This file is indexed.

/usr/include/opengm/inference/movemaker.hxx is in libopengm-dev 2.3.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#pragma once
#ifndef OPENGM_MOVEMAKER_HXX
#define OPENGM_MOVEMAKER_HXX

#include <algorithm>
#include <vector>

#include "opengm/operations/multiplier.hxx"
#include "opengm/operations/maximizer.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/utilities/metaprogramming.hxx"
#include "opengm/utilities/sorting.hxx"
#include "opengm/graphicalmodel/graphicalmodel.hxx"
#include "opengm/graphicalmodel/space/vector_view_space.hxx"
#include "opengm/functions/view.hxx"
#include "opengm/functions/view_fix_variables_function.hxx"
#include "opengm/datastructures/buffer_vector.hxx"
#include "opengm/inference/bruteforce.hxx"

namespace opengm {

/// A fremework for move making algorithms
template<class GM>
class Movemaker {
public:
   typedef GM GraphicalModelType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef typename std::vector<LabelType>::const_iterator LabelIterator;
   /// \cond HIDDEN_SYMBOLS
   typedef typename opengm::meta::TypeListGenerator<ViewFunction<GM>, ViewFixVariablesFunction<GM> >::type FunctionTypeList;
   typedef opengm::VectorViewSpace<IndexType, LabelType> SubGmSpace;
   typedef opengm::GraphicalModel<ValueType, OperatorType, FunctionTypeList, SubGmSpace> SubGmType;
   /// \endcond

   Movemaker(const GraphicalModelType&); 
   template<class StateIterator>
      Movemaker(const GraphicalModelType&, StateIterator); 
   ValueType value() const;
   template<class IndexIterator, class StateIterator>
      ValueType valueAfterMove(IndexIterator, IndexIterator, StateIterator);
   const LabelType& state(const size_t) const;
   LabelIterator stateBegin() const;
   LabelIterator stateEnd() const;
   void reset();
   template<class StateIterator>
      void initialize(StateIterator);
   template<class IndexIterator, class StateIterator>
      ValueType move(IndexIterator, IndexIterator, StateIterator);
   template<class ACCUMULATOR, class IndexIterator>
      ValueType moveOptimally(IndexIterator, IndexIterator);
   template<class ACCUMULATOR, class IndexIterator>
      ValueType moveOptimallyWithAllLabelsChanging(IndexIterator, IndexIterator);
   //template<class ACCUMULATOR, class IndexIterator>
      //ValueType moveAstarOptimally(IndexIterator, IndexIterator);
   template<class INFERENCE_TYPE, class INFERENCE_PARAMETER, class INDEX_ITERATOR, class STATE_ITERATOR>
      void proposeMoveAccordingToInference(const INFERENCE_PARAMETER&, INDEX_ITERATOR, INDEX_ITERATOR, std::vector<LabelType>&)const;

private:
   typedef PositionAndLabel<IndexType, LabelType > PositionAndLabelType;
   typedef opengm::BufferVector<PositionAndLabelType> PositionAndLabelVector;

   /// \cond HIDDEN_SYMBOLS
   template<class INDEX_ITERATOR>
      void addFactorsToSubGm(INDEX_ITERATOR, INDEX_ITERATOR, SubGmType&)const;
   /// \endcond
   void addSingleSide(const IndexType, const IndexType, SubGmType &, std::set<IndexType>&)const;
   void addHigherOrderBorderFactor(const IndexType, const opengm::BufferVector<IndexType>&, const PositionAndLabelVector &, SubGmType &, std::set<IndexType> &)const;
   void addHigherOrderInsideFactor(const IndexType, const opengm::BufferVector<IndexType>&, SubGmType &, std::set<IndexType> &)const;
   template<class FactorIndexIterator>
      ValueType evaluateFactors(FactorIndexIterator, FactorIndexIterator, const std::vector<LabelType>&) const;

   const GraphicalModelType& gm_;
   std::vector<std::set<size_t> > factorsOfVariable_;
   std::vector<LabelType> state_;
   std::vector<LabelType> stateBuffer_; // always equal to state_ (invariant)
   ValueType energy_; // energy of state state_ (invariant)
};

/*
template<class GM>
template<class ACCUMULATOR, class IndexIterator>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::moveAstarOptimally
(
   IndexIterator variableIndicesBegin,
   IndexIterator variableIndicesEnd
) {
   typedef opengm::AStar<SubGmType, ACCUMULATOR> SubGmInferenceType;
   typedef typename SubGmInferenceType::Parameter SubGmInferenceParameterType;
   SubGmInferenceParameterType para;
   para.heuristic_ = para.STANDARDHEURISTIC;
   std::vector<LabelType> states(std::distance(variableIndicesBegin, variableIndicesEnd));
   this-> template proposeMoveAccordingToInference<
      SubGmInferenceType, SubGmInferenceParameterType, IndexIterator, typename std::vector<LabelType>::iterator
      > (para, variableIndicesBegin, variableIndicesEnd, states);
   return this->move(variableIndicesBegin, variableIndicesEnd, states.begin());
}
*/
template<class GM>
template<class INFERENCE_TYPE, class INFERENCE_PARAMETER, class INDEX_ITERATOR, class STATE_ITERATOR>
inline void
Movemaker<GM>::proposeMoveAccordingToInference
(
   const INFERENCE_PARAMETER& inferenceParam,
   INDEX_ITERATOR variablesBegin,
   INDEX_ITERATOR variablesEnd,
   std::vector<LabelType>& states
)const {
   OPENGM_ASSERT(opengm::isSorted(variablesBegin, variablesEnd));
   const size_t numberOfVariables = std::distance(variablesBegin, variablesEnd);
   std::vector<LabelType> spaceVector(numberOfVariables);
   for (size_t v = 0; v < numberOfVariables; ++v)
      spaceVector[v] = gm_.numberOfLabels(variablesBegin[v]);
   SubGmSpace subGmSpace(spaceVector);
   SubGmType subGm(subGmSpace);
   this->addFactorsToSubGm(variablesBegin, variablesEnd, subGm);
   INFERENCE_TYPE subGmInference(subGm, inferenceParam);
   subGmInference.infer();
   subGmInference.arg(states);
}

template<class GM>
inline void Movemaker<GM>::addSingleSide
(
   const typename Movemaker<GM>::IndexType gmFactorIndex,
   const typename Movemaker<GM>::IndexType subGmVarIndex,
   typename Movemaker<GM>::SubGmType & subGm,
   std::set<typename Movemaker<GM>::IndexType> & addedFactors
)const {
   const size_t var1Index[] = {subGmVarIndex};
   ViewFunction<GM> function = (gm_[gmFactorIndex]);
   typename GM::FunctionIdentifier fid = subGm.addFunction(function);
   subGm.addFactor(fid, var1Index, var1Index + 1);
   addedFactors.insert(gmFactorIndex);
}

template<class GM>
inline void Movemaker<GM>::addHigherOrderInsideFactor
(
   const typename Movemaker<GM>::IndexType gmFactorIndex,
   const opengm::BufferVector<typename Movemaker<GM>::IndexType> & subGmFactorVi,
   typename Movemaker<GM>::SubGmType & subGm,
   std::set<typename Movemaker<GM>::IndexType> & addedFactors
)const {
   ViewFunction<GM> function(gm_[gmFactorIndex]);
   typename GM::FunctionIdentifier fid = subGm.addFunction(function);
   subGm.addFactor(fid, subGmFactorVi.begin(), subGmFactorVi.end());
   addedFactors.insert(gmFactorIndex);
}

template<class GM>
inline void Movemaker<GM>::addHigherOrderBorderFactor
(
   const typename Movemaker<GM>::IndexType gmFactorIndex,
   const opengm::BufferVector<typename Movemaker<GM>::IndexType> & subGmFactorVi,
   const typename Movemaker<GM>::PositionAndLabelVector & factorFixVi,
   typename Movemaker<GM>::SubGmType & subGm,
   std::set<typename Movemaker<GM>::IndexType> & addedFactors
)const {
   ViewFixVariablesFunction<GM> function(gm_[gmFactorIndex], factorFixVi);
   typename GM::FunctionIdentifier fid = subGm.addFunction(function);
   subGm.addFactor(fid, subGmFactorVi.begin(), subGmFactorVi.end());
   addedFactors.insert(gmFactorIndex);
}

template<class GM>
template<class INDEX_ITERATOR >
inline void Movemaker<GM>::addFactorsToSubGm
(
   INDEX_ITERATOR variablesBegin,
   INDEX_ITERATOR variablesEnd,
   typename Movemaker<GM>::SubGmType & subGm
)const {
   std::set<IndexType> addedFactors;
   opengm::BufferVector<IndexType> subGmFactorVi;
   opengm::BufferVector<opengm::PositionAndLabel<IndexType, LabelType > >factorFixVi;
   subGm.reserveFactors(subGm.numberOfVariables()*7);
   for (IndexType subGmVi = 0; subGmVi < subGm.numberOfVariables(); ++subGmVi) {
      for (size_t f = 0; f < gm_.numberOfFactors(variablesBegin[subGmVi]); ++f) {
         const size_t factorIndex = gm_.factorOfVariable(variablesBegin[subGmVi], f);
         // if the factor has not been added
         if (addedFactors.find(factorIndex) == addedFactors.end()) {
            if (gm_[factorIndex].numberOfVariables() == 0) {
            } else if (gm_[factorIndex].numberOfVariables() == 1)
               this->addSingleSide(factorIndex, subGmVi, subGm, addedFactors);
            else {
               // find if all variables of the factor are in the subgraph or not:
               subGmFactorVi.clear();
               factorFixVi.clear();
               for (IndexType vv = 0; vv < gm_[factorIndex].numberOfVariables(); ++vv) {
                  bool foundVarIndex = false;
                  IndexType varIndexSubGm = 0;
                  foundVarIndex = findInSortedSequence(variablesBegin, subGm.numberOfVariables(), gm_[factorIndex].variableIndex(vv), varIndexSubGm);
                  if (foundVarIndex == false) // variable is outside the subgraph
                     factorFixVi.push_back(opengm::PositionAndLabel<IndexType, LabelType > (vv, this->state(gm_[factorIndex].variableIndex(vv))));
                  else // variable is inside the subgraph
                     subGmFactorVi.push_back(varIndexSubGm);
               }
               if (factorFixVi.size() == 0) // all variables are in the subgraph
                  this->addHigherOrderInsideFactor(factorIndex, subGmFactorVi, subGm, addedFactors);
               else // not all are in the subgraph
                  this->addHigherOrderBorderFactor(factorIndex, subGmFactorVi, factorFixVi, subGm, addedFactors);
            }
         }
      }
   }
}

template<class GM>
Movemaker<GM>::Movemaker
(
   const GraphicalModelType& gm
)
:  gm_(gm),
   factorsOfVariable_(gm.numberOfVariables()),
   state_(gm.numberOfVariables()),
   stateBuffer_(gm.numberOfVariables()),
   energy_(gm.evaluate(state_.begin()))
{
   for (size_t f = 0; f < gm.numberOfFactors(); ++f) {
      for (size_t v = 0; v < gm[f].numberOfVariables(); ++v) {
         factorsOfVariable_[gm[f].variableIndex(v)].insert(f);
      }
   }
}

template<class GM>
template<class StateIterator>
Movemaker<GM>::Movemaker
(
   const GraphicalModelType& gm,
   StateIterator it
)
:  gm_(gm),
   factorsOfVariable_(gm.numberOfVariables()),
   state_(gm.numberOfVariables()),
   stateBuffer_(gm.numberOfVariables()),
   energy_(gm.evaluate(it)) // fails if *it is out of bounds
{
   for (size_t j = 0; j < gm.numberOfVariables(); ++j, ++it) {
      state_[j] = *it;
      stateBuffer_[j] = *it;
   }
   for (size_t f = 0; f < gm.numberOfFactors(); ++f) {
      for (size_t v = 0; v < gm[f].numberOfVariables(); ++v) {
         factorsOfVariable_[gm[f].variableIndex(v)].insert(f);
      }
   }
}

template<class GM>
template<class StateIterator>
void Movemaker<GM>::initialize
(
   StateIterator it
) {
   energy_ = gm_.evaluate(it); // fails if *it is out of bounds
   for (size_t j = 0; j < gm_.numberOfVariables(); ++j, ++it) {
      state_[j] = *it;
      stateBuffer_[j] = *it;
   }
}

template<class GM>
void
Movemaker<GM>::reset() {
   for (size_t j = 0; j < gm_.numberOfVariables(); ++j) {
      state_[j] = 0;
      stateBuffer_[j] = 0;
   }
   energy_ = gm_.evaluate(state_.begin());
}

template<class GM>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::value() const {
   return energy_;
}

template<class GM>
template<class IndexIterator, class StateIterator>
typename Movemaker<GM>::ValueType
Movemaker<GM>::valueAfterMove
(
   IndexIterator begin,
   IndexIterator end,
   StateIterator destinationState
) { 
   ValueType destinationValue;
   if(meta::Compare<OperatorType, opengm::Multiplier>::value){
      //Partial update for multiplication is not numrical stabel! That why recalculate the objective 

      // set stateBuffer_ to destinationState, and determine factors to recompute
      for (IndexIterator it = begin; it != end; ++it, ++destinationState) {
         stateBuffer_[*it] = *destinationState;
      }
      // evaluate destination state
      destinationValue = gm_.evaluate(stateBuffer_); 
      // restore stateBuffer_
      for (IndexIterator it = begin; it != end; ++it) {
         stateBuffer_[*it] = state_[*it];
      }
   }else{
      // do partial update 

      // set stateBuffer_ to destinationState, and determine factors to recompute
      std::set<size_t> factorsToRecompute;
      for (IndexIterator it = begin; it != end; ++it, ++destinationState) {
         OPENGM_ASSERT(*destinationState < gm_.numberOfLabels(*it));
         if (state_[*it] != *destinationState) {
            OPENGM_ASSERT(*destinationState < gm_.numberOfLabels(*it));
            stateBuffer_[*it] = *destinationState;
            std::set<size_t> tmpSet;
            std::set_union(factorsToRecompute.begin(), factorsToRecompute.end(),
                           factorsOfVariable_[*it].begin(), factorsOfVariable_[*it].end(),
                           std::inserter(tmpSet, tmpSet.begin()));
            factorsToRecompute.swap(tmpSet);
         }
      }
      // \todo consider buffering the values of ALL factors at the current state!
      destinationValue = energy_;
      for (std::set<size_t>::const_iterator it = factorsToRecompute.begin(); it != factorsToRecompute.end(); ++it) {
         OPENGM_ASSERT(*it < gm_.numberOfFactors());
         // determine current and destination state of the current factor
         std::vector<size_t> currentFactorState(gm_[*it].numberOfVariables());
         std::vector<size_t> destinationFactorState(gm_[*it].numberOfVariables());
         for (size_t j = 0; j < gm_[*it].numberOfVariables(); ++j) {
            currentFactorState[j] = state_[gm_[*it].variableIndex(j)];
            OPENGM_ASSERT(currentFactorState[j] < gm_[*it].numberOfLabels(j));
            destinationFactorState[j] = stateBuffer_[gm_[*it].variableIndex(j)];
            OPENGM_ASSERT(destinationFactorState[j] < gm_[*it].numberOfLabels(j));
         }
         OperatorType::op(destinationValue, gm_[*it](destinationFactorState.begin()), destinationValue);
         OperatorType::iop(destinationValue, gm_[*it](currentFactorState.begin()), destinationValue);
      }
      // restore stateBuffer_
      for (IndexIterator it = begin; it != end; ++it) {
         stateBuffer_[*it] = state_[*it];
      }
   }
   return destinationValue;
}

template<class GM>
template<class IndexIterator, class StateIterator>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::move
(
   IndexIterator begin,
   IndexIterator end,
   StateIterator sit
) {
   energy_ = valueAfterMove(begin, end, sit); // tests for assertions
   while (begin != end) {
      state_[*begin] = *sit;
      stateBuffer_[*begin] = *sit;
      ++begin;
      ++sit;
   }
   return energy_;
}


/// for a subset of variables, move to a labeling that is optimal w.r.t. ACCUMULATOR
/// \param variableIndices random access iterator to the beginning of a sequence of variable indices
/// \param variableIndicesEnd random access iterator to the end of a sequence of variable indices
/// \return new value
template<class GM>
template<class ACCUMULATOR, class IndexIterator>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::moveOptimally
(
   IndexIterator variableIndices,
   IndexIterator variableIndicesEnd
) {
   // determine factors to recompute
   std::set<size_t> factorsToRecompute;
   for (IndexIterator it = variableIndices; it != variableIndicesEnd; ++it) {
      std::set<size_t> tmpSet;
      std::set_union(factorsToRecompute.begin(), factorsToRecompute.end(),
         factorsOfVariable_[*it].begin(), factorsOfVariable_[*it].end(),
         std::inserter(tmpSet, tmpSet.begin()));
      factorsToRecompute.swap(tmpSet);
   }

   // find an optimal move and the corresponding energy of factors to recompute
   size_t numberOfVariables = std::distance(variableIndices, variableIndicesEnd);
   ValueType initialEnergy = evaluateFactors(
      factorsToRecompute.begin(),
      factorsToRecompute.end(),
      state_);
   ValueType bestEnergy = initialEnergy;
   std::vector<size_t> bestState(numberOfVariables);
   for (size_t j=0; j<numberOfVariables; ++j) {
      const size_t vi = variableIndices[j];
      stateBuffer_[vi] = 0;
   }
   for (;;) {
      // compute energy
      ValueType energy = evaluateFactors(
         factorsToRecompute.begin(),
         factorsToRecompute.end(),
         stateBuffer_);
      if(ACCUMULATOR::bop(energy, bestEnergy)) {
         // update energy and state
         bestEnergy = energy;
         for (size_t j = 0; j < numberOfVariables; ++j) {
            bestState[j] = stateBuffer_[variableIndices[j]];
         }
      }
      // increment buffered state
      for (size_t j = 0; j < numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         if (stateBuffer_[vi] < gm_.numberOfLabels(vi) - 1) {
            ++stateBuffer_[vi];
            break;
         } else {
            if (j < numberOfVariables - 1) {
               stateBuffer_[vi] = 0;
            } else {
               goto overflow;
            }
         }
      }
   }
overflow:
   ;

   if (ACCUMULATOR::bop(bestEnergy, initialEnergy)) {
      // update state_ and stateBuffer_
      for (size_t j = 0; j < numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         state_[vi] = bestState[j];
         stateBuffer_[vi] = bestState[j];
      }
      // update energy
      if(meta::And<
      meta::Compare<ACCUMULATOR, opengm::Maximizer>::value,
      meta::Compare<OperatorType, opengm::Multiplier>::value
      >::value && energy_ == static_cast<ValueType> (0)) {
         OPENGM_ASSERT(state_.size() == gm_.numberOfVariables());
         energy_ = gm_.evaluate(state_.begin());
      }
      else {
         OperatorType::iop(initialEnergy, energy_); // energy_ -= initialEnergy
         OperatorType::op(bestEnergy, energy_); // energy_ += bestEnergy
      }
   } else {
      // restore stateBuffer_
      for (size_t j = 0; j < numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         stateBuffer_[vi] = state_[vi];
      }
   }

   return energy_;
}


/// \todo get rid of redundancy with moveOptimally
template<class GM>
template<class ACCUMULATOR, class IndexIterator>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::moveOptimallyWithAllLabelsChanging
(
   IndexIterator variableIndices,
   IndexIterator variableIndicesEnd
) {
   // determine factors to recompute
   std::set<size_t> factorsToRecompute;
   for (IndexIterator it = variableIndices; it != variableIndicesEnd; ++it) {
      std::set<size_t> tmpSet;
      std::set_union(factorsToRecompute.begin(), factorsToRecompute.end(),
         factorsOfVariable_[*it].begin(), factorsOfVariable_[*it].end(),
         std::inserter(tmpSet, tmpSet.begin()));
      factorsToRecompute.swap(tmpSet);
   }

   // find an optimal move and the corresponding energy of factors to recompute
   size_t numberOfVariables = std::distance(variableIndices, variableIndicesEnd);
   ValueType initialEnergy = evaluateFactors(
      factorsToRecompute.begin(),
      factorsToRecompute.end(),
      state_);
   ValueType bestEnergy = initialEnergy;
   std::vector<size_t> bestState(numberOfVariables);
   // set initial labeling
   for(size_t j=0; j<numberOfVariables; ++j) {
      if(gm_.space().numberOfLabels(variableIndices[j]) == 1) {
         // restore stateBuffer_
         for(size_t k=0; k<j; ++k) {
            stateBuffer_[k] = state_[k];
         }
         return energy_;
      }
      else {
         const size_t vi = variableIndices[j];
         if(state_[vi] == 0) {
            stateBuffer_[vi] = 1;
         }
         else {
            stateBuffer_[vi] = 0;
         }
      }
   }
   for (;;) {
#     ifndef NDEBUG
      for(size_t j=0; j<numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         OPENGM_ASSERT(stateBuffer_[vi] != state_[vi]);
      }
#     endif
      // compute energy
      ValueType energy = evaluateFactors(
         factorsToRecompute.begin(),
         factorsToRecompute.end(),
         stateBuffer_);
      if(ACCUMULATOR::bop(energy, bestEnergy)) {
         // update energy and state
         bestEnergy = energy;
         for (size_t j = 0; j < numberOfVariables; ++j) {
            bestState[j] = stateBuffer_[variableIndices[j]];
         }
      }
      // increment buffered state
      for (size_t j=0; j<numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         if(stateBuffer_[vi] < gm_.numberOfLabels(vi) - 1) {
            if(stateBuffer_[vi] + 1 != state_[vi]) {
               ++stateBuffer_[vi];
               break;
            }
            else if(stateBuffer_[vi] + 1 < gm_.numberOfLabels(vi) - 1) {
               stateBuffer_[vi] += 2; // skip current label
               break;
            }
            else {
               if (j < numberOfVariables - 1) {
                  if(state_[vi] == 0) {
                     stateBuffer_[vi] = 1;
                  }
                  else {
                     stateBuffer_[vi] = 0;
                  }
               } else {
                  goto overflow2;
               }
            }
         } else {
            if (j < numberOfVariables - 1) {
               if(state_[vi] == 0) {
                  stateBuffer_[vi] = 1;
               }
               else {
                  stateBuffer_[vi] = 0;
               }
            } else {
               goto overflow2;
            }
         }
      }
   }
overflow2:
   ;

   if (ACCUMULATOR::bop(bestEnergy, initialEnergy)) {
      // update state_ and stateBuffer_
      for (size_t j = 0; j < numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         state_[vi] = bestState[j];
         stateBuffer_[vi] = bestState[j];
      }
      // update energy
      if(meta::And<
      meta::Compare<ACCUMULATOR, opengm::Maximizer>::value,
      meta::Compare<OperatorType, opengm::Multiplier>::value
      >::value && energy_ == static_cast<ValueType> (0)) {
         energy_ = gm_.evaluate(state_.begin());
      }
      else {
         OperatorType::iop(initialEnergy, energy_); // energy_ -= initialEnergy
         OperatorType::op(bestEnergy, energy_); // energy_ += bestEnergy
      }
   } else {
      // restore stateBuffer_
      for (size_t j = 0; j < numberOfVariables; ++j) {
         const size_t vi = variableIndices[j];
         stateBuffer_[vi] = state_[vi];
      }
   }

   return energy_;
}

template<class GM>
inline const typename Movemaker<GM>::LabelType&
Movemaker<GM>::state
(
   const size_t variableIndex
) const {
   OPENGM_ASSERT(variableIndex < state_.size());
   return state_[variableIndex];
}

template<class GM>
inline typename Movemaker<GM>::LabelIterator
Movemaker<GM>::stateBegin() const {
   return state_.begin();
}

template<class GM>
inline typename Movemaker<GM>::LabelIterator
Movemaker<GM>::stateEnd() const {
   return state_.end();
}

template<class GM>
template<class FactorIndexIterator>
inline typename Movemaker<GM>::ValueType
Movemaker<GM>::evaluateFactors
(
   FactorIndexIterator begin,
   FactorIndexIterator end,
   const std::vector<LabelType>& state
) const {
   ValueType value = OperatorType::template neutral<ValueType>();
   for(; begin != end; ++begin) {
      std::vector<size_t> currentFactorState(gm_[*begin].numberOfVariables());
      for (size_t j=0; j<gm_[*begin].numberOfVariables(); ++j) {
         currentFactorState[j] = state[gm_[*begin].variableIndex(j)];
      }
      OperatorType::op(value, gm_[*begin](currentFactorState.begin()), value);
   }
   return value;
}

} // namespace opengm

#endif // #ifndef OPENGM_MOVEMAKER_HXX