This file is indexed.

/usr/include/relion-1.4/src/euler.h is in librelion-dev-common 1.4+dfsg-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/***************************************************************************
 *
 * Author: "Sjors H.W. Scheres"
 * MRC Laboratory of Molecular Biology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * This complete copyright notice must be included in any revised version of the
 * source code. Additional authorship citations may be added, but existing
 * author citations must be preserved.
 ***************************************************************************/
/***************************************************************************
*
* Authors:     Carlos Oscar S. Sorzano (coss@cnb.csic.es)
*
* Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307  USA
*
*  All comments concerning this program package may be sent to the
*  e-mail address 'xmipp@cnb.csic.es'
***************************************************************************/

#ifndef GEOMETRY_H
#define GEOMETRY_H

#include "src/multidim_array.h"
#include "src/transformations.h"

#ifndef FLT_EPSILON
#define FLT_EPSILON 1.19209e-07
#endif

/// @name Euler operations
/// @{

/** Euler angles --> "Euler" matrix
 *
 * This function returns the transformation matrix associated to the 3 given
 * Euler angles (in degrees).
 *
 * As an implementation note you might like to know that this function calls
 * always to Matrix2D::resize
 *
 * See http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/EulerAngles for a
 * description of the Euler angles.
 */
void Euler_angles2matrix(DOUBLE a, DOUBLE b, DOUBLE g, Matrix2D< DOUBLE >& A,
                         bool homogeneous=false);

/** Euler angles2direction
 *
 * This function returns  a vector parallel to the  projection direction.
 * Resizes v if needed
 */
void Euler_angles2direction(DOUBLE alpha,
						 DOUBLE beta,
						 Matrix1D< DOUBLE >& v);

/** Euler direction2angles
 *
 * This function returns the 2 Euler angles (rot&tilt) associated to the direction given by
 * the vector v.
 */
void Euler_direction2angles(Matrix1D< DOUBLE >& v,
                            DOUBLE& alpha,
                            DOUBLE& beta);

/** "Euler" matrix --> angles
 *
 * This function compute a set of Euler angles which result in an "Euler" matrix
 * as the one given. See \ref Euler_angles2matrix to know more about how this
 * matrix is computed and what each row means. The result angles are in degrees.
 * Alpha, beta and gamma are respectively the first, second and third rotation
 * angles. If the input matrix is not 3x3 then an exception is thrown, the
 * function doesn't check that the Euler matrix is truly representing a
 * coordinate system.
 *
 * @code
 * Euler_matrix2angles(Euler, alpha, beta, gamma);
 * @endcode
 */
void Euler_matrix2angles(const Matrix2D< DOUBLE >& A,
                         DOUBLE& alpha,
                         DOUBLE& beta,
                         DOUBLE& gamma);

/** Up-Down projection equivalence
 *
 * As you know a projection view from a point has got its homologous from its
 * diametrized point in the projection sphere. This function takes a projection
 * defined by its 3 Euler angles and computes an equivalent set of Euler angles
 * from which the view is exactly the same but in the other part of the sphere
 * (if the projection is taken from the bottom then the new projection from the
 * top, and viceversa). The defined projections are exactly the same except for
 * a flip over X axis, ie, an up-down inversion. Exactly the correction
 * performed is:
 *
 * @code
 * newrot = rot;
 * newtilt = tilt + 180;
 * newpsi = -(180 + psi);
 * @endcode
 *
 * @code
 * Euler_up_down(rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_up_down(DOUBLE rot,
                   DOUBLE tilt,
                   DOUBLE psi,
                   DOUBLE& newrot,
                   DOUBLE& newtilt,
                   DOUBLE& newpsi);

/** The same view but differently expressed
 *
 * As you know a projection view from a point can be expressed with different
 * sets of Euler angles. This function gives you another expression of the Euler
 * angles for this point of view. Exactly the operation performed is:
 *
 * @code
 * newrot = rot + 180;
 * newtilt = -tilt;
 * newpsi = -180 + psi;
 * @endcode
 *
 * @code
 * Euler_another_set(rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_another_set(DOUBLE rot,
                       DOUBLE tilt,
                       DOUBLE psi,
                       DOUBLE& newrot,
                       DOUBLE& newtilt,
                       DOUBLE& newpsi);

/** Mirror over Y axis
 *
 * Given a set of Euler angles this function returns a new set which define a
 * mirrored (over Y axis) version of the former projection.
 *
 * @code
 *  -----> X               X<------
 *  |                              |
 *  |                              |
 *  |               ======>        |
 *  v                              v
 *  Y                             Y
 * @endcode
 *
 * The operation performed is
 *
 * @code
 * newrot = rot;
 * newtilt = tilt + 180;
 * newpsi = -psi;
 * @endcode
 *
 * @code
 * Euler_mirrorY(rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_mirrorY(DOUBLE rot,
                   DOUBLE tilt,
                   DOUBLE psi,
                   DOUBLE& newrot,
                   DOUBLE& newtilt,
                   DOUBLE& newpsi);

/** Mirror over X axis
 *
 * Given a set of Euler angles this function returns a new set which define a
 * mirrored (over X axis) version of the former projection.
 *
 * @code
 *  -----> X               Y
 *  |                       ^
 *  |                       |
 *  |               ======> |
 *  v                       |
 *  Y                        -----> X
 * @endcode
 *
 * The operation performed is
 *
 * @code
 * newrot = rot;
 * newtilt = tilt + 180;
 * newpsi = 180 - psi;
 * @endcode
 *
 * @code
 * Euler_mirrorX(rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_mirrorX(DOUBLE rot,
                   DOUBLE tilt,
                   DOUBLE psi,
                   DOUBLE& newrot,
                   DOUBLE& newtilt,
                   DOUBLE& newpsi);

/** Mirror over X and Y axes
 *
 * Given a set of Euler angles this function returns a new set which define a
 * mirrored (over X and Y axes at the same time) version of the former
 * projection.
 *
 * @code
 *  -----> X                       Y
 *  |                               ^
 *  |                               |
 *  |               ======>         |
 *  v                               |
 *  Y                        X<-----
 * @endcode
 *
 * The operation performed is
 *
 * @code
 * newrot = rot;
 * newtilt = tilt;
 * newpsi = 180 + psi;
 * @endcode
 *
 * @code
 * Euler_mirrorX(rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_mirrorXY(DOUBLE rot,
                    DOUBLE tilt,
                    DOUBLE psi,
                    DOUBLE& newrot,
                    DOUBLE& newtilt,
                    DOUBLE& newpsi);

/** Apply a geometrical transformation
 *
 * The idea behind this function is the following. 3 Euler angles define a point
 * of view for a projection, but also a coordinate system. You might apply a
 * geometrical transformation to this system, and then compute back what the
 * Euler angles for the new system are. This could be used to "mirror" points of
 * view, rotate them and all the stuff. The transformation matrix must be 3x3
 * but it must transform R3 vectors into R3 vectors (that is a normal 3D
 * transformation matrix when vector coordinates are not homogeneous) and it
 * will be applied in the sense:
 *
 * @code
 * New Euler matrix = L * Old Euler matrix * R
 * @endcode
 *
 * where you know that the Euler matrix rows represent the different system
 * axes. See Euler_angles2matrix for more information about the Euler coordinate
 * system.
 *
 * @code
 * Matrix2D< DOUBLE > R60 = rotation3DMatrix(60, 'Z');
 * R60.resize(3, 3); // Get rid of homogeneous part
 * Matrix2D< DOUBLE > I(3, 3);
 * I.initIdentity();
 * Euler_apply_transf(I, R60, rot, tilt, psi, newrot, newtilt, newpsi);
 * @endcode
 */
void Euler_apply_transf(const Matrix2D< DOUBLE >& L,
                        const Matrix2D< DOUBLE >& R,
                        DOUBLE rot,
                        DOUBLE tilt,
                        DOUBLE psi,
                        DOUBLE& newrot,
                        DOUBLE& newtilt,
                        DOUBLE& newpsi);

/** 3D Rotation matrix after 3 Euler angles
 *
 * Creates a rotational matrix (4x4) for volumes around the combination of the 3
 * rotations around ZYZ. All angles are in degrees. You must use it with
 * IS_NOT_INV in applyGeometry.
 *
 * @code
 * Matrix2D< float > euler = Euler_rotation3DMatrix(60, 30, 60);
 * @endcode
 */
void Euler_rotation3DMatrix(DOUBLE rot, DOUBLE tilt, DOUBLE psi,
                            Matrix2D<DOUBLE> &result);

//@}

#endif