This file is indexed.

/usr/include/opengm/inference/messagepassing/messagepassing_operations_withFunctors.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#pragma once
#ifndef OPENGM_MESSAGEPASSING_OPERATIONS_HXX
#define OPENGM_MESSAGEPASSING_OPERATIONS_HXX

#include <opengm/opengm.hxx>
#include <opengm/operations/adder.hxx>
#include <opengm/operations/multiplier.hxx>
#include <opengm/operations/minimizer.hxx>
#include <opengm/operations/maximizer.hxx>

/// \cond HIDDEN_SYMBOLS

namespace opengm {
   namespace messagepassingOperations {

// out = M(M.shape, OP:neutral)
/// \todo unroll loop
      template<class OP, class M>
      inline void clean(M& out) {
         for(size_t n=0; n<out.size(); ++n ) {
            OP::neutral(out(n));
         }
      }
      
      template<class OP, class ACC, class M>
      inline void normalize
      (
         M& out
         ) {
         typename M::ValueType v;
         ACC::neutral(v);
         for(size_t n=0; n<out.size(); ++n)
            ACC::op(out(n),v);
         
         if( opengm::meta::Compare<OP,opengm::Multiplier>::value && v <= 0.00001)
            return;
         if(opengm::meta::Compare<OP,opengm::Multiplier>::value)
            OPENGM_ASSERT(v > 0.00001); // ??? this should be checked in released code   
         for(size_t n=0; n<out.size();++n ) {
            OP::iop(v,out(n));      
         }
      }

/// out = op( hop(in1,alpha), hop(in2,1-alpha) )
      template<class OP, class M, class T>
      inline void weightedMean
      (
         const M& in1,
         const M& in2, 
         const T alpha, 
         M& out
         ) { 
         /// TODO
         /// Speedup
         T v1,v2;
         const T oneMinusAlpha=static_cast<T>(1)-alpha;
        
         for(size_t n=0; n<out.size();++n ) {
            OP::hop(in1(n),alpha,  v1);
            OP::hop(in2(n),oneMinusAlpha,v2);
            OP::op(v1,v2,out(n));
         }
      }
      
/// out = op(vec[0].current, ..., vec[n].current ) 
      template<class OP, class BUFFER, class M>
      inline void operate
      (
         const std::vector<BUFFER>& vec,
         M& out
         ) {
         /// ???
         /// switch order of loops ?
         clean<OP>(out);
         for(size_t j = 0; j < vec.size(); ++j) {
            const typename BUFFER::ArrayType& b = vec[j].current();
            OPENGM_ASSERT(b.size()==out.size());
            for(size_t n=0; n<out.size(); ++n) 
               OP::op(b(n), out(n));
         }
      }  
      
/// out = op( out , op_i( hop(vec[i],rho[i]) ) )
      template<class GM, class BUFFER, class M>
      inline void operateW
      (
         const std::vector<BUFFER>& vec,
         const std::vector<typename GM::ValueType>& rho,
         M& out
         ) {
         typedef typename GM::OperatorType OP;
         clean<OP>(out);
         /// ???
         /// switch order of loops ?
         /// => loop over out?
         for(size_t j = 0; j < vec.size(); ++j) {
            const typename BUFFER::ArrayType& b = vec[j].current();
            typename GM::ValueType e = rho[j];
            typename GM::ValueType v;
            for(size_t n=0; n<out.size(); ++n) {
               OP::hop(b(n),e,v);
               OP::op(v,out(n));
            }
         }
      }
   
/// out = op( vec[0].current, ..., vec[i-1].current,vec[i+1].current, ... , vec[n].current ) 
      template<class OP, class BUFVEC, class M, class INDEX>
      inline void operate
      (
         const BUFVEC& vec,
         const INDEX i, 
         M& out
         ) {
         clean<OP>(out); 
         /// TODO
         /// switch order of loops ? (loop over out?)
         /// => clean could be inside the loop over the result
         for(size_t j = 0; j < i; ++j) {
            const M& f = vec[j].current();
            for(size_t n=0; n<out.size(); ++n) 
               OP::op(f(n), out(n));
         }
         for(size_t j = i+1; j < vec.size(); ++j) {
            const M& f = vec[j].current();
            for(size_t n=0; n<out.size(); ++n) 
               OP::op(f(n), out(n));        
         }
      }
 
/// out = op( hop(vec[i],rho[i]-1), op_j/i( hop(vec[j],rho[j]) ) )
      template<class GM, class BUFVEC, class M, class INDEX>
      inline void operateW
      (
         const BUFVEC& vec, 
         const INDEX i, 
         const std::vector<typename GM::ValueType>& rho,
         M& out
         ) {  
         typedef typename GM::OperatorType OP;
         OPENGM_ASSERT(vec[i].current().size()==out.size());
         typename GM::ValueType v;
         const typename GM::ValueType e = rho[i]-1;
         const M& b = vec[i].current();
         for(size_t n=0; n<out.size(); ++n) {
            //OP::hop(b(n),e,v);
            //OP::op(v,out(n));
            OP::hop(b(n),e,out(n));
         }
         
         for(size_t j = 0; j < i; ++j) {
            const M& b = vec[j].current();
            const typename GM::ValueType e = rho[j];
            OPENGM_ASSERT(b.size()==out.size());
            for(size_t n=0; n<out.size(); ++n) {
               OP::hop(b(n),e,v);
               OP::op(v,out(n));
            }
         } 
         for(size_t j = i+1; j < vec.size(); ++j) {
            const M& b = vec[j].current();
            const typename GM::ValueType e = rho[j];
            OPENGM_ASSERT(b.size()==out.size());
            for(size_t n=0; n<out.size(); ++n) {
               OP::hop(b(n),e,v);
               OP::op(v,out(n));
            }
         }       
      }
      
/// out = acc( op(f, vec[0].current, ..., vec[n].current ), -i) 

      template<class GM, class ACC, class BUFVEC, class ARRAY ,class INDEX>
      struct OperateF_Functor{
         OperateF_Functor(
            const BUFVEC & vec,
            const INDEX i,
            ARRAY & out
            )
            : vec_(vec),
              i_(i),
              out_(out){
         }

         template<class FUNCTION>
         void operator()(const FUNCTION & f){
            typedef typename GM::OperatorType OP;
            if(f.dimension()==2) {
               size_t count[2];
               typename GM::ValueType v;
               for(size_t n=0; n<out_.size(); ++n)
                  ACC::neutral(out_(n));
               if(i_==0){
                  for(count[0]=0;count[0]<f.shape(0);++count[0]){
                     for(count[1]=0;count[1]<f.shape(1);++count[1]) {
                        v = f(count);
                        OP::op(vec_[1].current()(count[1]), v);
                        ACC::op(v,out_(count[0]));
                     }
                  }
               }else{ 
                  for(count[0]=0;count[0]<f.shape(0);++count[0]){
                     for(count[1]=0;count[1]<f.shape(1);++count[1]) {
                        v = f(count);
                        OP::op(vec_[0].current()(count[0]), v);
                        ACC::op(v,out_(count[1]));
                     } 
                  }
               }
            }
            else{
               // accumulation over all variables except x
               typedef typename GM::IndexType IndexType;
               typedef typename GM::LabelType LabelType;
               // neutral initialization of output
               for(size_t n=0; n<f.shape(i_); ++n)
                  ACC::neutral(out_(n));
               // factor shape iterator
               typedef typename FUNCTION::FunctionShapeIteratorType FunctionShapeIteratorType;
               opengm::ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(),f.dimension());
               for(IndexType scalarIndex=0;scalarIndex<f.size();++scalarIndex,++shapeWalker) {
                  // loop over the variables
                  // initialize output value with value of the factor at this coordinate
                  // operate j=[0,..i-1]
                  typename GM::ValueType value=f(shapeWalker.coordinateTuple().begin());
                  for(IndexType j=0;j<static_cast<typename GM::IndexType>(i_);++j) {
                     const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                     OP::op(vec_[j].current()(label),value);
                  }
                  // operate j=[i+1,..,vec.size()]
                  for(IndexType j=i_+1;j< vec_.size();++j) {
                     const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                     OP::op(vec_[j].current()(label),value);
                  }
                  // accumulate
                  ACC::op(value,out_(shapeWalker.coordinateTuple()[i_]));
               }
            }
         }


         const BUFVEC & vec_;
         const INDEX i_;
         ARRAY & out_;
      };

      template<class GM, class ACC, class BUFVEC, class ARRAY, class INDEX>
      inline void operateF
      (
         const typename GM::FactorType& f,
         const BUFVEC& vec,
         const INDEX i,
         ARRAY& out
         ) {
         OperateF_Functor<GM,ACC,BUFVEC,ARRAY,INDEX> functor(vec,i,out);
         f.callFunctor(functor);
      }


/// out = acc_-i( op( ihop(f,rho), op_j/i( vec[j] ) ) )
      template<class GM, class ACC, class BUFVEC, class M ,class INDEX>
      struct OperateWF_Functor{
         typedef typename GM::IndexType IndexType;
         typedef typename GM::LabelType LabelType; 
         typedef typename GM::ValueType ValueType;
         typedef typename GM::OperatorType OP;

         OperateWF_Functor(const ValueType rho, const BUFVEC & vec, const INDEX i,M & out)
            :  rho_(rho), vec_(vec), i_(i), out_(out){}

         template<class FUNCTION>
         void operator()(const FUNCTION & f){
            // neutral initialization of output
            for(size_t n=0; n<f.shape(i_); ++n)
               ACC::neutral(out_(n));
            // factor shape iterator 
            typedef typename FUNCTION::FunctionShapeIteratorType FunctionShapeIteratorType;
            opengm::ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(),f.dimension());
            for(IndexType scalarIndex=0;scalarIndex<f.size();++scalarIndex,++shapeWalker) {
               // loop over the variables
               // initialize output value with value of the factor at this coordinate
               // operate j=[0,..i-1]
               ValueType value;
               OP::ihop(f(shapeWalker.coordinateTuple().begin()),rho_,value);
               for(IndexType j=0;j<static_cast<typename GM::IndexType>(i_);++j) {
                  const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                  OP::op(vec_[j].current()(label),value);
               }
               // operate j=[i+1,..,vec.size()]
               for(IndexType j=i_+1;j< vec_.size();++j) {
                  const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                  OP::op(vec_[j].current()(label),value);
               }
               // accumulate 
               ACC::op(value,out_(shapeWalker.coordinateTuple()[i_]));
            }
         } 
   
         const ValueType rho_;
         const BUFVEC & vec_;
         const INDEX i_;
         M & out_;
      };

      template<class GM, class ACC, class BUFVEC, class M, class INDEX>
      inline void operateWF
      (
         const typename GM::FactorType& f, 
         const typename GM::ValueType rho, 
         const BUFVEC& vec, 
         const INDEX i, 
         M& out
         ) {
         OperateWF_Functor<GM,ACC,BUFVEC,M,INDEX> functor(rho,vec,i,out);
         f.callFunctor(functor);
      }
 

/// out = op(f, vec[0].current, ..., vec[n].current )
      template<class GM, class BUFVEC>
      struct OperatorF2_Functor{ 
         typedef typename GM::IndexType IndexType;
         typedef typename GM::LabelType LabelType;
         typedef typename GM::ValueType ValueType;
         typedef typename GM::OperatorType OP;
         OperatorF2_Functor(const BUFVEC& vec, typename GM::IndependentFactorType& out):vec_(vec), out_(out){}
  
         template<class FUNCTION>
         void operator()(const FUNCTION & f){
            OPENGM_ASSERT(out_.numberOfVariables()!=0);
            // shape iterator
            typedef typename FUNCTION::FunctionShapeIteratorType FunctionShapeIteratorType;
            opengm::ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(),f.dimension());
            for(IndexType scalarIndex=0;scalarIndex<f.size();++scalarIndex,++shapeWalker) {
               // loop over the variables
               ValueType value=f(shapeWalker.coordinateTuple().begin());
               for(IndexType j=0;j<static_cast<typename GM::IndexType>(vec_.size());++j) {
                  const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                  OP::op(vec_[j].current()(label),value);
               }
               out_(scalarIndex)=value;
            }
         }

         const BUFVEC& vec_; 
         typename GM::IndependentFactorType& out_;
      };
      template<class GM, class BUFVEC>
      inline void operateF
      (
         const typename GM::FactorType& f, 
         const BUFVEC& vec, 
         typename GM::IndependentFactorType& out
         )
      {
         OperatorF2_Functor<GM, BUFVEC> functor(vec,out);
         f.callFunctor(functor);
      }

/// out = op( ihop(f,rho), op_j(vec[j]) )
      template<class GM, class BUFVEC>
      struct OperatorWF2_Functor{ 
         typedef typename GM::IndexType IndexType;
         typedef typename GM::LabelType LabelType;
         typedef typename GM::ValueType ValueType;
         typedef typename GM::OperatorType OP;
         OperatorWF2_Functor(ValueType rho, const BUFVEC& vec, typename GM::IndependentFactorType& out) : rho_(rho), vec_(vec), out_(out){}
  
         template<class FUNCTION>
         void operator()(const FUNCTION & f){
            // shape iterator
            typedef typename FUNCTION::FunctionShapeIteratorType FunctionShapeIteratorType;
            opengm::ShapeWalker<FunctionShapeIteratorType> shapeWalker(f.functionShapeBegin(),f.dimension());
            for(IndexType scalarIndex=0;scalarIndex<f.size();++scalarIndex,++shapeWalker) { // loop over the variables
               ValueType value;
               OP::ihop(f(shapeWalker.coordinateTuple().begin()),rho_,value);
               for(IndexType j=0;j<static_cast<typename GM::IndexType>(vec_.size());++j) {
                  const LabelType label=static_cast<LabelType>(shapeWalker.coordinateTuple()[j]);
                  OP::op(vec_[j].current()(label),value);
               }
               out_(scalarIndex)=value;
            }
         }

         const ValueType rho_;
         const BUFVEC& vec_; 
         typename GM::IndependentFactorType& out_;
      };

      template<class GM, class BUFVEC>
      inline void operateWF
      (
         const typename GM::FactorType& f, 
         const typename GM::ValueType rho, 
         const BUFVEC& vec, 
         typename GM::IndependentFactorType& out
         ) {
         OperatorWF2_Functor<GM, BUFVEC> functor(rho,vec,out);
         f.callFunctor(functor);           
      }

   } // namespace messagepassingOperations
} // namespace opengm

/// \endcond

#endif