/usr/include/opengm/inference/lsatr.hxx is in libopengm-dev 2.3.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | #pragma once
#ifndef OPENGM_LSATR_HXX
#define OPENGM_LSATR_HXX
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include "opengm/opengm.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
#include <maxflowlib.h>
#ifndef NOVIGRA
#include "vigra/multi_distance.hxx"
#include "vigra/multi_array.hxx"
#endif
namespace opengm {
/// \brief Local Submodular Approximation with Trust Region regularization\n\n
///
/// Coresponding author: Joerg Hendrik Kappes
///
/// * Corresponding Papers:
/// 1) Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed and Andrew Delong
/// Submodularization for Binary Pairwise Energies (CVPR 2014)
/// 2) Lena Gorelick, Frank R. Scmidt, Yuri Boykov
/// Fast Trust Region for Segmentation
/// * Corresponding/Reimplemented Matlab Code:
/// http://www.csd.uwo.ca/~ygorelic/downloads.html
/// * Thanks to Lena Gorelick for very helpful comments
/// \ingroup inference
struct LSA_TR_WeightedEdge{
LSA_TR_WeightedEdge(double aw, size_t au, size_t av): w(aw), u(au), v(av){}
double w;
size_t u;
size_t v;
};
template<class LabelType>
class LSA_TR_HELPER{
public:
enum DISTANCE {HAMMING, EUCLIDEAN};
LSA_TR_HELPER() { distanceType_= EUCLIDEAN;};
~LSA_TR_HELPER(){ if(graph_!=NULL){delete graph_; delete changedList_;} };
template<class GM>
void init(const GM&, const std::vector<LabelType>& );
void set(const double);
void set(const std::vector<LabelType>&, const double);
double optimize(std::vector<LabelType>&);
void setDistanceType(const DISTANCE d){ distanceType_=d; };
double eval(const std::vector<LabelType>&) const;
double evalAprox(const std::vector<LabelType>&,const std::vector<LabelType>&, const double) const;
void evalBoth(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda, double& value, double& valueAprox) const;
private:
typedef maxflowLib::Graph<double,double,double> graph_type;
typedef maxflowLib::Block<typename graph_type::node_id> block_type;
void updateDistance();
size_t numVar_;
double lambda_;
double constTerm_;
double constTermApproximation_;
double constTermTrustRegion_;
std::vector<LabelType> workingPoint_;
std::vector<double> distance_;
std::vector<double> unaries_;
std::vector<double> approxUnaries_;
std::vector< LSA_TR_WeightedEdge> supEdges_;
std::vector< LSA_TR_WeightedEdge> subEdges_;
graph_type* graph_;
block_type* changedList_;
bool solved_;
DISTANCE distanceType_;
std::vector<size_t> shape_;
};
template<class GM, class ACC>
class LSA_TR : public Inference<GM, ACC>
{
public:
typedef ACC AccumulationType;
typedef GM GraphicalModelType;
OPENGM_GM_TYPE_TYPEDEFS;
typedef opengm::visitors::VerboseVisitor<LSA_TR<GM,ACC> > VerboseVisitorType;
typedef opengm::visitors::EmptyVisitor<LSA_TR<GM,ACC> > EmptyVisitorType;
typedef opengm::visitors::TimingVisitor<LSA_TR<GM,ACC> > TimingVisitorType;
class Parameter {
public:
enum DISTANCE {HAMMING, EUCLIDEAN};
size_t randSeed_;
double maxLambda_;
double initialLambda_;
double precisionLambda_;
double lambdaMultiplier_;
double reductionRatio_;
DISTANCE distance_;
Parameter(){
randSeed_ = 42;
maxLambda_ = 1e5;
initialLambda_ = 0.1;
precisionLambda_ = 1e-9; // used to compare GEO lambda in parametric maxflow
lambdaMultiplier_ = 2; // used for jumps in backtracking;
reductionRatio_ = 0.25; // used to decide whether to increase or decrease lambda using the multiplier
distance_ = EUCLIDEAN;
}
};
LSA_TR(const GraphicalModelType&);
LSA_TR(const GraphicalModelType&, const Parameter&);
~LSA_TR();
std::string name() const;
const GraphicalModelType& graphicalModel() const;
InferenceTermination infer();
void reset();
template<class VisitorType>
InferenceTermination infer(VisitorType&);
void setStartingPoint(typename std::vector<LabelType>::const_iterator);
virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const ;
virtual ValueType value()const{ return gm_.evaluate(curState_);}
private:
void init();
double findMinimalChangeBrakPoint(const double lambda, const std::vector<LabelType>& workingPoint);
LSA_TR_HELPER<LabelType> helper_;
const GraphicalModelType& gm_;
Parameter param_;
std::vector<LabelType> curState_;
size_t numVar_;
ValueType constTerm_;
std::vector<ValueType> unaries_;
std::vector<LSA_TR_WeightedEdge> subEdges_;
std::vector<LSA_TR_WeightedEdge> supEdges_;
std::vector<ValueType> approxUnaries_;
};
//////////////
template<class LabelType>
template<class GM>
void LSA_TR_HELPER<LabelType>::init(const GM& gm, const std::vector<LabelType>& workingPoint){
typedef size_t IndexType;
solved_ = false;
numVar_ = gm.numberOfVariables();
workingPoint_ = workingPoint;
lambda_ = 0.2;
constTerm_ = 0;
unaries_.resize(numVar_,0);
distance_.resize(numVar_,0);
const LabelType label00[] = {0,0};
const LabelType label01[] = {0,1};
const LabelType label10[] = {1,0};
const LabelType label11[] = {1,1};
for(IndexType f=0; f<gm.numberOfFactors();++f){
OPENGM_ASSERT(gm[f].numberOfVariables() <= 2);
if(gm[f].numberOfVariables() == 0){
constTerm_ += gm[f](label00);
}
else if(gm[f].numberOfVariables() == 1){
const double v0 = gm[f](label00);
const double v1 = gm[f](label11);
const IndexType var0 = gm[f].variableIndex(0);
constTerm_ += v0;
unaries_[var0] += v1-v0;
}
else if(gm[f].numberOfVariables() == 2){
const double v00 = gm[f](label00);
const double v01 = gm[f](label01);
const double v10 = gm[f](label10);
const double v11 = gm[f](label11);
const IndexType var0 = gm[f].variableIndex(0);
const IndexType var1 = gm[f].variableIndex(1);
constTerm_ += v00;
const double D = 0.5*(v11-v00);
const double M = 0.5*(v10-v01);
unaries_[var0] += D+M;
unaries_[var1] += D-M;
const double V = v10-v00-D-M;
if(V>0){//submodular
subEdges_.push_back( LSA_TR_WeightedEdge(V,var0,var1));
}
else if(V<0){//supermodular
unaries_[var0] += V;
unaries_[var1] += V;
supEdges_.push_back( LSA_TR_WeightedEdge(-2*V,var0,var1));
}
}
}
std::cout << std::endl;
std::cout << subEdges_.size() <<" submodular edges."<<std::endl;
std::cout << supEdges_.size() <<" supermodular edges."<<std::endl;
graph_ = new graph_type(gm.numberOfVariables(),subEdges_.size()+1);
changedList_ = new block_type(gm.numberOfVariables());
graph_->add_node(numVar_);
for(size_t i=0; i<subEdges_.size(); ++i){
graph_->add_edge( subEdges_[i].u, subEdges_[i].v, subEdges_[i].w, subEdges_[i].w);
}
approxUnaries_.assign(unaries_.begin(),unaries_.end());
for(size_t i=0; i<supEdges_.size(); ++i){
const size_t var0 = supEdges_[i].u;
const size_t var1 = supEdges_[i].v;
const double w = supEdges_[i].w;
if(workingPoint[var0]==1)
approxUnaries_[var1] += w;
if(workingPoint[var1]==1)
approxUnaries_[var0] += w;
if(workingPoint[var0]==1 && workingPoint[var1]==1)
constTermApproximation_ -= w;
}
shape_.resize(1,numVar_);
std::vector<size_t> neigbor_count(numVar_,0);
for(size_t i=0; i<supEdges_.size(); ++i){
++neigbor_count[supEdges_[i].u];
++neigbor_count[supEdges_[i].v];
}
for(size_t i=0; i<subEdges_.size(); ++i){
++neigbor_count[subEdges_[i].u];
++neigbor_count[subEdges_[i].v];
}
size_t min_deg = *std::min_element(neigbor_count.begin(),neigbor_count.end());
std::vector<size_t> corners;
for(size_t i=0; i<neigbor_count.size(); ++i)
if (neigbor_count[i] == min_deg)
corners.push_back(i);
if(corners.size()==4){
if( !(corners[1]-corners[0] != corners[3]-corners[2])&&
!(corners[0] != 0 || corners[3] != numVar_-1) ){
shape_.resize(2);
shape_[0] = corners[1]-corners[0]+1;
shape_[1] = numVar_ / shape_[0];
}
}
if(shape_.size() ==1 && distanceType_ == EUCLIDEAN)
std::cout << "Warning : Shape of labeling is 1 and Euclidean distance does not make sense! Maybe autodetection of shape fails ..." <<std::endl;
updateDistance();
constTermTrustRegion_ = 0;
for(int i=0; i<approxUnaries_.size(); ++i){
approxUnaries_[i] += lambda_*distance_[i];
graph_->add_tweights( i, 0, approxUnaries_[i]);
if(distance_[i]<0)
constTermTrustRegion_-=lambda_*distance_[i];
}
};
template<class LabelType>
void LSA_TR_HELPER<LabelType>::updateDistance() {
if (distanceType_==HAMMING){
for(int i=0; i<numVar_; ++i){
if(workingPoint_[i]==0){
distance_[i] = 1;
}
else{
distance_[i] = -1;
}
}
}
#ifdef NOVIGRA
else if(distanceType_==EUCLIDEAN){
std::cout << "Warning : The useage of euclidean distance requires VIGRA!" <<std::endl;
std::cout << " Vigra is disabled -> Switch to Hamming distance!" <<std::endl;
distanceType_=HAMMING;
for(int i=0; i<numVar_; ++i){
if(workingPoint_[i]==0){
distance_[i] = 1;
}
else{
distance_[i] = -1;
}
}
}
#else
else if(distanceType_==EUCLIDEAN){
std::vector<size_t> s = shape_;
std::vector<double> dist0(numVar_,0);
std::vector<double> dist1(numVar_,0);
if(s.size()==1){
typedef vigra::MultiArrayView<1, LabelType> ArrayType;
typedef vigra::MultiArrayView<1, double> DArrayType;
typedef typename ArrayType::difference_type ShapeType;
ShapeType shape(s[0]);
ShapeType stride(1);
ArrayType source( shape, stride, &workingPoint_[0] );
DArrayType dest0( shape, stride, &dist0[0] );
DArrayType dest1( shape, stride, &dist1[0] );
vigra::separableMultiDistance(source, dest0, false);
vigra::separableMultiDistance(source, dest1, true);
for(int i=0; i<numVar_; ++i){
if(workingPoint_[i]==0){
distance_[i] = (dist1[i]-0.5);
}
else{
distance_[i] = -(dist0[i]-0.5);
}
}
}
else if(s.size()==2){
typedef vigra::MultiArrayView<2, LabelType> ArrayType;
typedef vigra::MultiArrayView<2, double> DArrayType;
typedef typename ArrayType::difference_type ShapeType;
ShapeType shape(s[0],s[1]);
ShapeType stride(1,s[0]);
ArrayType source( shape, stride, &workingPoint_[0] );
DArrayType dest0( shape, stride, &dist0[0] );
DArrayType dest1( shape, stride, &dist1[0] );
vigra::separableMultiDistance(source, dest0, false);
vigra::separableMultiDistance(source, dest1, true);
for(int i=0; i<numVar_; ++i){
if(workingPoint_[i]==0){
distance_[i] = (dist1[i]-0.5);
}
else{
distance_[i] = -(dist0[i]-0.5);
}
}
}
else if(s.size()==3){
typedef vigra::MultiArrayView<3, LabelType> ArrayType;
typedef vigra::MultiArrayView<3, double> DArrayType;
typedef typename ArrayType::difference_type ShapeType;
ShapeType shape(s[0],s[1],s[2]);
ShapeType stride(1,s[0],s[0]*s[1]);
ArrayType source( shape, stride, &workingPoint_[0] );
DArrayType dest0( shape, stride, &dist0[0] );
DArrayType dest1( shape, stride, &dist1[0] );
vigra::separableMultiDistance(source, dest0, false);
vigra::separableMultiDistance(source, dest1, true);
for(int i=0; i<numVar_; ++i){
if(workingPoint_[i]==0){
distance_[i] = (dist1[i]-0.5);
}
else{
distance_[i] = -(dist0[i]-0.5);
}
}
}
}//end EUCLIDEAN
#endif
else{
std::cout <<"Unknown distance"<<std::endl;
}
return;
}
template<class LabelType>
double LSA_TR_HELPER<LabelType>::optimize(std::vector<LabelType>& label){
double value;
//std::cout << lambda_ <<std::endl;
if(solved_){ //use warmstart
value = graph_->maxflow(true,changedList_);
for (typename graph_type::node_id* ptr = changedList_->ScanFirst(); ptr; ptr = changedList_->ScanNext()) {
typename graph_type::node_id var = *ptr;
OPENGM_ASSERT(var>=0 && var<numVar_);
graph_->remove_from_changed_list(var);
}
for(size_t var=0; var<numVar_; ++var) {
if (graph_->what_segment(var) == graph_type::SOURCE) { label[var]=1;}
else { label[var]=0;}
}
changedList_->Reset();
}
else{ //first round without warmstart
value = graph_->maxflow();
for(size_t var=0; var<numVar_; ++var) {
if (graph_->what_segment(var) == graph_type::SOURCE) { label[var]=1;}
else { label[var]=0;}
}
solved_=true;
}
return value + constTerm_ + constTermApproximation_ + constTermTrustRegion_;
}
template<class LabelType>
void LSA_TR_HELPER<LabelType>::set(const double newLambda){
if( newLambda == lambda_ ) return;
double difLambda = newLambda - lambda_;
lambda_ = newLambda;
constTermTrustRegion_ = 0;
if(solved_){
for(int i=0; i<approxUnaries_.size(); ++i){
double oldcap = graph_->get_trcap(i);
approxUnaries_[i] += difLambda*distance_[i];
graph_->add_tweights( i, 0, difLambda*distance_[i] );
if(distance_[i]<0)
constTermTrustRegion_ -= difLambda*distance_[i];
double newcap = graph_->get_trcap(i);
if (!((newcap > 0 && oldcap > 0)||(newcap < 0 && oldcap < 0))){
graph_->mark_node(i);
}
}
}else{
for(int i=0; i<approxUnaries_.size(); ++i){
approxUnaries_[i] += difLambda*distance_[i];
graph_->add_tweights( i, 0, difLambda*distance_[i] );
if(distance_[i]<0)
constTermTrustRegion_ -= difLambda*distance_[i];
}
}
}
template<class LabelType>
void LSA_TR_HELPER<LabelType>::set(const std::vector<LabelType>& newWorkingPoint, const double newLambda){
workingPoint_ = newWorkingPoint;
lambda_ = newLambda;
constTermTrustRegion_ = 0;
constTermApproximation_ = 0;
updateDistance();
std::vector<double> newApproxUnaries = unaries_;
for(size_t i=0; i<supEdges_.size(); ++i){
const size_t var0 = supEdges_[i].u;
const size_t var1 = supEdges_[i].v;
const double w = supEdges_[i].w;
if(workingPoint_[var0]==1)
newApproxUnaries[var1] += w;
if(workingPoint_[var1]==1)
newApproxUnaries[var0] += w;
if(workingPoint_[var0]==1 && workingPoint_[var1]==1)
constTermApproximation_ -= w;
}
if(solved_){
for(int i=0; i<numVar_; ++i){
double oldcap = graph_->get_trcap(i);
newApproxUnaries[i] += lambda_*distance_[i];
graph_->add_tweights( i, 0, newApproxUnaries[i]-approxUnaries_[i] );
if(distance_[i]<0)
constTermTrustRegion_ -= lambda_*distance_[i];
double newcap = graph_->get_trcap(i);
if (!((newcap > 0 && oldcap > 0)||(newcap < 0 && oldcap < 0))){
graph_->mark_node(i);
}
}
}else{
for(int i=0; i<numVar_; ++i){
newApproxUnaries[i] += lambda_*distance_[i];
graph_->add_tweights( i, 0, newApproxUnaries[i]-approxUnaries_[i]);
if(distance_[i]<0)
constTermTrustRegion_ -= lambda_*distance_[i];
}
}
approxUnaries_.assign(newApproxUnaries.begin(),newApproxUnaries.end());
}
template<class LabelType>
double LSA_TR_HELPER<LabelType>::eval(const std::vector<LabelType>& label) const
{
typedef double ValueType;
ValueType v = constTerm_;
for(size_t var=0; var<numVar_;++var)
if(label[var]==1)
v += unaries_[var];
for(size_t i=0; i<subEdges_.size(); ++i)
if(label[subEdges_[i].u] != label[subEdges_[i].v])
v += subEdges_[i].w;
for(size_t i=0; i<supEdges_.size(); ++i)
if(label[supEdges_[i].u] == 1 && label[supEdges_[i].v] == 1)
v += supEdges_[i].w;
return v;
}
template<class LabelType>
double LSA_TR_HELPER<LabelType>::evalAprox(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda) const
{
typedef double ValueType;
ValueType v = constTerm_;
for(size_t var=0; var<numVar_;++var)
if(label[var]==1)
v += unaries_[var];
for(size_t i=0; i<subEdges_.size(); ++i)
if(label[subEdges_[i].u] != label[subEdges_[i].v])
v += subEdges_[i].w;
for(size_t i=0; i<supEdges_.size(); ++i){
if(label[supEdges_[i].u] == 1 && workingPoint[supEdges_[i].v] == 1 )
v += supEdges_[i].w;
if(workingPoint[supEdges_[i].u] == 1 && label[supEdges_[i].v] == 1 )
v += supEdges_[i].w;
if(workingPoint[supEdges_[i].u] == 1 && workingPoint[supEdges_[i].v] == 1 )
v -= supEdges_[i].w;
}
for(size_t i=0; i<numVar_; ++i){
if(label[i] != workingPoint[i])
v += lambda * std::fabs(distance_[i]);
}
return v;
}
template<class LabelType>
void LSA_TR_HELPER<LabelType>::evalBoth(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda, double& value, double& valueAprox) const
{
value = constTerm_;
for(size_t var=0; var<numVar_;++var)
if(label[var]==1)
value += unaries_[var];
for(size_t i=0; i<subEdges_.size(); ++i)
if(label[subEdges_[i].u] != label[subEdges_[i].v])
value += subEdges_[i].w;
valueAprox = value;
for(size_t i=0; i<supEdges_.size(); ++i){
if(label[supEdges_[i].u] == 1 && label[supEdges_[i].v] == 1 )
value += supEdges_[i].w;
if(label[supEdges_[i].u] == 1 && workingPoint[supEdges_[i].v] == 1 )
valueAprox += supEdges_[i].w;
if(workingPoint[supEdges_[i].u] == 1 && label[supEdges_[i].v] == 1 )
valueAprox += supEdges_[i].w;
if(workingPoint[supEdges_[i].u] == 1 && workingPoint[supEdges_[i].v] == 1 )
valueAprox -= supEdges_[i].w;
}
for(size_t i=0; i<numVar_; ++i){
if(label[i] != workingPoint[i])
valueAprox += lambda * std::fabs(distance_[i]);
}
}
/////////////
template<class GM, class ACC>
LSA_TR<GM, ACC>::~LSA_TR(){}
template<class GM, class ACC>
inline
LSA_TR<GM, ACC>::LSA_TR
(
const GraphicalModelType& gm
)
: gm_(gm),
param_(Parameter())
{
init();
}
template<class GM, class ACC>
LSA_TR<GM, ACC>::LSA_TR
(
const GraphicalModelType& gm,
const Parameter& parameter
)
: gm_(gm),
param_(parameter)
{
init();
}
template<class GM, class ACC>
void LSA_TR<GM, ACC>::init()
{
srand(param_.randSeed_);
numVar_ = gm_.numberOfVariables();
curState_.resize(numVar_,1);
for (size_t i=0; i<numVar_; ++i) curState_[i]= rand()%2;
helper_.init(gm_, curState_);
if(param_.distance_ == Parameter::HAMMING)
helper_.setDistanceType(LSA_TR_HELPER<LabelType>::HAMMING);
else if(param_.distance_ == Parameter::EUCLIDEAN)
helper_.setDistanceType(LSA_TR_HELPER<LabelType>::EUCLIDEAN);
else
std::cout << "Warning: Unknown distance type !"<<std::endl;
}
template<class GM, class ACC>
inline void
LSA_TR<GM, ACC>::reset()
{
curState_.resize(numVar_,1);
}
template<class GM, class ACC>
inline void
LSA_TR<GM,ACC>::setStartingPoint(typename std::vector<typename LSA_TR<GM,ACC>::LabelType>::const_iterator begin) {
curState_.assign(begin, begin+numVar_);
}
template<class GM, class ACC>
inline std::string
LSA_TR<GM, ACC>::name() const
{
return "LSA_TR";
}
template<class GM, class ACC>
inline const typename LSA_TR<GM, ACC>::GraphicalModelType&
LSA_TR<GM, ACC>::graphicalModel() const
{
return gm_;
}
template<class GM, class ACC>
inline InferenceTermination
LSA_TR<GM,ACC>::infer()
{
EmptyVisitorType v;
return infer(v);
}
template<class GM, class ACC>
template<class VisitorType>
InferenceTermination LSA_TR<GM,ACC>::infer
(
VisitorType& visitor
)
{
const ValueType tau1 = 0;
const ValueType tau2 = param_.reductionRatio_;
bool exitInf=false;
std::vector<LabelType> label(numVar_);
std::vector<ValueType> energies;
std::vector<ValueType> energiesAprox;
double lambda = param_.initialLambda_;
helper_.set(curState_,lambda);
visitor.begin(*this);
ValueType curr_value_aprox = helper_.evalAprox(curState_, curState_, lambda);
ValueType curr_value = helper_.eval(curState_);
bool changedWorkingpoint = false;
bool changedLambda = false;
ValueType value_after;
ValueType value_after_aprox;
OPENGM_ASSERT(std::fabs(curr_value-gm_.evaluate(curState_))<0.0001);
for (size_t i=0; i<10000 ; ++i){
//std::cout << "round "<<i<<" (lambda = "<<lambda<<"): " <<std::endl;
if(lambda>param_.maxLambda_) break;
if(changedWorkingpoint)
helper_.set(curState_,lambda);
else if(changedLambda)
helper_.set(lambda);
changedWorkingpoint = false;
changedLambda = false;
helper_.optimize(label);
helper_.evalBoth(label, curState_, lambda, value_after, value_after_aprox);
//if(std::fabs(curr_value_aprox-curr_value)>0.0001)
// std::cout << "WARNING : "<< helper_.evalAprox(curState_, curState_, lambda) << " != " << helper_.eval(curState_) << " == " <<gm_.evaluate(curState_)<<std::endl;
OPENGM_ASSERT(std::fabs(helper_.eval(curState_)-gm_.evaluate(curState_))<0.0001);
OPENGM_ASSERT(helper_.eval(curState_) == curr_value);
OPENGM_ASSERT(std::fabs(helper_.eval(label)-gm_.evaluate(label))<0.0001);
const ValueType P = curr_value_aprox - value_after_aprox;
const ValueType R = curr_value - value_after;
//std::cout <<P << " " <<curr_value_aprox << " " << value_after_aprox <<std::endl;
if(P==0){
// ** Search for smallest possible step (largest penalty that give progress)
//std::cout << "Approximation does not improve energy ... searching for better lambda ... "<< std::flush;
lambda = findMinimalChangeBrakPoint(lambda, curState_);
helper_.set(lambda);
helper_.optimize(label);
//std::cout<<"set lambda to "<< lambda <<std::endl;
helper_.evalBoth(label, curState_, lambda, value_after, value_after_aprox);
const ValueType P = curr_value_aprox - value_after_aprox;
const ValueType R = curr_value - value_after;
if(R<=0){
visitor(*this);
break;
}else if(R>0){
// ** Update Working Point
//std::cout<<"Update Working Point"<<std::endl;
curState_.assign(label.begin(),label.end());
changedWorkingpoint = true;
curr_value = value_after;
curr_value_aprox = value_after;
//OPENGM_ASSERT(std::fabs( curr_value_aprox-helper_.evalAprox(curState_, curState_, lambda) )<0.0001);
}
}
else{
if(P<0) std::cout << "WARNING : "<< curr_value_aprox << " < " << value_after_aprox << std::endl;
if(R>tau1){
// ** Update Working Point
//std::cout<<"Update Working Point"<<std::endl;
curState_.assign(label.begin(),label.end());
changedWorkingpoint = true;
//helper_.set(curState_,lambda);
curr_value = value_after;
curr_value_aprox = value_after;
//OPENGM_ASSERT(std::fabs( curr_value_aprox-helper_.evalAprox(curState_, curState_, lambda) )<0.0001);
}
}
// ** Update trust region term
if(R/P>tau2){ ;
lambda = lambda / param_.lambdaMultiplier_;
changedLambda = true;
//helper_.set(lambda);
//std::cout<<"Decrease TR to "<< lambda <<std::endl;
}
else{
lambda = lambda * param_.lambdaMultiplier_;
changedLambda = true;
//helper_.set(lambda);
//std::cout<<"Increase TR to "<< lambda<<std::endl;
}
// ** Store values
energies.push_back (curr_value);
energiesAprox.push_back(value_after_aprox);
// ** Call Visitor
if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ) break;
}
visitor.end(*this);
return NORMAL;
}
template<class GM, class ACC>
inline InferenceTermination
LSA_TR<GM,ACC>::arg
(
std::vector<LabelType>& x,
const size_t N
) const
{
if(N==1) {
//x.resize(gm_.numberOfVariables());
//for (size_t i=0; i<gm_.numberOfVariables(); ++i)
// x[i] = curState_[i];
x.assign(curState_.begin(), curState_.end());
return NORMAL;
}
else {
return UNKNOWN;
}
}
template<class GM, class ACC>
double LSA_TR<GM,ACC>::findMinimalChangeBrakPoint(const double lambda, const std::vector<LabelType>& workingPoint){
ValueType topLambda = lambda;
ValueType bottomLambda = param_.precisionLambda_;
std::vector<LabelType> topLabel(numVar_);
std::vector<LabelType> bottomLabel(numVar_);
std::vector<LabelType> label(numVar_);
// upper bound for best lambda
while(true){
helper_.set(topLambda);
helper_.optimize(topLabel);
if(!std::equal(topLabel.begin(),topLabel.end(),workingPoint.begin()))
topLambda = topLambda * 2;
else
break;
}
// lower bound for lambda
helper_.set(bottomLambda);
helper_.optimize(bottomLabel);
// binary search for minimal change point
while(true){
double middleLambda = (topLambda + bottomLambda)/2.0;
//std::cout <<"test "<< bottomLambda<<" < "<<middleLambda<<" < "<<topLambda<<std::endl;
helper_.set(middleLambda);
helper_.optimize(label);
if(!std::equal(label.begin(),label.end(),topLabel.begin())){
bottomLambda = middleLambda;
bottomLabel = label;
}
else if(!std::equal(label.begin(),label.end(),bottomLabel.begin())){
topLambda = middleLambda;
topLabel = label;
}
else{
return bottomLambda;
}
if((topLambda-bottomLambda) < param_.precisionLambda_){
return bottomLambda;
}
}
}
} // namespace opengm
#endif // #ifndef OPENGM_LSATR_HXX
|