This file is indexed.

/usr/include/opengm/inference/messagepassing/messagepassing.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#pragma once
#ifndef OPENGM_MESSAGE_PASSING_HXX
#define OPENGM_MESSAGE_PASSING_HXX

#include <vector>
#include <map>
#include <list>
#include <set>

#include "opengm/opengm.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/messagepassing/messagepassing_trbp.hxx"
#include "opengm/inference/messagepassing/messagepassing_bp.hxx"
#include "opengm/utilities/tribool.hxx"
#include "opengm/utilities/metaprogramming.hxx"
#include "opengm/operations/maximizer.hxx"
#include "opengm/operations/integrator.hxx"
#include "opengm/inference/visitors/visitors.hxx"

namespace opengm {

/// MaxDistance
/// \ingroup distances
struct MaxDistance {
      /// operation
      /// \param in1 factor 1
      /// \param in2 factor 1
      template<class M>
      static typename M::ValueType
      op(const M& in1, const M& in2)
      {
         typedef typename M::ValueType ValueType;
         ValueType v1,v2,d1,d2;
         Maximizer::neutral(v1); 
         Maximizer::neutral(v2);
         for(size_t n=0; n<in1.size(); ++n) {
            d1=in1(n)-in2(n);
            d2=-d1;
            Maximizer::op(d1,v1);
            Maximizer::op(d2,v2);
         }
         Maximizer::op(v2,v1);
         return v1;
   }
}; 

/// \brief A framework for message passing algorithms\n\n
/// Cf. F. R. Kschischang, B. J. Frey and H.-A. Loeliger, "Factor Graphs and the Sum-Product Algorithm", IEEE Transactions on Information Theory 47:498-519, 2001
template<class GM, class ACC, class UPDATE_RULES, class DIST=opengm::MaxDistance>
class MessagePassing : public Inference<GM, ACC> {
public:
   typedef GM GraphicalModelType;
   typedef ACC Accumulation;
   typedef ACC AccumulatorType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef DIST Distance;
   typedef typename UPDATE_RULES::FactorHullType FactorHullType;
   typedef typename UPDATE_RULES::VariableHullType VariableHullType;

   /// Visitor
   typedef visitors::VerboseVisitor<MessagePassing<GM, ACC, UPDATE_RULES, DIST> > VerboseVisitorType;
   /// Visitor
   typedef visitors::TimingVisitor<MessagePassing<GM, ACC, UPDATE_RULES, DIST> > TimingVisitorType;
   /// Visitor
   typedef visitors::EmptyVisitor<MessagePassing<GM, ACC, UPDATE_RULES, DIST> > EmptyVisitorType;

   struct Parameter {
      typedef typename  UPDATE_RULES::SpecialParameterType SpecialParameterType;
      Parameter
      (
         const size_t maximumNumberOfSteps = 100,
         const ValueType bound = static_cast<ValueType> (0.000000),
         const ValueType damping = static_cast<ValueType> (0),
         const SpecialParameterType & specialParameter =SpecialParameterType(),
         const opengm::Tribool isAcyclic = opengm::Tribool::Maybe
      )
      :  maximumNumberOfSteps_(maximumNumberOfSteps),
         bound_(bound),
         damping_(damping),
         inferSequential_(false),
         useNormalization_(true),
         specialParameter_(specialParameter),
         isAcyclic_(isAcyclic)
      {}

      size_t maximumNumberOfSteps_;
      ValueType bound_;
      ValueType damping_;
      bool inferSequential_;
      std::vector<size_t> sortedNodeList_;
      opengm::Tribool useNormalization_;
      //bool useNormalization_;
      SpecialParameterType specialParameter_;
      opengm::Tribool isAcyclic_;
   };

   /// \cond HIDDEN_SYMBOLS
   struct Message {
      Message()
         :  nodeId_(-1),
            internalMessageId_(-1)
         {}
      Message(const size_t nodeId, const size_t & internalMessageId)
         :  nodeId_(nodeId),
            internalMessageId_(internalMessageId)
         {}

      size_t nodeId_;
      size_t internalMessageId_;
   };
   /// \endcond

   MessagePassing(const GraphicalModelType&, const Parameter& = Parameter());
   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   InferenceTermination marginal(const size_t, IndependentFactorType& out) const;
   InferenceTermination factorMarginal(const size_t, IndependentFactorType & out) const;
   ValueType convergenceXF() const;
   ValueType convergenceFX() const;
   ValueType convergence() const;
   virtual void reset();
   InferenceTermination infer();
   template<class VisitorType>
      InferenceTermination infer(VisitorType&);
   void propagate(const ValueType& = 0);
   InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;
   void setMaxSteps(size_t maxSteps) {parameter_.maximumNumberOfSteps_ = maxSteps;}
   //InferenceTermination bound(ValueType&) const;
   //ValueType bound() const;
 
private:
   void inferAcyclic();
   void inferParallel();
   void inferSequential();
   template<class VisitorType>
      void inferParallel(VisitorType&);
   template<class VisitorType>
      void inferAcyclic(VisitorType&);
   template<class VisitorType>
      void inferSequential(VisitorType&);
private:
   const GraphicalModelType& gm_;
   Parameter parameter_;
   std::vector<FactorHullType> factorHulls_;
   std::vector<VariableHullType> variableHulls_;
};
  
template<class GM, class ACC, class UPDATE_RULES, class DIST>
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::MessagePassing
(
   const GraphicalModelType& gm,
   const typename  MessagePassing<GM, ACC, UPDATE_RULES, DIST>::Parameter& parameter
)
:  gm_(gm),
   parameter_(parameter)
{
   if(parameter_.sortedNodeList_.size() == 0) {
      parameter_.sortedNodeList_.resize(gm.numberOfVariables());
      for (size_t i = 0; i < gm.numberOfVariables(); ++i)
         parameter_.sortedNodeList_[i] = i;
   }
   OPENGM_ASSERT(parameter_.sortedNodeList_.size() == gm.numberOfVariables());

   UPDATE_RULES::initializeSpecialParameter(gm_,this->parameter_);
  
   // set hulls
   variableHulls_.resize(gm.numberOfVariables(), VariableHullType ());
   for (size_t i = 0; i < gm.numberOfVariables(); ++i) {
      variableHulls_[i].assign(gm, i, &parameter_.specialParameter_);
   } 
   factorHulls_.resize(gm.numberOfFactors(), FactorHullType ());
   for (size_t i = 0; i < gm.numberOfFactors(); i++) {
      factorHulls_[i].assign(gm, i, variableHulls_, &parameter_.specialParameter_);
   } 
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
void
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::reset()
{
   if(parameter_.sortedNodeList_.size() == 0) {
      parameter_.sortedNodeList_.resize(gm_.numberOfVariables());
      for (size_t i = 0; i < gm_.numberOfVariables(); ++i)
         parameter_.sortedNodeList_[i] = i;
   }
   OPENGM_ASSERT(parameter_.sortedNodeList_.size() == gm_.numberOfVariables());
   UPDATE_RULES::initializeSpecialParameter(gm_,this->parameter_);

   // set hulls
   variableHulls_.resize(gm_.numberOfVariables(), VariableHullType ());
   for (size_t i = 0; i < gm_.numberOfVariables(); ++i) {
      variableHulls_[i].assign(gm_, i, &parameter_.specialParameter_);
   }
   factorHulls_.resize(gm_.numberOfFactors(), FactorHullType ());
   for (size_t i = 0; i < gm_.numberOfFactors(); i++) {
      factorHulls_[i].assign(gm_, i, variableHulls_, &parameter_.specialParameter_);
   }
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline std::string
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::name() const {
   return "MP";
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline const typename MessagePassing<GM, ACC, UPDATE_RULES, DIST>::GraphicalModelType&
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::graphicalModel() const {
   return gm_;
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline InferenceTermination
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::infer() {
   EmptyVisitorType v;
   return infer(v);
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
template<class VisitorType>
inline InferenceTermination
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::infer
(
   VisitorType& visitor
) {
   if (parameter_.isAcyclic_ == opengm::Tribool::True) {
      if(parameter_.useNormalization_==opengm::Tribool::Maybe)
        parameter_.useNormalization_=false;	
      inferAcyclic(visitor);
   } else if (parameter_.isAcyclic_ == opengm::Tribool::False) {
      if (parameter_.inferSequential_) {
         inferSequential(visitor);
      } else {
         inferParallel(visitor);
      }
   } else { //triibool maby
      if (gm_.isAcyclic()) {
         parameter_.isAcyclic_ = opengm::Tribool::True;
         if(parameter_.useNormalization_==opengm::Tribool::Maybe)
            parameter_.useNormalization_=false;
         inferAcyclic(visitor);
      } else {
         parameter_.isAcyclic_ = opengm::Tribool::False;
         if (parameter_.inferSequential_) {
            inferSequential(visitor);
         } else {
            inferParallel(visitor);
         }
      }
   }
   return NORMAL;
}

/// \brief inference for acyclic graphs.
///
/// A message is sent from a variable (resp. from a factor) only if
/// all messages to that variable (factor) have been received.
///
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline void
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferAcyclic() { 
   EmptyVisitorType v;
   return inferAcyclic(v);
}

/// \brief inference for acyclic graphs.
//
/// A message is sent from a variable (resp. from a factor) only if
/// all messages to that variable (factor) have been received.
///
/// \param visitor
///
template<class GM, class ACC, class UPDATE_RULES, class DIST>
template<class VisitorType>
void
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferAcyclic
(
   VisitorType& visitor
) 
{
   OPENGM_ASSERT(gm_.isAcyclic());
   visitor.begin(*this);
   size_t numberOfVariables = gm_.numberOfVariables();
   size_t numberOfFactors = gm_.numberOfFactors();
   // number of messages which have not yet been recevied
   // but are required for sending
   std::vector<std::vector<size_t> > counterVar2FacMessage(numberOfVariables);
   std::vector<std::vector<size_t> > counterFac2VarMessage(numberOfFactors);
   // list of messages which are ready to send
   std::vector<Message> ready2SendVar2FacMessage;
   std::vector<Message> ready2SendFac2VarMessage;
   ready2SendVar2FacMessage.reserve(100);
   ready2SendFac2VarMessage.reserve(100);
   for (size_t fac = 0; fac < numberOfFactors; ++fac) {
      counterFac2VarMessage[fac].resize(gm_[fac].numberOfVariables(), gm_[fac].numberOfVariables() - 1);
   }
   for (size_t var = 0; var < numberOfVariables; ++var) {
      counterVar2FacMessage[var].resize(gm_.numberOfFactors(var));
      for (size_t i = 0; i < gm_.numberOfFactors(var); ++i) {
         counterVar2FacMessage[var][i] = gm_.numberOfFactors(var) - 1;
      }
   }
   // find all messages which are ready for sending
   for (size_t var = 0; var < numberOfVariables; ++var) {
      for (size_t i = 0; i < counterVar2FacMessage[var].size(); ++i) {
         if (counterVar2FacMessage[var][i] == 0) {
            --counterVar2FacMessage[var][i];
            ready2SendVar2FacMessage.push_back(Message(var, i));
         }
      }
   }
   for (size_t fac = 0; fac < numberOfFactors; ++fac) {
      for (size_t i = 0; i < counterFac2VarMessage[fac].size(); ++i) {
         if (counterFac2VarMessage[fac][i] == 0) {
            --counterFac2VarMessage[fac][i];
            ready2SendFac2VarMessage.push_back(Message(fac, i));
         }
      }
   }
   // send messages
   while (ready2SendVar2FacMessage.size() > 0 || ready2SendFac2VarMessage.size() > 0) {
      while (ready2SendVar2FacMessage.size() > 0) {
         Message m = ready2SendVar2FacMessage.back();
         size_t nodeId = m.nodeId_;
         size_t factorId = gm_.factorOfVariable(nodeId,m.internalMessageId_);
         // send message
         variableHulls_[nodeId].propagate(gm_, m.internalMessageId_, 0, false);
         ready2SendVar2FacMessage.pop_back();
         //check if new messages can be sent
         for (size_t i = 0; i < gm_[factorId].numberOfVariables(); ++i) {
            if (gm_[factorId].variableIndex(i) != nodeId) {
               if (--counterFac2VarMessage[factorId][i] == 0) {
                  ready2SendFac2VarMessage.push_back(Message(factorId, i));
               }
            }
         }
      }
      while (ready2SendFac2VarMessage.size() > 0) {
         Message m = ready2SendFac2VarMessage.back();
         size_t factorId = m.nodeId_;
         size_t nodeId = gm_[factorId].variableIndex(m.internalMessageId_);
         // send message
         factorHulls_[factorId].propagate(m.internalMessageId_, 0, parameter_.useNormalization_);
         ready2SendFac2VarMessage.pop_back();
         // check if new messages can be sent
         for (size_t i = 0; i < gm_.numberOfFactors(nodeId); ++i) {
            if (gm_.factorOfVariable(nodeId,i) != factorId) {
               if (--counterVar2FacMessage[nodeId][i] == 0) {
                  ready2SendVar2FacMessage.push_back(Message(nodeId, i));
               }
            }
         }
      }
      if(visitor(*this)!=0)
         break;
   }
   visitor.end(*this);
   
}

/// \brief invoke one iteration of message passing
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline void MessagePassing<GM, ACC, UPDATE_RULES, DIST>::propagate
(
   const ValueType& damping
) {
   for (size_t i = 0; i < variableHulls_.size(); ++i) {
      variableHulls_[i].propagateAll(damping, false);
   }
   for (size_t i = 0; i < factorHulls_.size(); ++i) {
      factorHulls_[i].propagateAll(damping, parameter_.useNormalization_);
   }
}

/// \brief inference with parallel message passing.
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline void MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferParallel() {
   EmptyVisitorType v;
   return inferParallel(v);
}

/// \brief inference with parallel message passing.
/// \param visitor
template<class GM, class ACC, class UPDATE_RULES, class DIST>
template<class VisitorType>
inline void MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferParallel
(
   VisitorType& visitor
) 
{
   ValueType c = 0;
   ValueType damping = parameter_.damping_;
   visitor.begin(*this);
    
   // let all Factors with a order lower than 2 sending their Message
   for (size_t i = 0; i < factorHulls_.size(); ++i) {
      if (factorHulls_[i].numberOfBuffers() < 2) {
         factorHulls_[i].propagateAll(0, parameter_.useNormalization_);
         factorHulls_[i].propagateAll(0, parameter_.useNormalization_); // 2 times to fill both buffers
      }
   }
   for (unsigned long n = 0; n < parameter_.maximumNumberOfSteps_; ++n) {
      for (size_t i = 0; i < variableHulls_.size(); ++i) {
         variableHulls_[i].propagateAll(gm_, damping, false);
      }
      for (size_t i = 0; i < factorHulls_.size(); ++i) {
         if (factorHulls_[i].numberOfBuffers() >= 2)// messages from factors of order <2 do not change
            factorHulls_[i].propagateAll(damping, parameter_.useNormalization_);
      }
      if(visitor(*this)!=0)
         break;
      c = convergence();
      if (c < parameter_.bound_) {
         break;
      }
   }
   visitor.end(*this);
    
}

/// \brief inference with sequential message passing.
///
/// sequential message passing according to Kolmogorov (TRW-S) and
/// Tappen (BP-S). These algorithms are designed for factors of
/// order 2; we cannot guarantee the convergence properties for these
/// algorithms when applied to graphical models with higher order
/// factors.
///
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline void MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferSequential() { 
   EmptyVisitorType v;
   return inferSequential(v);
}

/// \brief inference with sequential message passing.
///
/// sequential message passing according to Kolmogorov (TRW-S) and
/// Tappen (BP-S). These algorithms are designed for factors of
/// order 2; we cannot guarantee the convergence properties for these
/// algorithms when applied to graphical models with higher order
/// factors.
///
/// \param visitor
///
template<class GM, class ACC, class UPDATE_RULES, class DIST>
template<class VisitorType>
inline void MessagePassing<GM, ACC, UPDATE_RULES, DIST>::inferSequential
(
   VisitorType& visitor
) {
   OPENGM_ASSERT(parameter_.sortedNodeList_.size() == gm_.numberOfVariables()); 
   visitor.begin(*this);
   ValueType damping = parameter_.damping_;

   // set nodeOrder
   std::vector<size_t> nodeOrder(gm_.numberOfVariables());
   for (size_t o = 0; o < gm_.numberOfVariables(); ++o) {
      nodeOrder[parameter_.sortedNodeList_[o]] = o;
   }

   // let all Factors with a order lower than 2 sending their Message
   for (size_t f = 0; f < factorHulls_.size(); ++f) {
      if (factorHulls_[f].numberOfBuffers() < 2) {
         factorHulls_[f].propagateAll(0, parameter_.useNormalization_);
         factorHulls_[f].propagateAll(0, parameter_.useNormalization_); //2 times to fill both buffers
      }
   }

   // calculate inverse positions
   std::vector<std::vector<size_t> > inversePositions(gm_.numberOfVariables());
   for(size_t var=0; var<gm_.numberOfVariables();++var) {
      for(size_t i=0; i<gm_.numberOfFactors(var); ++i) {
         size_t factorId = gm_.factorOfVariable(var,i);
         for(size_t j=0; j<gm_.numberOfVariables(factorId);++j) {
            if(gm_.variableOfFactor(factorId,j)==var) {
               inversePositions[var].push_back(j);
               break;
            }
         }
      }
   }


   // the following Code is not optimized and maybe too slow for small factors
   for (unsigned long itteration = 0; itteration < parameter_.maximumNumberOfSteps_; ++itteration) {
      if(itteration%2==0) {
         // in increasing ordering
         for (size_t o = 0; o < gm_.numberOfVariables(); ++o) {
            size_t variableId = parameter_.sortedNodeList_[o];
            // update messages to the variable node
            for(size_t i=0; i<gm_.numberOfFactors(variableId); ++i) {
               size_t factorId = gm_.factorOfVariable(variableId,i);
               factorHulls_[factorId].propagate(inversePositions[variableId][i], damping, parameter_.useNormalization_); 
            }

            // update messages from the variable node
            variableHulls_[variableId].propagateAll(gm_, damping, false);
         }
      }
      else{
         // in decreasing ordering
         for (size_t o = 0; o < gm_.numberOfVariables(); ++o) {
            size_t variableId = parameter_.sortedNodeList_[gm_.numberOfVariables() - 1 - o];
            // update messages to the variable node
            for(size_t i=0; i<gm_.numberOfFactors(variableId); ++i) {
               size_t factorId = gm_.factorOfVariable(variableId,i);
               factorHulls_[factorId].propagate(inversePositions[variableId][i], damping, parameter_.useNormalization_); 
            }
            // update messages from Variable
            variableHulls_[variableId].propagateAll(gm_, damping, false);
         }
      }
      if(visitor(*this)!=0)
         break;
      ValueType c = convergence();
      if (c < parameter_.bound_) {
         break;
      }
    
   } 
   visitor.end(*this);
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline InferenceTermination
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::marginal
(
   const size_t variableIndex,
   IndependentFactorType & out
) const {
   OPENGM_ASSERT(variableIndex < variableHulls_.size());
   variableHulls_[variableIndex].marginal(gm_, variableIndex, out, parameter_.useNormalization_);
   return NORMAL;
}

template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline InferenceTermination
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::factorMarginal
(
   const size_t factorIndex,
   IndependentFactorType &out
) const {
   typedef typename GM::OperatorType OP;
   OPENGM_ASSERT(factorIndex < factorHulls_.size());
   out.assign(gm_, gm_[factorIndex].variableIndicesBegin(), gm_[factorIndex].variableIndicesEnd(), OP::template neutral<ValueType>());
   factorHulls_[factorIndex].marginal(out, parameter_.useNormalization_);
   return NORMAL;
}

/// \brief cumulative distance between all pairs of messages from variables to factors (between the previous and the current interation)
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline typename MessagePassing<GM, ACC, UPDATE_RULES, DIST>::ValueType
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::convergenceXF() const {
   ValueType result = 0;
   for (size_t j = 0; j < factorHulls_.size(); ++j) {
      for (size_t i = 0; i < factorHulls_[j].numberOfBuffers(); ++i) {
         ValueType d = factorHulls_[j].template distance<DIST > (i);
         if (d > result) {
            result = d;
         }
      }
   }
   return result;
}

/// \brief cumulative distance between all pairs of messages from factors to variables (between the previous and the current interation)
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline typename MessagePassing<GM, ACC, UPDATE_RULES, DIST>::ValueType
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::convergenceFX() const {
   ValueType result = 0;
   for (size_t j = 0; j < variableHulls_.size(); ++j) {
      for (size_t i = 0; i < variableHulls_[j].numberOfBuffers(); ++i) {
         ValueType d = variableHulls_[j].template distance<DIST > (i);
         if (d > result) {
            result = d;
         }
      }
   }
   return result;
}

/// \brief cumulative distance between all pairs of messages (between the previous and the current interation)
template<class GM, class ACC, class UPDATE_RULES, class DIST>
inline typename MessagePassing<GM, ACC, UPDATE_RULES, DIST>::ValueType
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::convergence() const {
   return convergenceXF();
}

template<class GM, class ACC,class UPDATE_RULES, class DIST >
inline InferenceTermination
MessagePassing<GM, ACC, UPDATE_RULES, DIST>::arg
(
   std::vector<LabelType>& conf,
   const size_t N
) const {
   if (N != 1) {
      throw RuntimeError("This implementation of message passing cannot return the k-th optimal configuration.");
   }
   else {
      if (parameter_.isAcyclic_ == opengm::Tribool::True) {       
         return this->modeFromFactorMarginal(conf); 
      }
      else {
         return this->modeFromFactorMarginal(conf); 
         //return modeFromMarginal(conf);
      }
   }
}

} // namespace opengm

#endif // #ifndef OPENGM_BELIEFPROPAGATION_HXX