This file is indexed.

/usr/include/opengm/inference/external/srmp.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#ifndef OPENGM_EXTERNAL_SRMP_HXX_
#define OPENGM_EXTERNAL_SRMP_HXX_

#include <opengm/graphicalmodel/graphicalmodel.hxx>
#include <opengm/inference/inference.hxx>
#include <opengm/operations/minimizer.hxx>
#include <opengm/inference/visitors/visitors.hxx>
#include <opengm/utilities/indexing.hxx>

#include <srmp/SRMP.h>
#include <srmp/FactorTypes/PottsType.h>
#include <srmp/FactorTypes/GeneralType.h>

namespace opengm {
namespace external {

/*********************
 * class definitions *
 *********************/
template<class GM>
class SRMP : public Inference<GM, opengm::Minimizer> {
public:
   typedef GM                              GraphicalModelType;
   typedef opengm::Minimizer               AccumulationType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef visitors::VerboseVisitor<SRMP<GM> > VerboseVisitorType;
   typedef visitors::EmptyVisitor<SRMP<GM> >   EmptyVisitorType;
   typedef visitors::TimingVisitor<SRMP<GM> >  TimingVisitorType;

   struct Parameter : public srmpLib::Energy::Options {
      Parameter() : srmpLib::Energy::Options(), BLPRelaxation_(false),
            FullRelaxation_(false), FullRelaxationMethod_(0),
            FullDualRelaxation_(false), FullDualRelaxationMethod_(0) {
         // disable verbose mode per default
         verbose = false;
      }

      bool BLPRelaxation_;
      bool FullRelaxation_;
      int  FullRelaxationMethod_;         // method=0: add all possible pairs (A,B) with B \subset A, with the following exception:
                                          //           if there exists factor C with B\subset C \subset A then don't add (A,B)
                                          // method=1: move all costs to outer factors (converting them to general types first, if they are not already of these types).
                                          //           Then run method=0 and remove unnecesary edges (i.e. those that do not affect the relaxation).
                                          //           Note, all edges outgoing from outer factors will be kepts.
                                          // method=2: similar to method=1, but all edges {A->B, B->C} are replaced with {A->B, A->C} (so this results in a two-layer graph).
                                          //
                                          // Note, method=1 and method=2 merge duplicate factors while method=0 does not. For this reason the relaxation may be tighther.
                                          // (If there are no duplicate factors then the resulting relaxation should be the same in all three cases).
                                          //
                                          // method=3: run method=2 and then create a new Energy instance with unary and pairwise terms in which nodes correspond
                                          // to outer factors of the original energy, and pairwise terms with {0,+\infty} costs enforce consistency between them.
      bool FullDualRelaxation_;
      int  FullDualRelaxationMethod_;     // FullDualRelaxationMethod_ has the same meaning as in srmpLib::Energy::Options::sort_flag.
   };

   // construction
   SRMP(const GraphicalModelType& gm, const Parameter para = Parameter());
   // destruction
   ~SRMP();
   // query
   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   // inference
   InferenceTermination infer();
   template<class VISITOR>
   InferenceTermination infer(VISITOR & visitor);
   InferenceTermination arg(std::vector<LabelType>& arg, const size_t& n = 1) const;
   typename GM::ValueType bound() const;
   typename GM::ValueType value() const;
private:
   const GraphicalModelType& gm_;
   Parameter parameter_;

   ValueType constTerm_;
   ValueType value_;
   ValueType lowerBound_;

   srmpLib::Energy::Options srmpOptions_;
   srmpLib::Energy          srmpSolver_;

   std::vector<srmpLib::PottsFactorType*> pottsFactorList_; // list of created potts functions which must be deleted when ~SRMP() is called
   std::vector<srmpLib::GeneralFactorType*> generalFactorList_; // list of created general functions which must be deleted when ~SRMP() is called

   void addUnaryFactor(const IndexType FactorID);
   void addPairwiseFactor(const IndexType FactorID);
   void addPottsFactor(const IndexType FactorID);
   void addGeneralFactor(const IndexType FactorID);
};

/***********************
 * class documentation *
 ***********************/
//TODO add documentation

/******************
 * implementation *
 ******************/

template<class GM>
inline SRMP<GM>::SRMP(const GraphicalModelType& gm, const Parameter para)
: gm_(gm), parameter_(para), constTerm_(0.0), value_(), lowerBound_(),
  srmpOptions_(), srmpSolver_(gm_.numberOfVariables()), pottsFactorList_(),
  generalFactorList_() {
   // set states of variables
   for(IndexType i = 0; i < gm_.numberOfVariables(); ++i) {
      srmpSolver_.AddNode(gm_.numberOfLabels(i));
   }

   // set factors
   for(IndexType i = 0; i < gm_.numberOfFactors(); ++i) {
      if(gm_[i].numberOfVariables() == 0) {
         // constant factor not supported by srmp, hence handle constant term external from srmp solver
         LabelType l = 0;
         constTerm_ += gm_[i](&l);
      } else if(gm_[i].numberOfVariables() == 1) {
         // add unary factor
         addUnaryFactor(i);
      } else if(gm_[i].numberOfVariables() == 2) {
         if(gm_[i].numberOfLabels(0) == gm_[i].numberOfLabels(1) && gm_[i].isPotts()) {
            // add potts factor
            // srmp potts type does not support potts functions with more than
            // two variables or with different number of labels
            addPottsFactor(i);
         } else {
            // add pairwise factor
            addPairwiseFactor(i);
         }
      } else {
         // general factor
         // TODO srmp provides other function types which can be used instead of general type for some factors (SharedPairwiseType, PatternType, PairwiseDualType)
         addGeneralFactor(i);
      }
   }

   // set options
   srmpOptions_.method = parameter_.method;
   srmpOptions_.iter_max = parameter_.iter_max;
   srmpOptions_.time_max = parameter_.time_max;
   srmpOptions_.eps = parameter_.eps;
   srmpOptions_.compute_solution_period = parameter_.compute_solution_period;
   srmpOptions_.print_times = parameter_.print_times;
   srmpOptions_.sort_flag = parameter_.sort_flag;
   srmpOptions_.verbose = parameter_.verbose;
   srmpOptions_.TRWS_weighting = parameter_.TRWS_weighting;

   // set initial value and lower bound
   AccumulationType::neutral(value_);
   AccumulationType::ineutral(lowerBound_);
}

template<class GM>
inline SRMP<GM>::~SRMP() {
   for(size_t i = 0; i < pottsFactorList_.size(); ++i) {
      delete pottsFactorList_[i];
   }
   for(size_t i = 0; i < generalFactorList_.size(); ++i) {
      delete generalFactorList_[i];
   }
}

template<class GM>
inline std::string SRMP<GM>::name() const {
   return "SRMP";
}

template<class GM>
inline const typename SRMP<GM>::GraphicalModelType& SRMP<GM>::graphicalModel() const {
   return gm_;
}

template<class GM>
inline InferenceTermination SRMP<GM>::infer() {
   EmptyVisitorType visitor;
   return this->infer(visitor);
}

template<class GM>
template<class VISITOR>
inline InferenceTermination SRMP<GM>::infer(VISITOR & visitor) {
   visitor.begin(*this);

   if (parameter_.BLPRelaxation_) {
      srmpSolver_.SetMinimalEdges();
   } else if (parameter_.FullRelaxation_) {
      srmpSolver_.SetFullEdges(parameter_.FullRelaxationMethod_);
   } else if (parameter_.FullDualRelaxation_) {
      srmpSolver_.SetFullEdgesDual(parameter_.FullDualRelaxationMethod_);
   }

   // call solver
   lowerBound_ = srmpSolver_.Solve(srmpOptions_);
   std::vector<LabelType> l;
   arg(l);
   value_ = gm_.evaluate(l);

   visitor.end(*this);
   return NORMAL;
}

template<class GM>
inline InferenceTermination SRMP<GM>::arg(std::vector<LabelType>& arg, const size_t& n) const {
   if(n > 1) {
      return UNKNOWN;
   }
   else {
      arg.resize(gm_.numberOfVariables());
      for(IndexType i = 0; i < gm_.numberOfVariables(); ++i) {
         arg[i] = srmpSolver_.GetSolution(i);
      }
      return NORMAL;
   }
}

template<class GM>
inline typename GM::ValueType SRMP<GM>::bound() const {
   return lowerBound_ + constTerm_;
}

template<class GM>
inline typename GM::ValueType SRMP<GM>::value() const {
   return value_;
   //return value_ + constTerm_;
}

template<class GM>
inline void SRMP<GM>::addUnaryFactor(const IndexType FactorID) {
   double* values = new double[gm_[FactorID].numberOfLabels(0)];
   LabelType label = 0;
   for(LabelType i = 0; i < gm_[FactorID].numberOfLabels(0); ++i) {
      values[i] = static_cast<double>(gm_[FactorID](&label));
      ++label;
   }
   srmpSolver_.AddUnaryFactor(static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(0)), values);
   delete[] values;
}

template<class GM>
inline void SRMP<GM>::addPairwiseFactor(const IndexType FactorID) {
   double* values = new double[gm_[FactorID].numberOfLabels(0) * gm_[FactorID].numberOfLabels(1)];
   LabelType labeling[2] = {0, 0};
   for(LabelType i = 0; i < gm_[FactorID].numberOfLabels(0); ++i) {
      labeling[0] = i;
      for(LabelType j = 0; j < gm_[FactorID].numberOfLabels(1); ++j) {
         labeling[1] = j;
         values[(i * gm_[FactorID].numberOfLabels(1)) + j] = static_cast<double>(gm_[FactorID](labeling));
      }
   }
   srmpSolver_.AddPairwiseFactor(static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(0)), static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(1)), values);
   delete[] values;
}

template<class GM>
inline void SRMP<GM>::addPottsFactor(const IndexType FactorID) {
   ValueType valueEqual;
   ValueType valueNotEqual;

   LabelType labeling[2] = {0, 0};
   valueEqual = gm_[FactorID](labeling);
   for(IndexType j = 0; j < 2; ++j) {
      if(gm_[FactorID].numberOfLabels(j) > 1) {
         labeling[j] = 1;
         break;
      }
   }
   valueNotEqual = gm_[FactorID](labeling);

   srmpLib::PottsFactorType* pottsFactor = new srmpLib::PottsFactorType;
   pottsFactorList_.push_back(pottsFactor);

   // srmp potts type uses 0.0 as equal value, hence shift values
   double lambda = valueNotEqual - valueEqual;
   constTerm_ += valueEqual;

   srmpLib::Energy::NodeId nodes[2] = {static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(0)), static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(1))};

   srmpSolver_.AddFactor(2, nodes, &lambda, pottsFactor);
}

template<class GM>
inline void SRMP<GM>::addGeneralFactor(const IndexType FactorID) {
   double* values = new double[gm_[FactorID].size()];

   ShapeWalkerSwitchedOrder<typename FactorType::ShapeIteratorType> shapeWalker(gm_[FactorID].shapeBegin(), gm_[FactorID].dimension());
   for(size_t i = 0; i < gm_[FactorID].size(); ++i) {
      values[i] = gm_[FactorID](shapeWalker.coordinateTuple().begin());
      ++shapeWalker;
   }

   srmpLib::Energy::NodeId* nodes = new srmpLib::Energy::NodeId[gm_[FactorID].numberOfVariables()];
   for(IndexType i = 0; i < gm_[FactorID].numberOfVariables(); ++i) {
      nodes[i] = static_cast<srmpLib::Energy::NodeId>(gm_[FactorID].variableIndex(i));
   }

   srmpLib::GeneralFactorType* generalFactor = new srmpLib::GeneralFactorType;

   srmpSolver_.AddFactor(gm_[FactorID].numberOfVariables(), nodes, values, generalFactor);

   delete[] nodes;
   delete[] values;
}

} // namespace external
} // namespace opengm

#endif /* OPENGM_EXTERNAL_SRMP_HXX_ */