This file is indexed.

/usr/include/opengm/inference/external/grante.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#ifndef GRANTE_HXX_
#define GRANTE_HXX_

#include <sstream>

#include "opengm/inference/inference.hxx"
#include "opengm/graphicalmodel/graphicalmodel.hxx"
#include "opengm/operations/minimizer.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"

// grante includes
#include "FactorGraph.h"
#include "BruteForceExactInference.h"
#include "BeliefPropagation.h"
#include "DiffusionInference.h"
#include "SimulatedAnnealingInference.h"

namespace opengm {
   namespace external {

   /// GRANTE
   /// GRANTE inference algorithm class
   /// \ingroup inference
   /// \ingroup external_inference
   ///
   //    GRANTE
   /// - cite :[?]
   /// - Maximum factor order : ?
   /// - Maximum number of labels : ?
   /// - Restrictions : ?
   /// - Convergent : ?
   template<class GM>
   class GRANTE : public Inference<GM, opengm::Minimizer> {
   public:
      typedef GM                              GraphicalModelType;
      typedef opengm::Minimizer               AccumulationType;
      OPENGM_GM_TYPE_TYPEDEFS;
      typedef visitors::VerboseVisitor<GRANTE<GM> > VerboseVisitorType;
      typedef visitors::EmptyVisitor<GRANTE<GM> >   EmptyVisitorType;
      typedef visitors::TimingVisitor<GRANTE<GM> >  TimingVisitorType;

      ///Parameter
      struct Parameter {
         enum InferenceType {BRUTEFORCE, BP, DIFFUSION, SA};
         InferenceType inferenceType_;
         /// number of iterations for Belief Propagation method
         size_t numberOfIterations_;
         // Used to define the threshold for stopping condition for Belief Propagation method
         double tolerance_;
         // Print iteration statistics for Belief Propagation method
         bool verbose_;

         // Select MessageSchedule type for Belief Propagation method
         Grante::BeliefPropagation::MessageSchedule BPSchedule_;

         // Number of simulated annealing distributions
         unsigned int SASteps_;
         // Initial Boltzmann temperature for simulated annealing.
         double SAT0_;
         // Final Boltzmann temperature for simulated annealing.
         double SATfinal_;

         /// \brief Constructor
         Parameter() : inferenceType_(BRUTEFORCE), numberOfIterations_(100),
               tolerance_(1.0e-6), verbose_(false),
               BPSchedule_(Grante::BeliefPropagation::Sequential), SASteps_(100),
               SAT0_(10.0), SATfinal_(0.05) {
         }
      };
      // construction
      GRANTE(const GraphicalModelType& gm, const Parameter& para);
      // destruction
      ~GRANTE();
      // query
      std::string name() const;
      const GraphicalModelType& graphicalModel() const;
      // inference
      template<class VISITOR>
      InferenceTermination infer(VISITOR & visitor);
      InferenceTermination infer();
      InferenceTermination arg(std::vector<LabelType>&, const size_t& = 1) const;
      typename GM::ValueType bound() const;
      typename GM::ValueType value() const;

   protected:
      const GraphicalModelType& gm_;
      Parameter parameter_;
      ValueType value_;
      ValueType lowerBound_;

      Grante::FactorGraphModel* granteModel_;
      Grante::FactorGraph* granteGraph_;
      Grante::InferenceMethod* granteInferenceMethod_;
      std::vector<unsigned int> granteState_;
      std::vector<Grante::FactorDataSource*> granteDataSourceCollector_;

      bool sanityCheck(ValueType value) const;

      void groupFactors(std::vector<std::vector<IndexType> >& groupedFactors) const;
      void groupFactorTypes(const std::vector<std::vector<IndexType> >& groupedFactors, std::vector<std::vector<IndexType> >& groupedFactorTypes) const;

      template<class T, class OBJECT>
      struct InsertFunctor {
          void operator()(const T v) {
             (*object_)[index_] = static_cast<double>(v);
             index_++;
          }
          int index_;
          OBJECT* object_;
      };
   };

   template<class GM>
   GRANTE<GM>::GRANTE(const typename GRANTE<GM>::GraphicalModelType& gm, const Parameter& para)
      : gm_(gm), parameter_(para), granteModel_(new Grante::FactorGraphModel()), granteGraph_(NULL),
        granteInferenceMethod_(NULL) {

      // group factors
      std::vector<std::vector<IndexType> > groupedFactors;
      groupFactors(groupedFactors);

      // group grante factor types
      std::vector<std::vector<IndexType> > groupedFactorTypes;
      groupFactorTypes(groupedFactors, groupedFactorTypes);

      // add factor types
      for(size_t i = 0; i < groupedFactorTypes.size(); i++) {
         // create unique factor type name
         std::stringstream ss;
         ss << i;
         std::string name = ss.str();

         // select representative factor
         IndexType currentFactor = groupedFactors[groupedFactorTypes[i][0]][0];

         // set number of labels for each variable
         std::vector<unsigned int> cardinalities;
         for(IndexType j = 0; j < gm_[currentFactor].numberOfVariables(); j++) {
            cardinalities.push_back(static_cast<unsigned int>(gm_.numberOfLabels(gm_[currentFactor].variableIndex(j))));
         }

         // add factor type to model
         granteModel_->AddFactorType(new Grante::FactorType(name, cardinalities, std::vector<double>()));
      }

      // get number of labels for all variables
      std::vector<unsigned int> cardinalities;
      for(IndexType i = 0; i < gm_.numberOfVariables(); i++) {
         cardinalities.push_back(gm_.numberOfLabels(i));
      }
      // create factor graph from model
      granteGraph_ = new Grante::FactorGraph(granteModel_, cardinalities);

      // add factors to graph
      for(size_t i = 0; i < groupedFactorTypes.size(); i++) {
         // create unique factor type name
         std::stringstream ss;
         ss << i;
         std::string name = ss.str();
         // get factor type by name
         Grante::FactorType* currentFactorType = granteModel_->FindFactorType(name);
         // add all factors with same factor type
         OPENGM_ASSERT(groupedFactorTypes[i].size() > 0);
         for(size_t j = 0; j < groupedFactorTypes[i].size(); j++) {
            OPENGM_ASSERT(groupedFactors[groupedFactorTypes[i][j]].size() > 0);
            if(groupedFactors[groupedFactorTypes[i][j]].size() == 1) {
               // single factor, no shared data
               IndexType currentFactor = groupedFactors[groupedFactorTypes[i][j]][0];
               // determine connected variables
               std::vector<unsigned int> var_index;
               for(IndexType k = 0; k < gm_[currentFactor].numberOfVariables(); k++) {
                  var_index.push_back(static_cast<unsigned int>(gm_[currentFactor].variableIndex(k)));
               }
               // copy data
               std::vector<double> data(currentFactorType->ProdCardinalities());
               ViewFunction<GM> function = gm_[currentFactor];
               InsertFunctor<ValueType, std::vector<double> > inserter;
               inserter.index_ = 0;
               inserter.object_ = &data;
               function.forAllValuesInOrder(inserter);

               // crate factor
               Grante::Factor* factor = new Grante::Factor(currentFactorType, var_index, data);
               // add factor to graph (graph takes ownership)
               granteGraph_->AddFactor(factor);
            } else {
               // multiple factors with shared data
               IndexType currentFactor = groupedFactors[groupedFactorTypes[i][j]][0];
               // create shared factor data
               std::vector<double> data(currentFactorType->ProdCardinalities());
               ViewFunction<GM> function = gm_[currentFactor];
               InsertFunctor<ValueType, std::vector<double> > inserter;
               inserter.index_ = 0;
               inserter.object_ = &data;
               function.forAllValuesInOrder(inserter);
               Grante::FactorDataSource* currentDataSource = new Grante::FactorDataSource(data);
               granteDataSourceCollector_.push_back(currentDataSource);
               // add all factors with shared data
               for(size_t k = 0; k < groupedFactors[groupedFactorTypes[i][j]].size(); k++) {
                  currentFactor = groupedFactors[groupedFactorTypes[i][j]][k];
                  // determine connected variables
                  std::vector<unsigned int> var_index;
                  for(IndexType l = 0; l < gm_[currentFactor].numberOfVariables(); l++) {
                     var_index.push_back(static_cast<unsigned int>(gm_[currentFactor].variableIndex(l)));
                  }
                  // crate factor
                  Grante::Factor* factor = new Grante::Factor(currentFactorType, var_index, currentDataSource);
                  // add factor to graph (graph takes ownership)
                  granteGraph_->AddFactor(factor);
               }
            }
         }
      }

      // Perform forward map: update energies upon model change
      granteGraph_->ForwardMap();

      // set inference method
      switch(parameter_.inferenceType_) {
      case Parameter::BRUTEFORCE : {
         granteInferenceMethod_ = new Grante::BruteForceExactInference(granteGraph_);
         break;
      }
      case Parameter::BP : {
         granteInferenceMethod_ = new Grante::BeliefPropagation(granteGraph_, parameter_.BPSchedule_);
         static_cast<Grante::BeliefPropagation*>(granteInferenceMethod_)->SetParameters(parameter_.verbose_, parameter_.numberOfIterations_, parameter_.tolerance_);
         break;
      }
      case Parameter::DIFFUSION : {
         granteInferenceMethod_ = new Grante::DiffusionInference(granteGraph_);
         static_cast<Grante::DiffusionInference*>(granteInferenceMethod_)->SetParameters(parameter_.verbose_, parameter_.numberOfIterations_, parameter_.tolerance_);
         break;
      }
      case Parameter::SA : {
         granteInferenceMethod_ = new Grante::SimulatedAnnealingInference(granteGraph_, parameter_.verbose_);
         static_cast<Grante::SimulatedAnnealingInference*>(granteInferenceMethod_)->SetParameters(parameter_.SASteps_, parameter_.SAT0_, parameter_.SATfinal_);
         break;
      }
      default: {
         throw(RuntimeError("Unknown inference type"));
      }
      }
      // set initial value and lower bound
      AccumulationType::neutral(value_);
      AccumulationType::ineutral(lowerBound_);
   }

   template<class GM>
   GRANTE<GM>::~GRANTE() {
      if(granteInferenceMethod_) {
         delete granteInferenceMethod_;
      }
      for(size_t i = 0; i < granteDataSourceCollector_.size(); i++) {
         delete granteDataSourceCollector_[i];
      }
      if(granteGraph_) {
         delete granteGraph_;
      }
      if(granteModel_) {
         delete granteModel_;
      }
    }

    template<class GM>
    inline std::string GRANTE<GM>::name() const {
       return "GRANTE";
    }

    template<class GM>
    inline const typename GRANTE<GM>::GraphicalModelType& GRANTE<GM>::graphicalModel() const {
       return gm_;
    }

    template<class GM>
    inline InferenceTermination GRANTE<GM>::infer() {
       EmptyVisitorType visitor;
       return this->infer(visitor);
    }

    template<class GM>
    template<class VISITOR>
    inline InferenceTermination GRANTE<GM>::infer(VISITOR & visitor) {
       visitor.begin(*this);
       value_ = granteInferenceMethod_->MinimizeEnergy(granteState_);
       visitor.end(*this);
       return NORMAL;
    }

    template<class GM>
    inline InferenceTermination GRANTE<GM>::arg(std::vector<LabelType>& arg, const size_t& n) const {
       arg.resize(gm_.numberOfVariables());
       for(IndexType i = 0; i < gm_.numberOfVariables(); i++) {
          arg[i] = static_cast<LabelType>(granteState_[i]);
       }
       return NORMAL;
    }

    template<class GM>
    inline typename GM::ValueType GRANTE<GM>::bound() const {
       return lowerBound_;
    }

    template<class GM>
    inline typename GM::ValueType GRANTE<GM>::value() const {
       //sanity check
       OPENGM_ASSERT(sanityCheck(value_));
       return value_;
    }

    template<class GM>
    inline bool GRANTE<GM>::sanityCheck(ValueType value) const {
       if(granteState_.size() > 0) {
          std::vector<LabelType> result;
          arg(result);
          return fabs(value - gm_.evaluate(result)) < OPENGM_FLOAT_TOL;
       } else {
          ValueType temp;
          AccumulationType::neutral(temp);
          return value == temp;
       }
    }

    template<class GM>
    inline void GRANTE<GM>::groupFactors(std::vector<std::vector<IndexType> >& groupedFactors) const {
       // Factors are grouped by function index and the cardinalities of the connected variables.
       groupedFactors.clear();
       typedef std::map<std::pair<IndexType, std::vector<LabelType> >, size_t> Map;
       Map lookupTable;
       for(IndexType i = 0; i < gm_.numberOfFactors(); i++) {
          IndexType currentFunctionIndex = gm_[i].functionIndex();
          std::vector<LabelType> currentCardinalities;
          for(IndexType j = 0; j < gm_[i].numberOfVariables(); j++) {
             currentCardinalities.push_back(gm_.numberOfLabels(gm_[i].variableIndex(j)));
          }
          std::pair<IndexType, std::vector<LabelType> > currentKey(currentFunctionIndex, currentCardinalities);
          typename Map::const_iterator iter = lookupTable.find(currentKey);
          if(iter != lookupTable.end()) {
             groupedFactors[iter->second].push_back(i);
          } else {
             std::vector<IndexType> newVec(1, i);
             groupedFactors.push_back(newVec);
             lookupTable[currentKey] = groupedFactors.size() - 1;
          }
       }
    }

    template<class GM>
    inline void GRANTE<GM>::groupFactorTypes(const std::vector<std::vector<IndexType> >& groupedFactors, std::vector<std::vector<IndexType> >& groupedFactorTypes) const {
       groupedFactorTypes.clear();
       typedef std::map<std::vector<LabelType>, size_t > Map;
       Map lookupTable;
       for(IndexType i = 0; i < groupedFactors.size(); i++) {
          IndexType currentNumberOfVariables = gm_[groupedFactors[i][0]].numberOfVariables();
          std::vector<LabelType> currentCardinalities;
          for(IndexType j = 0; j < currentNumberOfVariables; j++) {
             currentCardinalities.push_back(gm_.numberOfLabels(gm_[groupedFactors[i][0]].variableIndex(j)));
          }
          typename Map::const_iterator iter = lookupTable.find(currentCardinalities);
          if(iter != lookupTable.end()) {
             groupedFactorTypes[iter->second].push_back(i);
          } else {
             std::vector<IndexType> newVec(1, i);
             groupedFactorTypes.push_back(newVec);
             lookupTable[currentCardinalities] = groupedFactorTypes.size() - 1;
          }
       }
    }

   } // namespace external
} // namespace opengm

#endif /* GRANTE_HXX_ */