This file is indexed.

/usr/include/opengm/inference/inference.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#pragma once
#ifndef OPENGM_INFERENCE_HXX
#define OPENGM_INFERENCE_HXX

#include <vector>
#include <string>
#include <list>
#include <limits>
#include <exception>

#include "opengm/opengm.hxx"

#define OPENGM_GM_TYPE_TYPEDEFS                                                      \
   typedef typename GraphicalModelType::LabelType LabelType;                         \
   typedef typename GraphicalModelType::IndexType IndexType;                         \
   typedef typename GraphicalModelType::ValueType ValueType;                         \
   typedef typename GraphicalModelType::OperatorType OperatorType;                   \
   typedef typename GraphicalModelType::FactorType FactorType;                       \
   typedef typename GraphicalModelType::IndependentFactorType IndependentFactorType; \
   typedef typename GraphicalModelType::FunctionIdentifier FunctionIdentifier        \

namespace opengm {

enum InferenceTermination {
   UNKNOWN=0, 
   NORMAL=1, 
   TIMEOUT=2, 
   CONVERGENCE=3, 
   INFERENCE_ERROR=4
};

/// Inference algorithm interface
template <class GM, class ACC>
class Inference
{
public:
   typedef GM GraphicalModelType;
   typedef ACC AccumulationType;
   typedef typename GraphicalModelType::LabelType LabelType;
   typedef typename GraphicalModelType::IndexType IndexType;
   typedef typename GraphicalModelType::ValueType ValueType;
   typedef typename GraphicalModelType::OperatorType OperatorType;
   typedef typename GraphicalModelType::FactorType FactorType;
   typedef typename GraphicalModelType::IndependentFactorType IndependentFactorType;
   typedef typename GraphicalModelType::FunctionIdentifier FunctionIdentifier;

   virtual ~Inference() {}

   virtual std::string name() const = 0;
   virtual const GraphicalModelType& graphicalModel() const = 0;
   virtual InferenceTermination infer() = 0;
   /// \todo
   /// virtual void reset() = 0;
   /// virtual InferenceTermination update() = 0;

   // member functions with default definition
   virtual void setStartingPoint(typename std::vector<LabelType>::const_iterator);
   virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;
   virtual InferenceTermination args(std::vector<std::vector<LabelType> >&) const;
   virtual InferenceTermination marginal(const size_t, IndependentFactorType&) const;
   virtual InferenceTermination factorMarginal(const size_t, IndependentFactorType&) const;
   virtual ValueType bound() const;
   virtual ValueType value() const;
   InferenceTermination constrainedOptimum(std::vector<IndexType>&,std::vector<LabelType>&, std::vector<LabelType>&) const;
   InferenceTermination modeFromMarginal(std::vector<LabelType>&) const;
   InferenceTermination modeFromFactorMarginal(std::vector<LabelType>&) const;
};

/// \brief output a solution
/// \param[out] arg labeling
/// \param argIndex solution index (1=best, 2=second best, etc.)
template<class GM, class ACC>
inline InferenceTermination
Inference<GM, ACC>::arg(
   std::vector<LabelType>& arg,
   const size_t argIndex
) const
{
   return UNKNOWN;
}
   
/// \brief set initial labeling
/// \param begin iterator to the beginning of a sequence of labels
template<class GM, class ACC>   
inline void 
Inference<GM, ACC>::setStartingPoint(
   typename std::vector<LabelType>::const_iterator begin
) 
{}
   
template<class GM, class ACC>
inline InferenceTermination
Inference<GM, ACC>::args(
   std::vector<std::vector<LabelType> >& out
) const
{
   return UNKNOWN;
}

/// \brief output a solution for a marginal for a specific variable
/// \param variableIndex index of the variable
/// \param[out] out the marginal
template<class GM, class ACC>
inline InferenceTermination
Inference<GM, ACC>::marginal(
   const size_t variableIndex,
   IndependentFactorType& out
   ) const
{
   return UNKNOWN;
}

/// \brief output a solution for a marginal for all variables connected to a factor
/// \param factorIndex index of the factor
/// \param[out] out the marginal
template<class GM, class ACC>
inline InferenceTermination
Inference<GM, ACC>::factorMarginal(
   const size_t factorIndex,
   IndependentFactorType& out
) const
{
   return UNKNOWN;
}


template<class GM, class ACC>
InferenceTermination
Inference<GM, ACC>::constrainedOptimum(
   std::vector<IndexType>& variableIndices,
   std::vector<LabelType>& givenLabels,
   std::vector<LabelType>& conf
) const
{
   const GM& gm = graphicalModel();
   std::vector<IndexType> waitingVariables;
   size_t variableId = 0;
   size_t numberOfVariables = gm.numberOfVariables();
   size_t numberOfFixedVariables = 0;
   conf.assign(gm.numberOfVariables(),std::numeric_limits<LabelType>::max());
   OPENGM_ASSERT(variableIndices.size()>=givenLabels.size());
   for(size_t i=0; i<givenLabels.size() ;++i) {
      OPENGM_ASSERT( variableIndices[i]<gm.numberOfVariables());
      OPENGM_ASSERT( givenLabels[i]<gm.numberOfLabels(variableIndices[i]));
      conf[variableIndices[i]] = givenLabels[i];
      waitingVariables.push_back(variableIndices[i]);
      ++numberOfFixedVariables;
   }
   while(variableId<gm.numberOfVariables() && numberOfFixedVariables<numberOfVariables) {
      while(waitingVariables.size()>0 && numberOfFixedVariables<numberOfVariables) {
         size_t var = waitingVariables.back();
         waitingVariables.pop_back();

         //Search unset neighbourd variable
         for(size_t i=0; i<gm.numberOfFactors(var); ++i) { 
            size_t var2=var;
            size_t afactorId = gm.factorOfVariable(var,i);
            for(size_t n=0; n<gm[afactorId].numberOfVariables();++n) {
               if(conf[gm[afactorId].variableIndex(n)] == std::numeric_limits<LabelType>::max()) {
                  var2=gm[afactorId].variableIndex(n);
                  break;
               }
            }
            if(var2 != var) { 
               //Set this variable
               IndependentFactorType t;
               //marginal(var2, t);
               for(size_t i=0; i<gm.numberOfFactors(var2); ++i) {
                  size_t factorId = gm.factorOfVariable(var2,i);
                  if(factorId != afactorId) continue;
                  std::vector<IndexType> knownVariables;
                  std::vector<LabelType> knownStates;
                  std::vector<IndexType> unknownVariables; 
                  IndependentFactorType out;
                  InferenceTermination term = factorMarginal(factorId, out);
                  if(NORMAL != term) {
                     return term;
                  }
                  for(size_t n=0; n<gm[factorId].numberOfVariables();++n) {
                     if(gm[factorId].variableIndex(n)!=var2) {
                        if(conf[gm[factorId].variableIndex(n)] < std::numeric_limits<LabelType>::max()) {
                           knownVariables.push_back(gm[factorId].variableIndex(n));
                           knownStates.push_back(conf[gm[factorId].variableIndex(n)]);
                        }else{
                           unknownVariables.push_back(gm[factorId].variableIndex(n));
                        }
                     }
                  } 
                     
                  out.fixVariables(knownVariables.begin(), knownVariables.end(), knownStates.begin()); 
                  if(unknownVariables.size()>0)
                     out.template accumulate<AccumulationType>(unknownVariables.begin(),unknownVariables.end());
                  OperatorType::op(out,t); 
               } 
               ValueType value;
               std::vector<LabelType> state(t.numberOfVariables());
               t.template accumulate<AccumulationType>(value,state);
               conf[var2] = state[0];
               ++numberOfFixedVariables;
               waitingVariables.push_back(var2);
            }
         }
      }
      if(conf[variableId]==std::numeric_limits<LabelType>::max()) {
         //Set variable state
         IndependentFactorType out;
         InferenceTermination term = marginal(variableId, out);
         if(NORMAL != term) {
            return term;
         } 
         ValueType value;
         std::vector<LabelType> state(out.numberOfVariables());
         out.template accumulate<AccumulationType>(value,state);
         conf[variableId] = state[0];
         waitingVariables.push_back(variableId);
      }
      ++variableId;
   }
   return NORMAL;
}

/*
template<class GM, class ACC>
InferenceTermination
Inference<GM, ACC>::constrainedOptimum(
   std::vector<IndexType>& variableIndices,
   std::vector<LabelType>& givenLabels,
   std::vector<LabelType>& conf
) const
{
   const GM& gm = graphicalModel();
   std::vector<IndexType> waitingVariables;
   size_t variableId = 0;
   size_t numberOfVariables = gm.numberOfVariables();
   size_t numberOfFixedVariables = 0;
   conf.assign(gm.numberOfVariables(),std::numeric_limits<LabelType>::max());
   OPENGM_ASSERT(variableIndices.size()>=givenLabels.size());
   for(size_t i=0; i<givenLabels.size() ;++i) {
      OPENGM_ASSERT( variableIndices[i]<gm.numberOfVariables());
      OPENGM_ASSERT( givenLabels[i]<gm.numberOfLabels(variableIndices[i]));
      conf[variableIndices[i]] = givenLabels[i];
      waitingVariables.push_back(variableIndices[i]);
      ++numberOfFixedVariables;
   }
   while(variableId<gm.numberOfVariables() && numberOfFixedVariables<numberOfVariables) {
      while(waitingVariables.size()>0 && numberOfFixedVariables<numberOfVariables) {
         size_t var = waitingVariables.back();
         waitingVariables.pop_back();

         //Search unset neighbourd variable
         for(size_t i=0; i<gm.numberOfFactors(var); ++i) { 
            size_t var2=var;
            size_t afactorId = gm.factorOfVariable(var,i);
            for(size_t n=0; n<gm[afactorId].numberOfVariables();++n) {
               if(conf[gm[afactorId].variableIndex(n)] == std::numeric_limits<LabelType>::max()) {
                  var2=gm[afactorId].variableIndex(n);
                  break;
               }
            }
            if(var2 != var) { 
               //Set this variable
               IndependentFactorType t;
               //marginal(var2, t);
               for(size_t i=0; i<gm.numberOfFactors(var2); ++i) {
                  size_t factorId = gm.factorOfVariable(var2,i);
                  if(factorId != afactorId) continue;
                  std::vector<IndexType> knownVariables;
                  std::vector<LabelType> knownStates;
                  std::vector<IndexType> unknownVariables; 
                  IndependentFactorType out;
                  InferenceTermination term = factorMarginal(factorId, out);
                  if(NORMAL != term) {
                     return term;
                  }
                  for(size_t n=0; n<gm[factorId].numberOfVariables();++n) {
                     if(gm[factorId].variableIndex(n)!=var2) {
                        if(conf[gm[factorId].variableIndex(n)] < std::numeric_limits<LabelType>::max()) {
                           knownVariables.push_back(gm[factorId].variableIndex(n));
                           knownStates.push_back(conf[gm[factorId].variableIndex(n)]);
                        }else{
                           unknownVariables.push_back(gm[factorId].variableIndex(n));
                        }
                     }
                  } 
                     
                  out.fixVariables(knownVariables.begin(), knownVariables.end(), knownStates.begin()); 
                  if(unknownVariables.size()>0)
                     out.template accumulate<AccumulationType>(unknownVariables.begin(),unknownVariables.end());
                  OperatorType::op(out,t); 
               } 
               ValueType value;
               std::vector<LabelType> state(t.numberOfVariables());
               t.template accumulate<AccumulationType>(value,state);
               conf[var2] = state[0];
               ++numberOfFixedVariables;
               waitingVariables.push_back(var2);
            }
         }
      }
      if(conf[variableId]==std::numeric_limits<LabelType>::max()) {
         //Set variable state
         IndependentFactorType out;
         InferenceTermination term = marginal(variableId, out);
         if(NORMAL != term) {
            return term;
         } 
         ValueType value;
         std::vector<LabelType> state(out.numberOfVariables());
         out.template accumulate<AccumulationType>(value,state);
         conf[variableId] = state[0];
         waitingVariables.push_back(variableId);
      }
      ++variableId;
   }
   return NORMAL;
}
*/

template<class GM, class ACC>
InferenceTermination
Inference<GM, ACC>::modeFromMarginal(
   std::vector<LabelType>& conf
   ) const
{
   const GM&         gm = graphicalModel();
   //const space_type& space = gm.space();
   size_t            numberOfNodes = gm.numberOfVariables();
   conf.resize(gm.numberOfVariables());
   IndependentFactorType out;
   for(size_t node=0; node<numberOfNodes; ++node) {
      InferenceTermination term = marginal(node, out);
      if(NORMAL != term) {
         return term;
      }
      ValueType value = out(0);
      size_t state = 0;
      for(size_t i=1; i<gm.numberOfLabels(node); ++i) {
         if(ACC::bop(out(i), value)) {
            value = out(i);
            state = i;
         }
      }
      conf[node] = state;
   }
   return NORMAL;
}

template<class GM, class ACC>
InferenceTermination
Inference<GM, ACC>::modeFromFactorMarginal(
   std::vector<LabelType>& conf
) const
{
   const GM& gm = graphicalModel();
   std::vector<IndexType> knownVariables;
   std::vector<LabelType> knownStates;
   IndependentFactorType out;
   for(size_t node=0; node<gm.numberOfVariables(); ++node) {
      InferenceTermination term = marginal(node, out);
      if(NORMAL != term) {
         return term;
      }
      ValueType value = out(0);
      size_t state = 0;
      bool unique = true;
      for(size_t i=1; i<gm.numberOfLabels(node); ++i) {

         //ValueType q = out(i)/value;
         //if(q<1.001 && q>0.999) {
         //   unique=false;
         //}
         if(fabs(out(i) - value)<0.00001) {
            unique=false;
         }
         else if(ACC::bop(out(i), value)) {
            value = out(i);
            state = i;
            unique=true;
         }
      }
      if(unique) {
         knownVariables.push_back(node);
         knownStates.push_back(state);
      }
   }
   return constrainedOptimum( knownVariables, knownStates, conf);
}

/// \brief return the solution (value)
template<class GM, class ACC>
typename GM::ValueType
Inference<GM, ACC>::value() const 
{
   if(ACC::hasbop()){ 
      // Default implementation if ACC defines an ordering  
      std::vector<LabelType> s;
      const GM& gm = graphicalModel();
      if(NORMAL == arg(s)) {
         return gm.evaluate(s);
      }
      else {
         return ACC::template neutral<ValueType>();
      }
   }else{
      //TODO: Maybe throw an exception here 
      //throw std::runtime_error("There is no default implementation for this type of semi-ring");
      return std::numeric_limits<ValueType>::quiet_NaN();
   }
}

/// \brief return a bound on the solution
template<class GM, class ACC>
typename GM::ValueType
Inference<GM, ACC>::bound() const { 
   if(ACC::hasbop()){
      // Default implementation if ACC defines an ordering
      return ACC::template ineutral<ValueType>();
   }else{
      //TODO: Maybe throw an exception here 
      //throw std::runtime_error("There is no default implementation for this type of semi-ring");
      return std::numeric_limits<ValueType>::quiet_NaN();
   }
}

} // namespace opengm

#endif // #ifndef OPENGM_INFERENCE_HXX