This file is indexed.

/usr/include/opengm/inference/lsatr.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
#pragma once
#ifndef OPENGM_LSATR_HXX
#define OPENGM_LSATR_HXX

#include <algorithm>
#include <vector>
#include <string>
#include <iostream>

#include "opengm/opengm.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"

#include <maxflowlib.h>

#ifndef NOVIGRA
#include "vigra/multi_distance.hxx"
#include "vigra/multi_array.hxx"
#endif

namespace opengm {
  
/// \brief Local Submodular Approximation with Trust Region regularization\n\n
///
/// Coresponding author: Joerg Hendrik Kappes
///
/// * Corresponding Papers:
/// 1) Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed and Andrew Delong  
///    Submodularization for Binary Pairwise Energies (CVPR 2014)
/// 2) Lena Gorelick, Frank R. Scmidt, Yuri Boykov
///    Fast Trust Region for Segmentation
/// * Corresponding/Reimplemented Matlab Code:
///    http://www.csd.uwo.ca/~ygorelic/downloads.html
/// * Thanks to Lena Gorelick for very helpful comments
/// \ingroup inference 



   struct LSA_TR_WeightedEdge{
      LSA_TR_WeightedEdge(double aw, size_t au, size_t av): w(aw), u(au), v(av){}
      double w;
      size_t u;
      size_t v;
   }; 


   template<class LabelType>
   class LSA_TR_HELPER{
   public:
      enum DISTANCE {HAMMING, EUCLIDEAN};
      
      LSA_TR_HELPER() { distanceType_= EUCLIDEAN;};
      ~LSA_TR_HELPER(){ if(graph_!=NULL){delete graph_; delete changedList_;}  };
      template<class GM>
      void init(const GM&, const std::vector<LabelType>& );
      void set(const double);
      void set(const std::vector<LabelType>&, const double);
      double optimize(std::vector<LabelType>&);
      void setDistanceType(const DISTANCE d){ distanceType_=d; };

      double eval(const std::vector<LabelType>&) const; 
      double evalAprox(const std::vector<LabelType>&,const std::vector<LabelType>&, const double) const;
      void evalBoth(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda, double& value, double& valueAprox) const;

   private: 
      typedef maxflowLib::Graph<double,double,double>          graph_type;
      typedef maxflowLib::Block<typename graph_type::node_id>  block_type;

      void updateDistance();

      size_t                            numVar_;
      double                            lambda_;
      double                            constTerm_;
      double                            constTermApproximation_;
      double                            constTermTrustRegion_;
      std::vector<LabelType>            workingPoint_;
      std::vector<double>               distance_;
      std::vector<double>               unaries_; 
      std::vector<double>               approxUnaries_;
      std::vector< LSA_TR_WeightedEdge> supEdges_; 
      std::vector< LSA_TR_WeightedEdge> subEdges_;
      graph_type*                       graph_; 
      block_type*                       changedList_;
      bool                              solved_;
      DISTANCE                          distanceType_;
      std::vector<size_t>               shape_;
   };


   template<class GM, class ACC>
   class LSA_TR : public Inference<GM, ACC>
   {
   public:
      typedef ACC AccumulationType;
      typedef GM GraphicalModelType;
      OPENGM_GM_TYPE_TYPEDEFS;
      typedef opengm::visitors::VerboseVisitor<LSA_TR<GM,ACC> > VerboseVisitorType;
      typedef opengm::visitors::EmptyVisitor<LSA_TR<GM,ACC> >  EmptyVisitorType;
      typedef opengm::visitors::TimingVisitor<LSA_TR<GM,ACC> > TimingVisitorType; 
   
      class Parameter {
      public:
         enum DISTANCE {HAMMING, EUCLIDEAN};
         size_t randSeed_;
         double maxLambda_;
         double initialLambda_;
         double precisionLambda_; 
         double lambdaMultiplier_;
         double reductionRatio_;
         DISTANCE distance_;

         Parameter(){
            randSeed_         = 42;
            maxLambda_        = 1e5;
            initialLambda_    = 0.1; 
            precisionLambda_  = 1e-9; // used to compare GEO lambda in parametric maxflow
            lambdaMultiplier_ = 2;    // used for jumps in backtracking;
            reductionRatio_   = 0.25; // used to decide whether to increase or decrease lambda using the multiplier
            distance_         = EUCLIDEAN; 
         }
      };

      LSA_TR(const GraphicalModelType&);
      LSA_TR(const GraphicalModelType&, const Parameter&);
      ~LSA_TR();
      std::string name() const;
      const GraphicalModelType& graphicalModel() const;
      InferenceTermination infer();
      void reset();
      template<class VisitorType>
      InferenceTermination infer(VisitorType&);
      void setStartingPoint(typename std::vector<LabelType>::const_iterator);
      virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const ;
      virtual ValueType value()const{ return gm_.evaluate(curState_);}

   private:
      void init();
      double findMinimalChangeBrakPoint(const double lambda, const std::vector<LabelType>& workingPoint);

      LSA_TR_HELPER<LabelType>           helper_;
      const GraphicalModelType&          gm_;
      Parameter                          param_;
      std::vector<LabelType>             curState_; 
      size_t                             numVar_;
  
      ValueType                          constTerm_;
      std::vector<ValueType>             unaries_;
      std::vector<LSA_TR_WeightedEdge>   subEdges_;
      std::vector<LSA_TR_WeightedEdge>   supEdges_;
      std::vector<ValueType>             approxUnaries_;
     
   };

//////////////
   template<class LabelType>
   template<class GM>
   void LSA_TR_HELPER<LabelType>::init(const GM& gm, const std::vector<LabelType>& workingPoint){
      typedef size_t IndexType;
      solved_       = false;
      numVar_       = gm.numberOfVariables();
      workingPoint_ = workingPoint;
      lambda_       = 0.2;
      constTerm_    = 0; 
      unaries_.resize(numVar_,0); 
      distance_.resize(numVar_,0);
 
      const LabelType label00[] = {0,0};
      const LabelType label01[] = {0,1};
      const LabelType label10[] = {1,0};
      const LabelType label11[] = {1,1};
      for(IndexType f=0; f<gm.numberOfFactors();++f){
         OPENGM_ASSERT(gm[f].numberOfVariables() <= 2);
         if(gm[f].numberOfVariables() == 0){
            constTerm_ += gm[f](label00);
         }
         else  if(gm[f].numberOfVariables() == 1){
            const double v0   = gm[f](label00);
            const double v1   = gm[f](label11);
            const IndexType var0 = gm[f].variableIndex(0);
            constTerm_ += v0;
            unaries_[var0] += v1-v0;
         }
         else  if(gm[f].numberOfVariables() == 2){ 
            const double v00   = gm[f](label00); 
            const double v01   = gm[f](label01);
            const double v10   = gm[f](label10);
            const double v11   = gm[f](label11);
            const IndexType var0 = gm[f].variableIndex(0); 
            const IndexType var1 = gm[f].variableIndex(1);
            constTerm_ += v00;
            const double D = 0.5*(v11-v00);
            const double M = 0.5*(v10-v01);
            unaries_[var0] += D+M;
            unaries_[var1] += D-M;
            const double V = v10-v00-D-M;
            if(V>0){//submodular
               subEdges_.push_back( LSA_TR_WeightedEdge(V,var0,var1));
            }
            else if(V<0){//supermodular
               unaries_[var0] += V;
               unaries_[var1] += V;
               supEdges_.push_back( LSA_TR_WeightedEdge(-2*V,var0,var1));
            }
         }
      }
      std::cout <<  std::endl;
      std::cout <<  subEdges_.size() <<" submodular edges."<<std::endl;
      std::cout <<  supEdges_.size() <<" supermodular edges."<<std::endl;
           
      graph_       = new graph_type(gm.numberOfVariables(),subEdges_.size()+1);
      changedList_ = new block_type(gm.numberOfVariables());
     
      graph_->add_node(numVar_); 
      for(size_t i=0; i<subEdges_.size(); ++i){
         graph_->add_edge( subEdges_[i].u, subEdges_[i].v, subEdges_[i].w, subEdges_[i].w);
      }
      approxUnaries_.assign(unaries_.begin(),unaries_.end());
      for(size_t i=0; i<supEdges_.size(); ++i){
         const size_t var0 = supEdges_[i].u;
         const size_t var1 = supEdges_[i].v;
         const double w    = supEdges_[i].w;
         if(workingPoint[var0]==1)
            approxUnaries_[var1] += w;
         if(workingPoint[var1]==1)
            approxUnaries_[var0] += w; 
         if(workingPoint[var0]==1 && workingPoint[var1]==1)
            constTermApproximation_ -= w;
      } 

 
      shape_.resize(1,numVar_);
      std::vector<size_t> neigbor_count(numVar_,0);
      for(size_t i=0; i<supEdges_.size(); ++i){ 
         ++neigbor_count[supEdges_[i].u];
         ++neigbor_count[supEdges_[i].v];
      } 
      for(size_t i=0; i<subEdges_.size(); ++i){ 
         ++neigbor_count[subEdges_[i].u];
         ++neigbor_count[subEdges_[i].v];
      }
      size_t min_deg = *std::min_element(neigbor_count.begin(),neigbor_count.end());
      std::vector<size_t> corners;
      for(size_t i=0; i<neigbor_count.size(); ++i)
         if (neigbor_count[i] == min_deg)
            corners.push_back(i);
      if(corners.size()==4){
         if( !(corners[1]-corners[0] != corners[3]-corners[2])&&
             !(corners[0] != 0 || corners[3] != numVar_-1)  ){
            shape_.resize(2);
            shape_[0] = corners[1]-corners[0]+1;
            shape_[1] = numVar_ / shape_[0]; 
         }
      } 
      if(shape_.size() ==1 && distanceType_ == EUCLIDEAN)
         std::cout << "Warning : Shape of labeling is 1 and Euclidean distance does not make sense! Maybe autodetection of shape fails ..." <<std::endl;
          
    

      updateDistance();
      constTermTrustRegion_ = 0;
      for(int i=0; i<approxUnaries_.size(); ++i){
         approxUnaries_[i] += lambda_*distance_[i]; 
         graph_->add_tweights( i, 0,  approxUnaries_[i]); 
         if(distance_[i]<0)
            constTermTrustRegion_-=lambda_*distance_[i];
      }
   };

   template<class LabelType>
   void LSA_TR_HELPER<LabelType>::updateDistance() {
      if (distanceType_==HAMMING){
         for(int i=0; i<numVar_; ++i){
            if(workingPoint_[i]==0){ 
               distance_[i] = 1;      
            }
            else{
               distance_[i] = -1; 
            } 
         }
      }
#ifdef NOVIGRA 
      else if(distanceType_==EUCLIDEAN){
         std::cout << "Warning : The useage of euclidean distance requires VIGRA!" <<std::endl;
         std::cout << " Vigra is disabled -> Switch to Hamming distance!" <<std::endl;
         distanceType_=HAMMING;
         for(int i=0; i<numVar_; ++i){
            if(workingPoint_[i]==0){ 
               distance_[i] = 1;      
            }
            else{
               distance_[i] = -1; 
            } 
         }
      }
#else
      else if(distanceType_==EUCLIDEAN){
         std::vector<size_t> s = shape_;
         std::vector<double> dist0(numVar_,0); 
         std::vector<double> dist1(numVar_,0);
         if(s.size()==1){
            typedef vigra::MultiArrayView<1, LabelType> ArrayType; 
            typedef vigra::MultiArrayView<1, double>    DArrayType;
            typedef typename ArrayType::difference_type ShapeType;
            ShapeType shape(s[0]);
            ShapeType stride(1);
            
            
            ArrayType source( shape, stride, &workingPoint_[0] );
            DArrayType dest0( shape, stride, &dist0[0] );
            DArrayType dest1( shape, stride, &dist1[0] );
            
            vigra::separableMultiDistance(source, dest0, false);
            vigra::separableMultiDistance(source, dest1, true);
            for(int i=0; i<numVar_; ++i){
               if(workingPoint_[i]==0){ 
                  distance_[i] = (dist1[i]-0.5); 
               }
               else{
                  distance_[i] = -(dist0[i]-0.5);  
               } 
            }
         }
         else if(s.size()==2){
            typedef vigra::MultiArrayView<2, LabelType> ArrayType; 
            typedef vigra::MultiArrayView<2, double>    DArrayType;
            typedef typename ArrayType::difference_type ShapeType;
            ShapeType shape(s[0],s[1]);
            ShapeType stride(1,s[0]);
            
            
            ArrayType source( shape, stride, &workingPoint_[0] );
            DArrayType dest0( shape, stride, &dist0[0] );
            DArrayType dest1( shape, stride, &dist1[0] );
            
            vigra::separableMultiDistance(source, dest0, false);
            vigra::separableMultiDistance(source, dest1, true);
            for(int i=0; i<numVar_; ++i){
               if(workingPoint_[i]==0){ 
                  distance_[i] = (dist1[i]-0.5); 
               }
               else{
                  distance_[i] = -(dist0[i]-0.5); 
               } 
            }
         } 
         else if(s.size()==3){
            typedef vigra::MultiArrayView<3, LabelType> ArrayType; 
            typedef vigra::MultiArrayView<3, double>    DArrayType;
            typedef typename ArrayType::difference_type ShapeType;
            ShapeType shape(s[0],s[1],s[2]);
            ShapeType stride(1,s[0],s[0]*s[1]);
            
            
            ArrayType source( shape, stride, &workingPoint_[0] );
            DArrayType dest0( shape, stride, &dist0[0] );
            DArrayType dest1( shape, stride, &dist1[0] );
            
            vigra::separableMultiDistance(source, dest0, false);
            vigra::separableMultiDistance(source, dest1, true);
            for(int i=0; i<numVar_; ++i){
               if(workingPoint_[i]==0){ 
                  distance_[i] = (dist1[i]-0.5); 
               }
               else{
                  distance_[i] = -(dist0[i]-0.5); 
               } 
            }
         }
      }//end EUCLIDEAN
#endif
      else{
         std::cout <<"Unknown distance"<<std::endl;
      }
      return;
   } 

   template<class LabelType>
   double LSA_TR_HELPER<LabelType>::optimize(std::vector<LabelType>& label){
      double value;
      //std::cout << lambda_ <<std::endl;
      if(solved_){ //use warmstart
         value = graph_->maxflow(true,changedList_); 
         for (typename graph_type::node_id* ptr = changedList_->ScanFirst(); ptr; ptr = changedList_->ScanNext()) {
            typename graph_type::node_id var = *ptr; 
            OPENGM_ASSERT(var>=0 && var<numVar_);
            graph_->remove_from_changed_list(var);
         }
         
         for(size_t var=0; var<numVar_; ++var) {
            if (graph_->what_segment(var) == graph_type::SOURCE) { label[var]=1;}
            else                                                 { label[var]=0;}
         } 
         changedList_->Reset();
      }
      else{ //first round without warmstart
         value = graph_->maxflow();
         for(size_t var=0; var<numVar_; ++var) {
            if (graph_->what_segment(var) == graph_type::SOURCE) { label[var]=1;}
            else                                                 { label[var]=0;}
         }   
         solved_=true;
      } 
      return value + constTerm_ + constTermApproximation_ + constTermTrustRegion_; 
   }   

  template<class LabelType>
  void  LSA_TR_HELPER<LabelType>::set(const double newLambda){
     if( newLambda == lambda_ ) return;
     double difLambda  = newLambda - lambda_;
     lambda_ = newLambda;
     constTermTrustRegion_ = 0;
     if(solved_){
        for(int i=0; i<approxUnaries_.size(); ++i){
           double oldcap = graph_->get_trcap(i);
           approxUnaries_[i] += difLambda*distance_[i]; 
           graph_->add_tweights( i, 0, difLambda*distance_[i] ); 
           if(distance_[i]<0)
              constTermTrustRegion_ -= difLambda*distance_[i];
           double newcap = graph_->get_trcap(i);
           if (!((newcap > 0 && oldcap > 0)||(newcap < 0 && oldcap < 0))){
              graph_->mark_node(i);
           }
        }
     }else{
        for(int i=0; i<approxUnaries_.size(); ++i){ 
           approxUnaries_[i] += difLambda*distance_[i]; 
           graph_->add_tweights( i, 0, difLambda*distance_[i] );
           if(distance_[i]<0)
              constTermTrustRegion_ -= difLambda*distance_[i];  
        }
     }
  } 

   template<class LabelType>
   void  LSA_TR_HELPER<LabelType>::set(const std::vector<LabelType>& newWorkingPoint, const double newLambda){
      workingPoint_           = newWorkingPoint;
      lambda_                 = newLambda; 
      constTermTrustRegion_   = 0;
      constTermApproximation_ = 0;
 
      updateDistance();
 
      std::vector<double> newApproxUnaries = unaries_;
      for(size_t i=0; i<supEdges_.size(); ++i){
         const size_t var0 = supEdges_[i].u;
         const size_t var1 = supEdges_[i].v;
         const double w    = supEdges_[i].w;
         if(workingPoint_[var0]==1)
            newApproxUnaries[var1] += w;
         if(workingPoint_[var1]==1)
            newApproxUnaries[var0] += w; 
         if(workingPoint_[var0]==1 && workingPoint_[var1]==1)
            constTermApproximation_ -= w;
      } 
      if(solved_){
         for(int i=0; i<numVar_; ++i){
            double oldcap = graph_->get_trcap(i);
            newApproxUnaries[i] += lambda_*distance_[i]; 
            graph_->add_tweights( i, 0, newApproxUnaries[i]-approxUnaries_[i] ); 
            if(distance_[i]<0)
               constTermTrustRegion_ -= lambda_*distance_[i];
           double newcap = graph_->get_trcap(i);
           if (!((newcap > 0 && oldcap > 0)||(newcap < 0 && oldcap < 0))){
              graph_->mark_node(i);
           }
        }
     }else{
         for(int i=0; i<numVar_; ++i){ 
            newApproxUnaries[i] += lambda_*distance_[i]; 
            graph_->add_tweights( i, 0, newApproxUnaries[i]-approxUnaries_[i]);
            if(distance_[i]<0)
               constTermTrustRegion_ -= lambda_*distance_[i]; 
         }
      }
      approxUnaries_.assign(newApproxUnaries.begin(),newApproxUnaries.end());

   }


   template<class LabelType>
   double LSA_TR_HELPER<LabelType>::eval(const std::vector<LabelType>& label) const
   {
      typedef double ValueType;
      ValueType v = constTerm_;
      for(size_t var=0; var<numVar_;++var)
         if(label[var]==1)
            v += unaries_[var];
      for(size_t i=0; i<subEdges_.size(); ++i)
         if(label[subEdges_[i].u] != label[subEdges_[i].v])
            v += subEdges_[i].w;
      for(size_t i=0; i<supEdges_.size(); ++i)
         if(label[supEdges_[i].u] == 1 && label[supEdges_[i].v] == 1)
            v += supEdges_[i].w;
      return v;
   }
 
   template<class LabelType>
   double LSA_TR_HELPER<LabelType>::evalAprox(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda) const
   { 
      typedef double ValueType;
      ValueType v = constTerm_;
      for(size_t var=0; var<numVar_;++var)
         if(label[var]==1)
            v += unaries_[var];
      for(size_t i=0; i<subEdges_.size(); ++i)
         if(label[subEdges_[i].u] != label[subEdges_[i].v])
            v += subEdges_[i].w;
      for(size_t i=0; i<supEdges_.size(); ++i){
         if(label[supEdges_[i].u]        == 1 && workingPoint[supEdges_[i].v] == 1  )
            v += supEdges_[i].w;  
         if(workingPoint[supEdges_[i].u] == 1 && label[supEdges_[i].v]        == 1  )
            v += supEdges_[i].w; 
         if(workingPoint[supEdges_[i].u] == 1 && workingPoint[supEdges_[i].v] == 1  )
            v -= supEdges_[i].w;
      } 
      for(size_t i=0; i<numVar_; ++i){
         if(label[i] != workingPoint[i])
            v += lambda * std::fabs(distance_[i]);
      }
      return v;
   }
  
   template<class LabelType>
   void LSA_TR_HELPER<LabelType>::evalBoth(const std::vector<LabelType>& label, const std::vector<LabelType>& workingPoint, const double lambda, double& value, double& valueAprox) const
   {
      value = constTerm_;
      for(size_t var=0; var<numVar_;++var)
         if(label[var]==1)
            value += unaries_[var];
      for(size_t i=0; i<subEdges_.size(); ++i)
         if(label[subEdges_[i].u] != label[subEdges_[i].v])
            value += subEdges_[i].w;
      valueAprox = value;
      for(size_t i=0; i<supEdges_.size(); ++i){
         if(label[supEdges_[i].u]         == 1 && label[supEdges_[i].v]         == 1  )
            value += supEdges_[i].w;
         if(label[supEdges_[i].u]         == 1 && workingPoint[supEdges_[i].v]  == 1  )
            valueAprox += supEdges_[i].w;  
         if(workingPoint[supEdges_[i].u]  == 1 && label[supEdges_[i].v]         == 1  )
            valueAprox += supEdges_[i].w; 
         if(workingPoint[supEdges_[i].u]  == 1 && workingPoint[supEdges_[i].v]  == 1  )
            valueAprox -= supEdges_[i].w;
      }
      for(size_t i=0; i<numVar_; ++i){
         if(label[i] != workingPoint[i])
            valueAprox += lambda * std::fabs(distance_[i]);
      }
   }



/////////////

   template<class GM, class ACC>
   LSA_TR<GM, ACC>::~LSA_TR(){}
   
   template<class GM, class ACC>
   inline
   LSA_TR<GM, ACC>::LSA_TR
   (
      const GraphicalModelType& gm
      )
   :  gm_(gm),
      param_(Parameter())
   {
      init();
   }

   template<class GM, class ACC>
   LSA_TR<GM, ACC>::LSA_TR
   (
      const GraphicalModelType& gm,
      const Parameter& parameter
      )
   :  gm_(gm),
      param_(parameter)
   {
      init();
   }
   
   template<class GM, class ACC>
   void LSA_TR<GM, ACC>::init()
   {
      srand(param_.randSeed_);
      numVar_ = gm_.numberOfVariables();
      curState_.resize(numVar_,1);
      for (size_t i=0; i<numVar_; ++i) curState_[i]= rand()%2;
      helper_.init(gm_, curState_);
      if(param_.distance_ == Parameter::HAMMING)
         helper_.setDistanceType(LSA_TR_HELPER<LabelType>::HAMMING); 
      else if(param_.distance_ == Parameter::EUCLIDEAN)
         helper_.setDistanceType(LSA_TR_HELPER<LabelType>::EUCLIDEAN);
      else
         std::cout << "Warning:  Unknown distance type !"<<std::endl;
   }

      
   template<class GM, class ACC>
   inline void
   LSA_TR<GM, ACC>::reset()
   {
      curState_.resize(numVar_,1);  
   }
   
   template<class GM, class ACC>
   inline void 
   LSA_TR<GM,ACC>::setStartingPoint(typename std::vector<typename LSA_TR<GM,ACC>::LabelType>::const_iterator begin) { 
      curState_.assign(begin, begin+numVar_);
   }
   
   template<class GM, class ACC>
   inline std::string
   LSA_TR<GM, ACC>::name() const
   {
      return "LSA_TR";
   }
   
   template<class GM, class ACC>
   inline const typename LSA_TR<GM, ACC>::GraphicalModelType&
   LSA_TR<GM, ACC>::graphicalModel() const
   {
      return gm_;
   }
   
   template<class GM, class ACC>
   inline InferenceTermination
   LSA_TR<GM,ACC>::infer()
   {
      EmptyVisitorType v;
      return infer(v);
   }
   
  
   template<class GM, class ACC>
   template<class VisitorType>
   InferenceTermination LSA_TR<GM,ACC>::infer
   (
      VisitorType& visitor
      )
   {
      const ValueType tau1 = 0;
      const ValueType tau2 = param_.reductionRatio_;
      bool exitInf=false;
      std::vector<LabelType> label(numVar_);
      std::vector<ValueType> energies;
      std::vector<ValueType> energiesAprox;
      double lambda = param_.initialLambda_;
      helper_.set(curState_,lambda);
      visitor.begin(*this); 

      ValueType curr_value_aprox = helper_.evalAprox(curState_, curState_, lambda); 
      ValueType curr_value       = helper_.eval(curState_); 
      bool changedWorkingpoint   = false; 
      bool changedLambda         = false;
      ValueType value_after;
      ValueType value_after_aprox; 

      OPENGM_ASSERT(std::fabs(curr_value-gm_.evaluate(curState_))<0.0001);
      for (size_t i=0; i<10000 ; ++i){
         //std::cout << "round "<<i<<" (lambda = "<<lambda<<"): " <<std::endl;
         if(lambda>param_.maxLambda_) break;
       
         if(changedWorkingpoint)
            helper_.set(curState_,lambda);
         else if(changedLambda)
            helper_.set(lambda);
         changedWorkingpoint = false;
         changedLambda       = false;
         helper_.optimize(label);
         helper_.evalBoth(label, curState_, lambda, value_after,  value_after_aprox);
        
         //if(std::fabs(curr_value_aprox-curr_value)>0.0001)
         //   std::cout << "WARNING : "<<  helper_.evalAprox(curState_, curState_, lambda) << " != " << helper_.eval(curState_) << " == " <<gm_.evaluate(curState_)<<std::endl;         
         OPENGM_ASSERT(std::fabs(helper_.eval(curState_)-gm_.evaluate(curState_))<0.0001); 
         OPENGM_ASSERT(helper_.eval(curState_) == curr_value);
         OPENGM_ASSERT(std::fabs(helper_.eval(label)-gm_.evaluate(label))<0.0001);
   
         const ValueType P = curr_value_aprox - value_after_aprox;
         const ValueType R = curr_value       - value_after;

     

         //std::cout  <<P  << "  " <<curr_value_aprox <<  "  " << value_after_aprox <<std::endl;
         if(P==0){
            // ** Search for smallest possible step (largest penalty that give progress)
            //std::cout << "Approximation does not improve energy ... searching for better lambda ... "<< std::flush;     
            lambda = findMinimalChangeBrakPoint(lambda,  curState_);
            helper_.set(lambda);
            helper_.optimize(label);
            //std::cout<<"set lambda to "<<  lambda <<std::endl;

            helper_.evalBoth(label, curState_, lambda, value_after,  value_after_aprox);
            const ValueType P = curr_value_aprox - value_after_aprox;
            const ValueType R = curr_value       - value_after;   
            if(R<=0){
               visitor(*this);
               break;
            }else if(R>0){
               // ** Update Working Point
               //std::cout<<"Update Working Point"<<std::endl;
               curState_.assign(label.begin(),label.end()); 
               changedWorkingpoint = true;
               curr_value       =  value_after;
               curr_value_aprox =  value_after;
               //OPENGM_ASSERT(std::fabs( curr_value_aprox-helper_.evalAprox(curState_, curState_, lambda) )<0.0001); 
            }
         }
         else{
            if(P<0) std::cout << "WARNING : "<< curr_value_aprox << " < " << value_after_aprox << std::endl;         
            if(R>tau1){
               // ** Update Working Point
               //std::cout<<"Update Working Point"<<std::endl;
               curState_.assign(label.begin(),label.end());
               changedWorkingpoint = true;
               //helper_.set(curState_,lambda);
               curr_value       =  value_after;
               curr_value_aprox =  value_after;
               //OPENGM_ASSERT(std::fabs( curr_value_aprox-helper_.evalAprox(curState_, curState_, lambda) )<0.0001); 
            } 
         }
         
         // ** Update trust region term
         if(R/P>tau2){ ;
            lambda = lambda / param_.lambdaMultiplier_; 
            changedLambda       = true;
            //helper_.set(lambda);
            //std::cout<<"Decrease TR to "<<  lambda <<std::endl;
         }
         else{
            lambda = lambda * param_.lambdaMultiplier_; 
            changedLambda       = true;
            //helper_.set(lambda);
            //std::cout<<"Increase TR to "<<  lambda<<std::endl;
         }   
         
         // ** Store values
         energies.push_back     (curr_value);
         energiesAprox.push_back(value_after_aprox);
         
         // ** Call Visitor
         if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ) break;
      }
      
      visitor.end(*this);
      return NORMAL;
   }
   
   template<class GM, class ACC>
   inline InferenceTermination
   LSA_TR<GM,ACC>::arg
   (
      std::vector<LabelType>& x,
      const size_t N
      ) const
   {
      if(N==1) {
         //x.resize(gm_.numberOfVariables());
         //for (size_t i=0; i<gm_.numberOfVariables(); ++i)
         //   x[i] = curState_[i];
         x.assign(curState_.begin(), curState_.end());
         return NORMAL;
      }
      else {
         return UNKNOWN;
      }
   }
   

   template<class GM, class ACC>
   double LSA_TR<GM,ACC>::findMinimalChangeBrakPoint(const double lambda, const std::vector<LabelType>& workingPoint){
      
      ValueType topLambda    = lambda;
      ValueType bottomLambda = param_.precisionLambda_;
      std::vector<LabelType> topLabel(numVar_);
      std::vector<LabelType> bottomLabel(numVar_); 
      std::vector<LabelType> label(numVar_);
      // upper bound for best lambda
      while(true){
         helper_.set(topLambda);
         helper_.optimize(topLabel); 
         if(!std::equal(topLabel.begin(),topLabel.end(),workingPoint.begin()))
            topLambda = topLambda * 2;
         else
            break;
      }
      
      // lower bound for lambda 
      helper_.set(bottomLambda);
      helper_.optimize(bottomLabel); 
   
      // binary search for minimal change point
      while(true){
         double middleLambda = (topLambda + bottomLambda)/2.0;
         //std::cout <<"test "<< bottomLambda<<" < "<<middleLambda<<" < "<<topLambda<<std::endl;
         helper_.set(middleLambda);
         helper_.optimize(label); 
         
         if(!std::equal(label.begin(),label.end(),topLabel.begin())){
            bottomLambda   = middleLambda;
            bottomLabel    = label;
         }    
         else if(!std::equal(label.begin(),label.end(),bottomLabel.begin())){
            topLambda = middleLambda;
            topLabel  = label;
         }
         else{       
            return  bottomLambda;     
         }
         if((topLambda-bottomLambda) < param_.precisionLambda_){
            return bottomLambda;
         }
      }
   }

} // namespace opengm

#endif // #ifndef OPENGM_LSATR_HXX