This file is indexed.

/usr/include/primesieve.h is in libprimesieve6-dev-common 5.6.0+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/**
 *  @file   primesieve.h
 *  @brief  primesieve C API. primesieve is a library for fast prime
 *          number generation. In case an error occurs errno is set to
 *          EDOM and PRIMESIEVE_ERROR is returned.
 * 
 *  Copyright (C) 2015 Kim Walisch, <kim.walisch@gmail.com>
 * 
 *  This file is distributed under the BSD License.
 */

#ifndef PRIMESIEVE_H
#define PRIMESIEVE_H

#define PRIMESIEVE_VERSION "5.6.0"
#define PRIMESIEVE_VERSION_MAJOR 5
#define PRIMESIEVE_VERSION_MINOR 6
#define PRIMESIEVE_VERSION_PATCH 0

#include <primesieve/primesieve_iterator.h>

#include <stdint.h>
#include <stddef.h>

/** primesieve functions return PRIMESIEVE_ERROR
 *  (UINT64_MAX) if any error occurs.
 */
#define PRIMESIEVE_ERROR ((uint64_t) ~((uint64_t) 0))

#ifdef __cplusplus
extern "C" {
#endif

enum {
  /** Use all CPU cores for prime sieving. */
  MAX_THREADS = - 1,
  /** Generate primes of short type. */
  SHORT_PRIMES,
  /** Generate primes of unsigned short type. */
  USHORT_PRIMES,
  /** Generate primes of int type. */
  INT_PRIMES,
  /** Generate primes of unsigned int type. */
  UINT_PRIMES,
  /** Generate primes of long type. */
  LONG_PRIMES,
  /** Generate primes of unsigned long type. */
  ULONG_PRIMES,
  /** Generate primes of long long type. */
  LONGLONG_PRIMES,
  /** Generate primes of unsigned long long type. */
  ULONGLONG_PRIMES,
  /** Generate primes of int16_t type. */
  INT16_PRIMES,
  /** Generate primes of uint16_t type. */
  UINT16_PRIMES,
  /** Generate primes of int32_t type. */
  INT32_PRIMES,
  /** Generate primes of uint32_t type. */
  UINT32_PRIMES,
  /** Generate primes of int64_t type. */
  INT64_PRIMES,
  /** Generate primes of uint64_t type. */
  UINT64_PRIMES
};

/** Get an array with the primes inside the interval [start, stop].
 *  @param size  The size of the returned primes array.
 *  @param type  The type of the primes to generate, e.g. INT_PRIMES.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void* primesieve_generate_primes(uint64_t start, uint64_t stop, size_t* size, int type);

/** Get an array with the first n primes >= start.
 *  @param type  The type of the primes to generate, e.g. INT_PRIMES.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void* primesieve_generate_n_primes(uint64_t n, uint64_t start, int type);

/** Find the nth prime.
 *  @param n  if n = 0 finds the 1st prime >= start, <br/>
 *            if n > 0 finds the nth prime > start, <br/>
 *            if n < 0 finds the nth prime < start (backwards).
 *  @pre   start <= 2^64 - 2^32 * 11.
 */
uint64_t primesieve_nth_prime(int64_t n, uint64_t start);

/** Find the nth prime in parallel.
 *  By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @param n  if n = 0 finds the 1st prime >= start, <br/>
 *            if n > 0 finds the nth prime > start, <br/>
 *            if n < 0 finds the nth prime < start (backwards).
 *  @pre   start <= 2^64 - 2^32 * 11.
 */
uint64_t primesieve_parallel_nth_prime(int64_t n, uint64_t start);

/** Count the primes within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_primes(uint64_t start, uint64_t stop);

/** Count the twin primes within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_twins(uint64_t start, uint64_t stop);

/** Count the prime triplets within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_triplets(uint64_t start, uint64_t stop);

/** Count the prime quadruplets within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_quadruplets(uint64_t start, uint64_t stop);

/** Count the prime quintuplets within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_quintuplets(uint64_t start, uint64_t stop);

/** Count the prime sextuplets within the interval [start, stop].
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_count_sextuplets(uint64_t start, uint64_t stop);

/** Count the primes within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_primes(uint64_t start, uint64_t stop);

/** Count the twin primes within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_twins(uint64_t start, uint64_t stop);

/** Count the prime triplets within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_triplets(uint64_t start, uint64_t stop);

/** Count the prime quadruplets within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_quadruplets(uint64_t start, uint64_t stop);

/** Count the prime quintuplets within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_quintuplets(uint64_t start, uint64_t stop);

/** Count the prime sextuplets within the interval [start, stop] in
 *  parallel. By default all CPU cores are used, use
 *  primesieve_set_num_threads(int) to change the number of threads.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
uint64_t primesieve_parallel_count_sextuplets(uint64_t start, uint64_t stop);

/** Print the primes within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_primes(uint64_t start, uint64_t stop);

/** Print the twin primes within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_twins(uint64_t start, uint64_t stop);

/** Print the prime triplets within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_triplets(uint64_t start, uint64_t stop);

/** Print the prime quadruplets within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_quadruplets(uint64_t start, uint64_t stop);

/** Print the prime quintuplets within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_quintuplets(uint64_t start, uint64_t stop);

/** Print the prime sextuplets within the interval [start, stop]
 *  to the standard output.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_print_sextuplets(uint64_t start, uint64_t stop);

/** Call back the primes within the interval [start, stop].
 *  @param callback  A callback function.
 *  @pre stop <= 2^64 - 2^32 * 10.
 */
void primesieve_callback_primes(uint64_t start, uint64_t stop, void (*callback)(uint64_t prime));

/** Get the current set sieve size in kilobytes. */
int primesieve_get_sieve_size();

/** Get the current set number of threads.
 *  @note By default MAX_THREADS (-1) is returned.
 */
int primesieve_get_num_threads();

/** Returns the largest valid stop number for primesieve.
 *  @return (2^64-1) - (2^32-1) * 10.
 */
uint64_t primesieve_get_max_stop();

/** Set the sieve size in kilobytes.
 *  The best sieving performance is achieved with a sieve size of
 *  your CPU's L1 data cache size (per core). For sieving >= 10^17 a
 *  sieve size of your CPU's L2 cache size sometimes performs
 *  better.
 *  @param sieve_size Sieve size in kilobytes.
 *  @pre   sieve_size >= 1 && <= 2048.
 */
void primesieve_set_sieve_size(int sieve_size);

/** Set the number of threads for use in subsequent
 *  primesieve_parallel_* function calls. Note that this only
 *  changes the number of threads for the current process.
 *  @param num_threads  Number of threads for sieving
 *                      or MAX_THREADS to use all CPU cores.
 */
void primesieve_set_num_threads(int num_threads);

/** Deallocate a primes array created using the
 *  primesieve_generate_primes() or primesieve_generate_n_primes()
 *  functions.
 */
void primesieve_free(void* primes);

/** Run extensive correctness tests.
 *  The tests last about one minute on a quad core CPU from
 *  2013 and use up to 1 gigabyte of memory.
 *  @return 1 if success, 0 if error.
 */
int primesieve_test();

/** Get the primesieve version number, in the form “i.j.k”. */
const char* primesieve_version();

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif