf MEMBERS
         AD3::FactorGraph factor_graph_;
         std::vector<AD3::MultiVariable*>  multi_variables_;

         std::vector<double> posteriors_;
         std::vector<double> additional_posteriors_;
         double bound_;

         std::vector<LabelType> arg_;

         bool inferenceDone_;

         std::vector<LabelType> space_;  // only used if setup without gm

      };
      // public interface
      /// \brief Construcor
      /// \param gm graphical model
      /// \param para belief propargation paramaeter

      template<class GM,class ACC>
      AD3Inf<GM,ACC>
      ::AD3Inf(
         const typename AD3Inf::GraphicalModelType& gm,
         const Parameter para
      )  : 
         gm_(gm),
         parameter_(para),
         numVar_(gm.numberOfVariables()),
         factor_graph_(),
         multi_variables_(gm.numberOfVariables()),
         posteriors_(),
         additional_posteriors_(),
         bound_(),
         arg_(gm.numberOfVariables(),static_cast<LabelType>(0)),
         inferenceDone_(false),
         space_(0)
      {

         if(meta::Compare<OperatorType,Adder>::value==false){
            throw RuntimeError("AD3 does not only support opengm::Adder as Operator");
         }

         if(meta::Compare<AccumulationType,Minimizer>::value==false and meta::Compare<AccumulationType,Maximizer>::value==false ){
            throw RuntimeError("AD3 does not only support opengm::Minimizer and opengm::Maximizer as Accumulatpr");
         }


         bound_ =  ACC::template ineutral<ValueType>();



         factor_graph_.SetVerbosity(parameter_.verbosity_);
         UInt64Type maxFactorSize = 0 ; 
         for(IndexType fi=0;fi<gm_.numberOfFactors();++fi){
            maxFactorSize=std::max(static_cast<UInt64Type>(gm_[fi].size()),maxFactorSize);
         }

         ValueType * facVal = new ValueType[maxFactorSize];


         // fill space :
         //  - Create a multi-valued variable for variable of gm 
         //    and initialize unaries with 0
         for(IndexType vi=0;vi<gm_.numberOfVariables();++vi){
            multi_variables_[vi] = factor_graph_.CreateMultiVariable(gm_.numberOfLabels(vi));
            for(LabelType l=0;l<gm_.numberOfLabels(vi);++l){
               multi_variables_[vi]->SetLogPotential(l,0.0);
            }
         }


         // - add higher order factors
         // - setup values for 1. order and higher order factors
         for(IndexType fi=0;fi<gm_.numberOfFactors();++fi){
            //gm_[fi].copyValues(facVal);
            gm_[fi].copyValuesSwitchedOrder(facVal);
            const IndexType nVar=gm_[fi].numberOfVariables();

            if(nVar==1){
               const IndexType vi0 = gm_[fi].variableIndex(0);
               const IndexType nl0 = gm_.numberOfLabels(vi0);

               for(LabelType l=0;l<nl0;++l){
                  const ValueType logP = multi_variables_[vi0]->GetLogPotential(l);
                  const ValueType val  = this->valueToMaxSum(facVal[l]); 
                  multi_variables_[vi0]->SetLogPotential(l,logP+val);
               }
            }
            else if (nVar>1){
               // std::cout<<"factor size "<<gm_[fi].size()<<"\n";
               // create higher order factor function
               std::vector<double> additional_log_potentials(gm_[fi].size());
               for(IndexType i=0;i<gm_[fi].size();++i){
                  additional_log_potentials[i]=this->valueToMaxSum(facVal[i]);
               }

               // create high order factor vi
               std::vector<AD3::MultiVariable*> multi_variables_local(nVar);
               for(IndexType v=0;v<nVar;++v){
                  multi_variables_local[v]=multi_variables_[gm_[fi].variableIndex(v)];
               }

               // create higher order factor
               factor_graph_.CreateFactorDense(multi_variables_local,additional_log_potentials);
            }
            else{
               OPENGM_CHECK(false,"const factors are not yet implemented");
            }

         }

         // delete buffer
         delete[] facVal;
      }

      template<class GM,class ACC>
      template<class N_LABELS_ITER>
      AD3Inf<GM,ACC>::AD3Inf(
         N_LABELS_ITER nLabelsBegin,
         N_LABELS_ITER nLabelsEnd,
         const Parameter para
      ) :
      gm_(GM()), // DIRTY
      parameter_(para),
      numVar_(std::distance(nLabelsBegin,nLabelsEnd)),
      factor_graph_(),
      multi_variables_(std::distance(nLabelsBegin,nLabelsEnd)),
      posteriors_(),
      additional_posteriors_(),
      bound_(),
      arg_(std::distance(nLabelsBegin,nLabelsEnd),static_cast<LabelType>(0)),
      space_(nLabelsBegin,nLabelsEnd)
      {

         if(meta::Compare<OperatorType,Adder>::value==false){
            throw RuntimeError("AD3 does not only support opengm::Adder as Operator");
         }
         if(meta::Compare<AccumulationType,Minimizer>::value==false and meta::Compare<AccumulationType,Maximizer>::value==false ){
            throw RuntimeError("AD3 does not only support opengm::Minimizer and opengm::Maximizer as Accumulatpr");
         }
         bound_ =  ACC::template ineutral<ValueType>();
         factor_graph_.SetVerbosity(parameter_.verbosity_);

         //  and initialize unaries with 0
         for(IndexType vi=0;vi<numVar_;++vi){
            multi_variables_[vi] = factor_graph_.CreateMultiVariable(space_[vi]);
            for(LabelType l=0;l<space_[vi];++l){
               multi_variables_[vi]->SetLogPotential(l,0.0);
            }
         }
      }

      template<class GM,class ACC>
      AD3Inf<GM,ACC>::AD3Inf(
         const UInt64Type nVar,
         const UInt64Type nLabels,
         const Parameter para,
         const bool foo
      ) :
      gm_(GM()), // DIRTY
      parameter_(para),
      numVar_(nVar),
      factor_graph_(),
      multi_variables_(nVar),
      posteriors_(),
      additional_posteriors_(),
      bound_(),
      arg_(nVar,static_cast<LabelType>(0)),
      space_(nVar,nLabels)
      {

         if(meta::Compare<OperatorType,Adder>::value==false){
            throw RuntimeError("AD3 does not only support opengm::Adder as Operator");
         }
         if(meta::Compare<AccumulationType,Minimizer>::value==false and meta::Compare<AccumulationType,Maximizer>::value==false ){
            throw RuntimeError("AD3 does not only support opengm::Minimizer and opengm::Maximizer as Accumulatpr");
         }
         bound_ =  ACC::template ineutral<ValueType>();
         factor_graph_.SetVerbosity(parameter_.verbosity_);
         for(IndexType vi=0;vi<numVar_;++vi){
            multi_variables_[vi] = factor_graph_.CreateMultiVariable(space_[vi]);
            for(LabelType l=0;l<space_[vi];++l){
               multi_variables_[vi]->SetLogPotential(l,0.0);
            }
         }
      }


      template<class GM,class ACC>
      template<class VI_ITERATOR,class FUNCTION>
      void 
      AD3Inf<GM,ACC>::addFactor(
         VI_ITERATOR visBegin,
         VI_ITERATOR visEnd,
         const FUNCTION & function
      ){
         const IndexType nVis = std::distance(visBegin,visEnd);
         OPENGM_CHECK_OP(nVis,==,function.dimension(),"functions dimension does not match number of variabole indices");

         for(IndexType v=0;v<nVis;++v){
            OPENGM_CHECK_OP(space_[visBegin[v]],==,function.shape(v),"functions shape does not match space");
         }


         if(nVis==1){
            LabelType l[1];
            for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0]){   
               const ValueType logP = multi_variables_[visBegin[0]]->GetLogPotential(l[0]);
               const ValueType val  = this->valueToMaxSum(function(l)); 
               multi_variables_[visBegin[0]]->SetLogPotential(l[0],logP+val);
            }
         }
         else if(nVis>=2){
            

            // create high order factor vi
            std::vector<AD3::MultiVariable*> multi_variables_local(nVis);
            for(IndexType v=0;v<nVis;++v){
               multi_variables_local[v]=multi_variables_[visBegin[v]];
            }

            // create higher order function (for dense factor)
            std::vector<double> additional_log_potentials(function.size());

            // FILL THE FUNCTION

            if(nVis==2){
               LabelType l[2];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==3){
               LabelType l[3];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==4){
               LabelType l[4];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==5){
               LabelType l[5];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==6){
               LabelType l[6];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4])
               for(l[5]=0; l[5]<space_[visBegin[5]]; ++l[5]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==7){
               LabelType l[7];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4])
               for(l[5]=0; l[5]<space_[visBegin[5]]; ++l[5])
               for(l[6]=0; l[6]<space_[visBegin[6]]; ++l[6]){
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==8){
               LabelType l[8];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4])
               for(l[5]=0; l[5]<space_[visBegin[5]]; ++l[5])
               for(l[6]=0; l[6]<space_[visBegin[6]]; ++l[6])
               for(l[7]=0; l[7]<space_[visBegin[7]]; ++l[7])
               {
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==9){
               LabelType l[9];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4])
               for(l[5]=0; l[5]<space_[visBegin[5]]; ++l[5])
               for(l[6]=0; l[6]<space_[visBegin[6]]; ++l[6])
               for(l[7]=0; l[7]<space_[visBegin[7]]; ++l[7])
               for(l[8]=0; l[8]<space_[visBegin[8]]; ++l[8])
               {
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else if(nVis==10){
               LabelType l[10];
               UInt64Type c=0;
               for(l[0]=0; l[0]<space_[visBegin[0]]; ++l[0])
               for(l[1]=0; l[1]<space_[visBegin[1]]; ++l[1])
               for(l[2]=0; l[2]<space_[visBegin[2]]; ++l[2])
               for(l[3]=0; l[3]<space_[visBegin[3]]; ++l[3])
               for(l[4]=0; l[4]<space_[visBegin[4]]; ++l[4])
               for(l[5]=0; l[5]<space_[visBegin[5]]; ++l[5])
               for(l[6]=0; l[6]<space_[visBegin[6]]; ++l[6])
               for(l[7]=0; l[7]<space_[visBegin[7]]; ++l[7])
               for(l[8]=0; l[8]<space_[visBegin[8]]; ++l[8])
               for(l[9]=0; l[9]<space_[visBegin[9]]; ++l[9])
               {
                  additional_log_potentials[c]=this->valueToMaxSum(function(l)); 
                  ++c;
               }  
            }
            else{
               throw RuntimeError("order must be <=10 for inplace building of Ad3Inf (call us if you need higher order)");
            }





            // create higher order factor
            factor_graph_.CreateFactorDense(multi_variables_local,additional_log_potentials);

         }

      }


      template<class GM,class ACC>
      AD3Inf<GM,ACC>
      ::~AD3Inf() {

      }

      template<class GM,class ACC>
      inline std::string
      AD3Inf<GM,ACC>
      ::name() const {
         return "AD3Inf";
      }

      template<class GM,class ACC>
      inline const typename AD3Inf<GM,ACC>::GraphicalModelType&
      AD3Inf<GM,ACC>
      ::graphicalModel() const {
         return gm_;
      }

      template<class GM,class ACC>
      inline InferenceTermination
      AD3Inf<GM,ACC>
      ::infer() {
         EmptyVisitorType v;
         return infer(v);
      }

      template<class GM,class ACC>
      template<class VisitorType>
      InferenceTermination 
      AD3Inf<GM,ACC>::infer(VisitorType& visitor)
      { 
         visitor.begin(*this);

         // set parameters
         if(parameter_.solverType_ == AD3_LP || parameter_.solverType_ == AD3_ILP){
            factor_graph_.SetEtaAD3(parameter_.eta_);
            factor_graph_.AdaptEtaAD3(parameter_.adaptEta_);
            factor_graph_.SetMaxIterationsAD3(parameter_.steps_);
            factor_graph_.SetResidualThresholdAD3(parameter_.residualThreshold_);
         }
         if(parameter_.solverType_ == PSDD_LP){
            factor_graph_.SetEtaPSDD(parameter_.eta_);
            factor_graph_.SetMaxIterationsPSDD(parameter_.steps_);
         }


         // solve
         double value;
         if ( parameter_.solverType_ == AD3_LP){
            //std::cout<<"ad3  lp\n";
            factor_graph_.SolveLPMAPWithAD3(&posteriors_, &additional_posteriors_, &value, &bound_);
         }
         if ( parameter_.solverType_ == AD3_ILP){
            //std::cout<<"ad3 ilp\n";
            factor_graph_.SolveExactMAPWithAD3(&posteriors_, &additional_posteriors_, &value, &bound_);
         }
         if (parameter_.solverType_ == PSDD_LP){
            //std::cout<<"ad3 psdd lp\n";
            factor_graph_.SolveExactMAPWithAD3(&posteriors_, &additional_posteriors_, &value, &bound_);
         }

         // transform bound
         bound_ =this->valueFromMaxSum(bound_);

         // make gm arg
         UInt64Type c=0;
         for(IndexType vi = 0; vi < numVar_; ++vi) {
            LabelType bestLabel = 0 ;
            double    bestVal   = -100000;
            const LabelType nLabels = (space_.size()==0 ?  gm_.numberOfLabels(vi) : space_[vi] );
            for(LabelType l=0;l< nLabels;++l){
               const double val = posteriors_[c];
               //std::cout<<"vi= "<<vi<<" l= "<<l<<" val= "<<val<<"\n";
            
               if(bestVal<0 || val>bestVal){
                  bestVal=val;
                  bestLabel=l;
               }
               ++c;
            }
            arg_[vi]=bestLabel;
         }
         inferenceDone_=true;


         visitor.end(*this);
         return NORMAL;
      }

      template<class GM,class ACC>
      inline InferenceTermination
      AD3Inf<GM,ACC>
      ::arg(std::vector<LabelType>& arg, const size_t& n) const {
         if(n > 1) {
            return UNKNOWN;
         }
         else {
            arg.resize(numVar_);
            std::copy(arg_.begin(),arg_.end(),arg.begin());
            return NORMAL;
         }
      }


   } // namespace external
} // namespace opengm

#endif // #ifndef OPENGM_EXTERNAL_AD3Inf_HXX