This file is indexed.

/usr/lib/gcc-cross/arm-linux-gnueabi/5/include/d/gcc/gthreads/win32.d is in libphobos-5-dev-armel-cross 5.3.1-14ubuntu2cross1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* GDC -- D front-end for GCC
   Copyright (C) 2013 Free Software Foundation, Inc.

   GCC is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.
*/

// GNU/GCC threads interface routines for D.
// This must match gthr-win32.h

module gcc.gthreads.win32;

/* Windows32 threads specific definitions. The windows32 threading model
   does not map well into pthread-inspired gcc's threading model, and so
   there are caveats one needs to be aware of.

   1. The destructor supplied to gthread_key_create is ignored for
      generic x86-win32 ports.

      However, Mingw runtime (version 0.3 or newer) provides a mechanism
      to emulate pthreads key dtors; the runtime provides a special DLL,
      linked in if -mthreads option is specified, that runs the dtors in
      the reverse order of registration when each thread exits. If
      -mthreads option is not given, a stub is linked in instead of the
      DLL, which results in memory leak. Other x86-win32 ports can use
      the same technique of course to avoid the leak.

   2. The error codes returned are non-POSIX like, and cast into ints.
      This may cause incorrect error return due to truncation values on
      hw where DWORD.sizeof > int.sizeof.

   The basic framework should work well enough. In the long term, GCC
   needs to use Structured Exception Handling on Windows32.  */

import core.sys.windows.windows;
import core.stdc.errno;

alias gthread_key_t   = ULONG;

struct gthread_once_t
{
  INT done;
  LONG started;
}

alias gthread_mutex_t = CRITICAL_SECTION;
alias gthread_recursive_mutex_t = CRITICAL_SECTION;

enum GTHREAD_MUTEX_INIT = CRITICAL_SECTION.init;
enum GTHREAD_ONCE_INIT  = gthread_once_t(0, -1);
enum GTHREAD_RECURSIVE_MUTEX_INIT = CRITICAL_SECTION.init;

version (MinGW)
{
  // Mingw runtime >= v0.3 provides a magic variable that is set to nonzero
  // if -mthreads option was specified, or 0 otherwise.
  extern(C)
  {
    extern __gshared int _CRT_MT;
    extern nothrow int __mingwthr_key_dtor(ULONG, void function(void*));
  }
}

// Backend thread functions
extern(C):
@trusted:
nothrow:

int gthread_active_p()
{
  version (MinGW)
    return _CRT_MT;
  else
    return 1;
}

int gthread_once(gthread_once_t* once, void function() nothrow func)
{
  if (! gthread_active_p())
    return -1;
  else if (once == null || func == null)
    return EINVAL;

  if (! once.done)
    {
      if (InterlockedIncrement(&(once.started)) == 0)
        {
          func();
          once.done = TRUE;
        }
      else
        {
          /* Another thread is currently executing the code, so wait for it
             to finish; yield the CPU in the meantime.  If performance
             does become an issue, the solution is to use an Event that
             we wait on here (and set above), but that implies a place to
             create the event before this routine is called.  */
          while (! once.done)
            Sleep(0);
        }
    }
  return 0;
}

/* Windows32 thread local keys don't support destructors; this leads to
   leaks, especially in threaded applications making extensive use of
   C++ EH. Mingw uses a thread-support DLL to work-around this problem.  */
int gthread_key_create(gthread_key_t* key, void function(void*) dtor)
{
  DWORD tlsindex = TlsAlloc();

  if (tlsindex != 0xFFFFFFFF)
    {
      *key = tlsindex;
      /* Mingw runtime will run the dtors in reverse order for each thread
         when the thread exits.  */
      version (MinGW)
        return __mingwthr_key_dtor(*key, dtor);
    }
  else
    return GetLastError();
}

int gthread_key_delete(gthread_key_t key)
{
  if (TlsFree(key) != 0)
    return 0;
  else
    return GetLastError();
}

void* gthread_getspecific(gthread_key_t key)
{
  DWORD lasterror = GetLastError();
  void* ptr = TlsGetValue(key);

  SetLastError(lasterror);

  return ptr;
}

int gthread_setspecific(gthread_key_t key, in void* ptr)
{
  if (TlsSetValue(key, cast(void*) ptr) != 0)
    return 0;
  else
    return GetLastError();
}

void gthread_mutex_init(gthread_mutex_t* mutex)
{
  InitializeCriticalSection(mutex);
}

int gthread_mutex_destroy(gthread_mutex_t* mutex)
{
  DeleteCriticalSection(mutex);
  return 0;
}

int gthread_mutex_lock(gthread_mutex_t* mutex)
{
  if (gthread_active_p())
    EnterCriticalSection(mutex);

  return 0;
}

int gthread_mutex_trylock(gthread_mutex_t* mutex)
{
  if (gthread_active_p())
    return TryEnterCriticalSection(mutex);
  else
    return 0;
}

int gthread_mutex_unlock(gthread_mutex_t* mutex)
{
  if (gthread_active_p())
    LeaveCriticalSection(mutex);

  return 0;
}

int gthread_recursive_mutex_init(gthread_mutex_t* mutex)
{
  gthread_mutex_init(mutex);
  return 0;
}

int gthread_recursive_mutex_lock(gthread_recursive_mutex_t* mutex)
{
  return gthread_mutex_lock(mutex);
}

int gthread_recursive_mutex_trylock(gthread_recursive_mutex_t* mutex)
{
  return gthread_mutex_trylock(mutex);
}

int gthread_recursive_mutex_unlock(gthread_recursive_mutex_t* mutex)
{
  return gthread_mutex_unlock(mutex);
}

int gthread_recursive_mutex_destroy(gthread_recursive_mutex_t* mutex)
{
  return gthread_mutex_destroy(mutex);
}