This file is indexed.

/usr/include/primesieve.hpp is in libprimesieve6-dev-common 5.6.0+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
///
/// @file   primesieve.hpp
/// @brief  primesieve C++ API. primesieve is a library for fast prime
///         number generation, in case an error occurs a
///         primesieve::primesieve_error exception (derived form
///         std::runtime_error) will be thrown.
///
/// Copyright (C) 2015 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License.
///

#ifndef PRIMESIEVE_HPP
#define PRIMESIEVE_HPP

#define PRIMESIEVE_VERSION "5.6.0"
#define PRIMESIEVE_VERSION_MAJOR 5
#define PRIMESIEVE_VERSION_MINOR 6
#define PRIMESIEVE_VERSION_PATCH 0

#include <primesieve/PrimeSieve.hpp>
#include <primesieve/ParallelPrimeSieve.hpp>
#include <primesieve/Callback.hpp>
#include <primesieve/cancel_callback.hpp>
#include <primesieve/iterator.hpp>
#include <primesieve/PushBackPrimes.hpp>
#include <primesieve/primesieve_error.hpp>

#include <stdint.h>
#include <vector>
#include <string>

/// All of primesieve's C++ functions and classes are declared
/// inside this namespace.
///
namespace primesieve
{
  enum {
    /// Use all CPU cores for prime sieving.
    MAX_THREADS = -1
  };

  /// Store the primes <= stop in the primes vector.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  template <typename T>
  inline void generate_primes(uint64_t stop, std::vector<T>* primes)
  {
    if (primes)
    {
      PushBackPrimes<std::vector<T> > pb(*primes);
      pb.pushBackPrimes(0, stop);
    }
  }

  /// Store the primes within the interval [start, stop]
  /// in the primes vector.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  template <typename T>
  inline void generate_primes(uint64_t start, uint64_t stop, std::vector<T>* primes)
  {
    if (primes)
    {
      PushBackPrimes<std::vector<T> > pb(*primes);
      pb.pushBackPrimes(start, stop);
    }
  }

  /// Store the first n primes in the primes vector.
  template <typename T>
  inline void generate_n_primes(uint64_t n, std::vector<T>* primes)
  {
    if (primes)
    {
      PushBack_N_Primes<std::vector<T> > pb(*primes);
      pb.pushBack_N_Primes(n, 0);
    }
  }

  /// Store the first n primes >= start in the primes vector.
  /// @pre start <= 2^64 - 2^32 * 10.
  ///
  template <typename T>
  inline void generate_n_primes(uint64_t n, uint64_t start, std::vector<T>* primes)
  {
    if (primes)
    {
      PushBack_N_Primes<std::vector<T> > pb(*primes);
      pb.pushBack_N_Primes(n, start);
    }
  }

  /// Find the nth prime.
  /// @param n  if n = 0 finds the 1st prime >= start, <br/>
  ///           if n > 0 finds the nth prime > start, <br/>
  ///           if n < 0 finds the nth prime < start (backwards).
  /// @pre   start <= 2^64 - 2^32 * 11.
  ///
  uint64_t nth_prime(int64_t n, uint64_t start = 0);

  /// Find the nth prime in parallel.
  /// By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @param n  if n = 0 finds the 1st prime >= start, <br/>
  ///           if n > 0 finds the nth prime > start, <br/>
  ///           if n < 0 finds the nth prime < start (backwards).
  /// @pre   start <= 2^64 - 2^32 * 11.
  ///
  uint64_t parallel_nth_prime(int64_t n, uint64_t start = 0);

  /// Count the primes within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_primes(uint64_t start, uint64_t stop);

  /// Count the twin primes within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_twins(uint64_t start, uint64_t stop);

  /// Count the prime triplets within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_triplets(uint64_t start, uint64_t stop);

  /// Count the prime quadruplets within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_quadruplets(uint64_t start, uint64_t stop);

  /// Count the prime quintuplets within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_quintuplets(uint64_t start, uint64_t stop);

  /// Count the prime sextuplets within the interval [start, stop].
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t count_sextuplets(uint64_t start, uint64_t stop);

  /// Count the primes within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_primes(uint64_t start, uint64_t stop);

  /// Count the twin primes within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_twins(uint64_t start, uint64_t stop);

  /// Count the prime triplets within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_triplets(uint64_t start, uint64_t stop);

  /// Count the prime quadruplets within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_quadruplets(uint64_t start, uint64_t stop);

  /// Count the prime quintuplets within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_quintuplets(uint64_t start, uint64_t stop);

  /// Count the prime sextuplets within the interval [start, stop] in
  /// parallel. By default all CPU cores are used, use
  /// primesieve::set_num_threads(int) to change the number of
  /// threads.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  uint64_t parallel_count_sextuplets(uint64_t start, uint64_t stop);

  /// Print the primes within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_primes(uint64_t start, uint64_t stop);

  /// Print the twin primes within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_twins(uint64_t start, uint64_t stop);

  /// Print the prime triplets within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_triplets(uint64_t start, uint64_t stop);

  /// Print the prime quadruplets within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_quadruplets(uint64_t start, uint64_t stop);

  /// Print the prime quintuplets within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_quintuplets(uint64_t start, uint64_t stop);

  /// Print the prime sextuplets within the interval [start, stop]
  /// to the standard output.
  /// @pre stop <= 2^64 - 2^32 * 10.
  ///
  void print_sextuplets(uint64_t start, uint64_t stop);

  /// Call back the primes within the interval [start, stop].
  /// @param callback  A callback function.
  /// @pre   stop <= 2^64 - 2^32 * 10.
  ///
  void callback_primes(uint64_t start, uint64_t stop, void (*callback)(uint64_t prime));

  /// Call back the primes within the interval [start, stop].
  /// @param callback  An object derived from primesieve::Callback<uint64_t>.
  /// @pre   stop <= 2^64 - 2^32 * 10.
  ///
  void callback_primes(uint64_t start, uint64_t stop, primesieve::Callback<uint64_t>* callback);

  /// Get the current set sieve size in kilobytes.
  int get_sieve_size();

  /// Get the current set number of threads.
  /// @note By default MAX_THREADS (-1) is returned.
  ///
  int get_num_threads();

  /// Returns the largest valid stop number for primesieve.
  /// @return (2^64-1) - (2^32-1) * 10.
  ///
  uint64_t get_max_stop();

  /// Set the sieve size in kilobytes.
  /// The best sieving performance is achieved with a sieve size of
  /// your CPU's L1 data cache size (per core). For sieving >= 10^17 a
  /// sieve size of your CPU's L2 cache size sometimes performs
  /// better.
  /// @param sieve_size Sieve size in kilobytes.
  /// @pre   sieve_size >= 1 && sieve_size <= 2048.
  ///
  void set_sieve_size(int sieve_size);

  /// Set the number of threads for use in subsequent
  /// primesieve::parallel_* function calls. Note that this only
  /// changes the number of threads for the current process.
  /// @param num_threads  Number of threads for sieving
  ///                     or MAX_THREADS to use all CPU cores.
  ///
  void set_num_threads(int num_threads);

  /// Run extensive correctness tests.
  /// The tests last about one minute on a quad core CPU from
  /// 2013 and use up to 1 gigabyte of memory.
  /// @return true if success else false.
  ///
  bool primesieve_test();

  /// Get the primesieve version number, in the form “i.j.k”.
  std::string primesieve_version();
}

#endif