/usr/include/relion-1.4/src/fftw.h is in librelion-dev-common 1.4+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 | /***************************************************************************
*
* Author: "Sjors H.W. Scheres"
* MRC Laboratory of Molecular Biology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This complete copyright notice must be included in any revised version of the
* source code. Additional authorship citations may be added, but existing
* author citations must be preserved.
***************************************************************************/
/***************************************************************************
*
* Authors: Roberto Marabini (roberto@cnb.csic.es)
* Carlos Oscar S. Sorzano (coss@cnb.csic.es)
*
* Unidad de Bioinformatica of Centro Nacional de Biotecnologia , CSIC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307 USA
*
* All comments concerning this program package may be sent to the
* e-mail address 'xmipp@cnb.csic.es'
***************************************************************************/
#ifndef __XmippFFTW_H
#define __XmippFFTW_H
#include <fftw3.h>
#include "src/multidim_array.h"
#include "src/funcs.h"
#include "src/tabfuncs.h"
#include "src/complex.h"
/** @defgroup FourierW FFTW Fourier transforms
* @ingroup DataLibrary
*/
/** For all direct elements in the complex array in FFTW format.
*
* This macro is used to generate loops for the volume in an easy way. It
* defines internal indexes 'k','i' and 'j' which ranges the volume using its
* physical definition. It also defines 'kp', 'ip' and 'jp', which are the logical coordinates
* It also works for 1D or 2D FFTW transforms
*
* @code
* FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(V)
* {
* int r2 = jp*jp + ip*ip + kp*kp;
*
* std::cout << "element at physical coords: "<< i<<" "<<j<<" "<<k<<" has value: "<<DIRECT_A3D_ELEM(m, k, i, j) << std::endl;
* std::cout << "its logical coords are: "<< ip<<" "<<jp<<" "<<kp<<std::endl;
* std::cout << "its distance from the origin = "<<sqrt(r2)<<std::endl;
*
* }
* @endcode
*/
#define FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(V) \
for (long int k = 0, kp = 0; k<ZSIZE(V); k++, kp = (k < XSIZE(V)) ? k : k - ZSIZE(V)) \
for (long int i = 0, ip = 0 ; i<YSIZE(V); i++, ip = (i < XSIZE(V)) ? i : i - YSIZE(V)) \
for (long int j = 0, jp = 0; j<XSIZE(V); j++, jp = j)
/** For all direct elements in the complex array in FFTW format.
* The same as above, but now only for 2D images (this saves some time as k is not sampled
*/
#define FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM2D(V) \
for (long int i = 0, ip = 0 ; i<YSIZE(V); i++, ip = (i < XSIZE(V)) ? i : i - YSIZE(V)) \
for (long int j = 0, jp = 0; j<XSIZE(V); j++, jp = j)
/** FFTW volume element: Logical access.
*
* @code
*
* FFTW_ELEM(V, -1, -2, 1) = 1;
* val = FFTW_ELEM(V, -1, -2, 1);
* @endcode
*/
#define FFTW_ELEM(V, kp, ip, jp) \
DIRECT_A3D_ELEM((V),((kp < 0) ? (kp + ZSIZE(V)) : (kp)), ((ip < 0) ? (ip + YSIZE(V)) : (ip)), (jp))
/** FFTW 2D image element: Logical access.
*
* @code
*
* FFTW2D_ELEM(V, --2, 1) = 1;
* val = FFTW2D_ELEM(V, -2, 1);
* @endcode
*/
#define FFTW2D_ELEM(V, ip, jp) \
DIRECT_A2D_ELEM((V), ((ip < 0) ? (ip + YSIZE(V)) : (ip)), (jp))
/** Fourier Transformer class.
* @ingroup FourierW
*
* The memory for the Fourier transform is handled by this object.
* However, the memory for the real space image is handled externally
* and this object only has a pointer to it.
*
* Here you have an example of use
* @code
* FourierTransformer transformer;
* MultidimArray< Complex > Vfft;
* transformer.FourierTransform(V(),Vfft,false);
* MultidimArray<DOUBLE> Vmag;
* Vmag.resize(Vfft);
* FOR_ALL_ELEMENTS_IN_ARRAY3D(Vmag)
* Vmag(k,i,j)=20*log10(abs(Vfft(k,i,j)));
* @endcode
*/
class FourierTransformer
{
public:
/** Real array, in fact a pointer to the user array is stored. */
MultidimArray<DOUBLE> *fReal;
/** Complex array, in fact a pointer to the user array is stored. */
MultidimArray<Complex > *fComplex;
/** Fourier array */
MultidimArray< Complex > fFourier;
#ifdef FLOAT_PRECISION
/* fftw Forward plan */
fftwf_plan fPlanForward;
/* fftw Backward plan */
fftwf_plan fPlanBackward;
#else
/* fftw Forward plan */
fftw_plan fPlanForward;
/* fftw Backward plan */
fftw_plan fPlanBackward;
#endif
/* number of threads*/
int nthreads;
/* Threads has been used in this program*/
bool threadsSetOn;
// Public methods
public:
/** Default constructor */
FourierTransformer();
/** Destructor */
~FourierTransformer();
/** Copy constructor
*
* The created FourierTransformer is a perfect copy of the input array but with a
* different memory assignment.
*
*/
FourierTransformer(const FourierTransformer& op);
/** Set Number of threads
* This function, which should be called once, performs any
* one-time initialization required to use threads on your
* system.
*
* The nthreads argument indicates the number of threads you
* want FFTW to use (or actually, the maximum number). All
* plans subsequently created with any planner routine will use
* that many threads. You can call fftw_plan_with_nthreads,
* create some plans, call fftw_plan_with_nthreads again with a
* different argument, and create some more plans for a new
* number of threads. Plans already created before a call to
* fftw_plan_with_nthreads are unaffected. If you pass an
* nthreads argument of 1 (the default), threads are
* disabled for subsequent plans. */
void setThreadsNumber(int tNumber);
/** Compute the Fourier transform of a MultidimArray, 2D and 3D.
If getCopy is false, an alias to the transformed data is returned.
This is a faster option since a copy of all the data is avoided,
but you need to be careful that an inverse Fourier transform may
change the data.
*/
template <typename T, typename T1>
void FourierTransform(T& v, T1& V, bool getCopy=true)
{
setReal(v);
Transform(FFTW_FORWARD);
if (getCopy) getFourierCopy(V);
else getFourierAlias(V);
}
/** Compute the Fourier transform.
The data is taken from the matrix with which the object was
created. */
void FourierTransform();
/** Inforce Hermitian symmetry.
If the Fourier transform risks of losing Hermitian symmetry,
use this function to renforce it. */
void enforceHermitianSymmetry();
/** Compute the inverse Fourier transform.
The result is stored in the same real data that was passed for
the forward transform. The Fourier coefficients are taken from
the internal Fourier coefficients */
void inverseFourierTransform();
/** Compute the inverse Fourier transform.
New data is provided for the Fourier coefficients and the output
can be any matrix1D, 2D or 3D. It is important that the output
matrix is already resized to the right size before entering
in this function. */
template <typename T, typename T1>
void inverseFourierTransform(T& V, T1& v)
{
setReal(v);
setFourier(V);
Transform(FFTW_BACKWARD);
}
/** Get Fourier coefficients. */
template <typename T>
void getFourierAlias(T& V) {V.alias(fFourier); return;}
/** Get Fourier coefficients. */
template <typename T>
void getFourierCopy(T& V) {
V.resize(fFourier);
memcpy(MULTIDIM_ARRAY(V),MULTIDIM_ARRAY(fFourier),
MULTIDIM_SIZE(fFourier)*2*sizeof(DOUBLE));
}
/** Return a complete Fourier transform (two halves).
*/
template <typename T>
void getCompleteFourier(T& V) {
V.resize(*fReal);
int ndim=3;
if (ZSIZE(*fReal)==1)
{
ndim=2;
if (YSIZE(*fReal)==1)
ndim=1;
}
switch (ndim)
{
case 1:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY1D(V)
if (i<XSIZE(fFourier))
DIRECT_A1D_ELEM(V,i)=DIRECT_A1D_ELEM(fFourier,i);
else
DIRECT_A1D_ELEM(V,i)=
conj(DIRECT_A1D_ELEM(fFourier,
XSIZE(*fReal)-i));
break;
case 2:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY2D(V)
if (j<XSIZE(fFourier))
DIRECT_A2D_ELEM(V,i,j)=
DIRECT_A2D_ELEM(fFourier,i,j);
else
DIRECT_A2D_ELEM(V,i,j)=
conj(DIRECT_A2D_ELEM(fFourier,
(YSIZE(*fReal)-i)%YSIZE(*fReal),
XSIZE(*fReal)-j));
break;
case 3:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY3D(V)
if (j<XSIZE(fFourier))
DIRECT_A3D_ELEM(V,k,i,j)=
DIRECT_A3D_ELEM(fFourier,k,i,j);
else
DIRECT_A3D_ELEM(V,k,i,j)=
conj(DIRECT_A3D_ELEM(fFourier,
(ZSIZE(*fReal)-k)%ZSIZE(*fReal),
(YSIZE(*fReal)-i)%YSIZE(*fReal),
XSIZE(*fReal)-j));
break;
}
}
/** Set one half of the FT in fFourier from the input complete Fourier transform (two halves).
The fReal and fFourier already should have the right sizes
*/
template <typename T>
void setFromCompleteFourier(T& V) {
int ndim=3;
if (ZSIZE(*fReal)==1)
{
ndim=2;
if (YSIZE(*fReal)==1)
ndim=1;
}
switch (ndim)
{
case 1:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY1D(fFourier)
DIRECT_A1D_ELEM(fFourier,i)=DIRECT_A1D_ELEM(V,i);
break;
case 2:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY2D(fFourier)
DIRECT_A2D_ELEM(fFourier,i,j) = DIRECT_A2D_ELEM(V,i,j);
break;
case 3:
FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY3D(fFourier)
DIRECT_A3D_ELEM(fFourier,k,i,j) = DIRECT_A3D_ELEM(V,k,i,j);
break;
}
}
// Internal methods
public:
/* Pointer to the array of DOUBLEs with which the plan was computed */
DOUBLE * dataPtr;
/* Pointer to the array of complex<DOUBLE> with which the plan was computed */
Complex * complexDataPtr;
/* Initialise all pointers to NULL */
void init();
/** Clear object */
void clear();
/** This calls fftw_cleanup.
* NOTE!! When using multiple threads, only ONE thread can call this function, as it cleans up things that are shared among all threads...
* Therefore, this cleanup is something that needs to be done manually...
*/
void cleanup();
/** Destroy both forward and backward fftw planes (mutex locked */
void destroyPlans();
/** Computes the transform, specified in Init() function
If normalization=true the forward transform is normalized
(no normalization is made in the inverse transform)
If normalize=false no normalization is performed and therefore
the image is scaled by the number of pixels.
*/
void Transform(int sign);
/** Get the Multidimarray that is being used as input. */
const MultidimArray<DOUBLE> &getReal() const;
const MultidimArray<Complex > &getComplex() const;
/** Set a Multidimarray for input.
The data of img will be the one of fReal. In forward
transforms it is not modified, but in backward transforms,
the result will be stored in img. This means that the size
of img cannot change between calls. */
void setReal(MultidimArray<DOUBLE> &img);
/** Set a Multidimarray for input.
The data of img will be the one of fComplex. In forward
transforms it is not modified, but in backward transforms,
the result will be stored in img. This means that the size
of img cannot change between calls. */
void setReal(MultidimArray<Complex > &img);
/** Set a Multidimarray for the Fourier transform.
The values of the input array are copied in the internal array.
It is assumed that the container for the real image as well as
the one for the Fourier array are already resized.
No plan is updated. */
void setFourier(MultidimArray<Complex > &imgFourier);
};
// Randomize phases beyond the given shell (index)
void randomizePhasesBeyond(MultidimArray<DOUBLE> &I, int index);
/** Center an array, to have its origin at the origin of the FFTW
*
*/
template <typename T>
void CenterFFT(MultidimArray< T >& v, bool forward)
{
if ( v.getDim() == 1 )
{
// 1D
MultidimArray< T > aux;
int l, shift;
l = XSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
// Shift the input in an auxiliar vector
for (int i = 0; i < l; i++)
{
int ip = i + shift;
if (ip < 0)
ip += l;
else if (ip >= l)
ip -= l;
aux(ip) = DIRECT_A1D_ELEM(v, i);
}
// Copy the vector
for (int i = 0; i < l; i++)
DIRECT_A1D_ELEM(v, i) = DIRECT_A1D_ELEM(aux, i);
}
else if ( v.getDim() == 2 )
{
// 2D
MultidimArray< T > aux;
int l, shift;
// Shift in the X direction
l = XSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
for (int i = 0; i < YSIZE(v); i++)
{
// Shift the input in an auxiliar vector
for (int j = 0; j < l; j++)
{
int jp = j + shift;
if (jp < 0)
jp += l;
else if (jp >= l)
jp -= l;
aux(jp) = DIRECT_A2D_ELEM(v, i, j);
}
// Copy the vector
for (int j = 0; j < l; j++)
DIRECT_A2D_ELEM(v, i, j) = DIRECT_A1D_ELEM(aux, j);
}
// Shift in the Y direction
l = YSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
for (int j = 0; j < XSIZE(v); j++)
{
// Shift the input in an auxiliar vector
for (int i = 0; i < l; i++)
{
int ip = i + shift;
if (ip < 0)
ip += l;
else if (ip >= l)
ip -= l;
aux(ip) = DIRECT_A2D_ELEM(v, i, j);
}
// Copy the vector
for (int i = 0; i < l; i++)
DIRECT_A2D_ELEM(v, i, j) = DIRECT_A1D_ELEM(aux, i);
}
}
else if ( v.getDim() == 3 )
{
// 3D
MultidimArray< T > aux;
int l, shift;
// Shift in the X direction
l = XSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
for (int k = 0; k < ZSIZE(v); k++)
for (int i = 0; i < YSIZE(v); i++)
{
// Shift the input in an auxiliar vector
for (int j = 0; j < l; j++)
{
int jp = j + shift;
if (jp < 0)
jp += l;
else if (jp >= l)
jp -= l;
aux(jp) = DIRECT_A3D_ELEM(v, k, i, j);
}
// Copy the vector
for (int j = 0; j < l; j++)
DIRECT_A3D_ELEM(v, k, i, j) = DIRECT_A1D_ELEM(aux, j);
}
// Shift in the Y direction
l = YSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
for (int k = 0; k < ZSIZE(v); k++)
for (int j = 0; j < XSIZE(v); j++)
{
// Shift the input in an auxiliar vector
for (int i = 0; i < l; i++)
{
int ip = i + shift;
if (ip < 0)
ip += l;
else if (ip >= l)
ip -= l;
aux(ip) = DIRECT_A3D_ELEM(v, k, i, j);
}
// Copy the vector
for (int i = 0; i < l; i++)
DIRECT_A3D_ELEM(v, k, i, j) = DIRECT_A1D_ELEM(aux, i);
}
// Shift in the Z direction
l = ZSIZE(v);
aux.resize(l);
shift = (int)(l / 2);
if (!forward)
shift = -shift;
for (int i = 0; i < YSIZE(v); i++)
for (int j = 0; j < XSIZE(v); j++)
{
// Shift the input in an auxiliar vector
for (int k = 0; k < l; k++)
{
int kp = k + shift;
if (kp < 0)
kp += l;
else if (kp >= l)
kp -= l;
aux(kp) = DIRECT_A3D_ELEM(v, k, i, j);
}
// Copy the vector
for (int k = 0; k < l; k++)
DIRECT_A3D_ELEM(v, k, i, j) = DIRECT_A1D_ELEM(aux, k);
}
}
else
{
v.printShape();
REPORT_ERROR("CenterFFT ERROR: Dimension should be 1, 2 or 3");
}
}
// Window an FFTW-centered Fourier-transform to a given size
template<class T>
void windowFourierTransform(MultidimArray<T > &in,
MultidimArray<T > &out,
long int newdim)
{
// Check size of the input array
if (YSIZE(in) > 1 && YSIZE(in)/2 + 1 != XSIZE(in))
REPORT_ERROR("windowFourierTransform ERROR: the Fourier transform should be of an image with equal sizes in all dimensions!");
long int newhdim = newdim/2 + 1;
// If same size, just return input
if (newhdim == XSIZE(in))
{
out = in;
return;
}
// Otherwise apply a windowing operation
// Initialise output array
switch (in.getDim())
{
case 1:
out.initZeros(newhdim);
break;
case 2:
out.initZeros(newdim, newhdim);
break;
case 3:
out.initZeros(newdim, newdim, newhdim);
break;
default:
REPORT_ERROR("windowFourierTransform ERROR: dimension should be 1, 2 or 3!");
}
if (newhdim > XSIZE(in))
{
long int max_r2 = (XSIZE(in) -1) * (XSIZE(in) - 1);
FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(in)
{
// Make sure windowed FT has nothing in the corners, otherwise we end up with an asymmetric FT!
if (kp*kp + ip*ip + jp*jp <= max_r2)
FFTW_ELEM(out, kp, ip, jp) = FFTW_ELEM(in, kp, ip, jp);
}
}
else
{
FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(out)
{
FFTW_ELEM(out, kp, ip, jp) = FFTW_ELEM(in, kp, ip, jp);
}
}
}
// A resize operation in Fourier-space (i.e. changing the sampling of the Fourier Transform) by windowing in real-space
// If recenter=true, the real-space array will be recentered to have its origin at the origin of the FT
template<class T>
void resizeFourierTransform(MultidimArray<T > &in,
MultidimArray<T > &out,
long int newdim, bool do_recenter=true)
{
// Check size of the input array
if (YSIZE(in) > 1 && YSIZE(in)/2 + 1 != XSIZE(in))
REPORT_ERROR("windowFourierTransform ERROR: the Fourier transform should be of an image with equal sizes in all dimensions!");
long int newhdim = newdim/2 + 1;
long int olddim = 2* (XSIZE(in) - 1);
// If same size, just return input
if (newhdim == XSIZE(in))
{
out = in;
return;
}
// Otherwise apply a windowing operation
MultidimArray<Complex > Fin;
MultidimArray<DOUBLE> Min;
FourierTransformer transformer;
long int x0, y0, z0, xF, yF, zF;
x0 = y0 = z0 = FIRST_XMIPP_INDEX(newdim);
xF = yF = zF = LAST_XMIPP_INDEX(newdim);
// Initialise output array
switch (in.getDim())
{
case 1:
Min.resize(olddim);
y0=yF=z0=zF=0;
break;
case 2:
Min.resize(olddim, olddim);
z0=zF=0;
break;
case 3:
Min.resize(olddim, olddim, olddim);
break;
default:
REPORT_ERROR("resizeFourierTransform ERROR: dimension should be 1, 2 or 3!");
}
// This is to handle DOUBLE-valued input arrays
Fin.resize(ZSIZE(in), YSIZE(in), XSIZE(in));
FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY(in)
{
DIRECT_MULTIDIM_ELEM(Fin, n) = DIRECT_MULTIDIM_ELEM(in, n);
}
transformer.inverseFourierTransform(Fin, Min);
Min.setXmippOrigin();
if (do_recenter)
CenterFFT(Min, false);
// Now do the actual windowing in real-space
Min.window(z0, y0, x0, zF, yF, xF);
Min.setXmippOrigin();
// If upsizing: mask the corners to prevent aliasing artefacts
if (newdim > olddim)
{
FOR_ALL_ELEMENTS_IN_ARRAY3D(Min)
{
if (k*k + i*i + j*j > olddim*olddim/4)
{
A3D_ELEM(Min, k, i, j) = 0.;
}
}
}
// Recenter FFT back again
if (do_recenter)
CenterFFT(Min, true);
// And do the inverse Fourier transform
transformer.clear();
transformer.FourierTransform(Min, out);
}
/** Fourier-Ring-Correlation between two multidimArrays using FFT
* From precalculated Fourier Transforms
* Simpler I/O than above.
*/
void getFSC(MultidimArray< Complex > &FT1,
MultidimArray< Complex > &FT2,
MultidimArray< DOUBLE > &fsc);
/** Fourier-Ring-Correlation between two multidimArrays using FFT
* @ingroup FourierOperations
* Simpler I/O than above.
*/
void getFSC(MultidimArray< DOUBLE > & m1,
MultidimArray< DOUBLE > & m2,
MultidimArray< DOUBLE > &fsc);
/** Scale matrix using Fourier transform
* @ingroup FourierOperations
* Ydim and Xdim define the output size, Mpmem is the matrix to scale
*/
//void selfScaleToSizeFourier(long int Ydim, long int Xdim, MultidimArray<DOUBLE>& Mpmem, int nthreads=1);
// Get precalculated AB-matrices for on-the-fly shift calculations
void getAbMatricesForShiftImageInFourierTransform(MultidimArray<Complex > &in,
MultidimArray<Complex > &out,
TabSine &tab_sin, TabCosine &tab_cos,
DOUBLE oridim, DOUBLE shift_x, DOUBLE shift_y, DOUBLE shift_z = 0.);
// Shift an image through phase-shifts in its Fourier Transform
// Note that in and out may be the same array, in that case in is overwritten with the result
// if oridim is in pixels, xshift, yshift and zshift should be in pixels as well!
// or both can be in Angstroms
void shiftImageInFourierTransform(MultidimArray<Complex > &in,
MultidimArray<Complex > &out,
TabSine &tab_sin, TabCosine &tab_cos,
DOUBLE oridim, DOUBLE shift_x, DOUBLE shift_y, DOUBLE shift_z = 0.);
// Shift an image through phase-shifts in its Fourier Transform (without tabulated sine and cosine)
// Note that in and out may be the same array, in that case in is overwritten with the result
// if oridim is in pixels, xshift, yshift and zshift should be in pixels as well!
// or both can be in Angstroms
void shiftImageInFourierTransform(MultidimArray<Complex > &in,
MultidimArray<Complex > &out,
DOUBLE oridim, DOUBLE shift_x, DOUBLE shift_y, DOUBLE shift_z = 0.);
#define POWER_SPECTRUM 0
#define AMPLITUDE_SPECTRUM 1
/** Get the amplitude or power_class spectrum of the map in Fourier space.
* @ingroup FourierOperations
i.e. the radial average of the (squared) amplitudes of all Fourier components
*/
void getSpectrum(MultidimArray<DOUBLE> &Min,
MultidimArray<DOUBLE> &spectrum,
int spectrum_type=POWER_SPECTRUM);
/** Divide the input map in Fourier-space by the spectrum provided.
* @ingroup FourierOperations
If leave_origin_intact==true, the origin pixel will remain untouched
*/
void divideBySpectrum(MultidimArray<DOUBLE> &Min,
MultidimArray<DOUBLE> &spectrum,
bool leave_origin_intact=false);
/** Multiply the input map in Fourier-space by the spectrum provided.
* @ingroup FourierOperations
If leave_origin_intact==true, the origin pixel will remain untouched
*/
void multiplyBySpectrum(MultidimArray<DOUBLE> &Min,
MultidimArray<DOUBLE> &spectrum,
bool leave_origin_intact=false);
/** Perform a whitening of the amplitude/power_class spectrum of a 3D map
* @ingroup FourierOperations
If leave_origin_intact==true, the origin pixel will remain untouched
*/
void whitenSpectrum(MultidimArray<DOUBLE> &Min,
MultidimArray<DOUBLE> &Mout,
int spectrum_type=AMPLITUDE_SPECTRUM,
bool leave_origin_intact=false);
/** Adapts Min to have the same spectrum as spectrum_ref
* @ingroup FourierOperations
If only_amplitudes==true, the amplitude rather than the power_class spectrum will be equalized
*/
void adaptSpectrum(MultidimArray<DOUBLE> &Min,
MultidimArray<DOUBLE> &Mout,
const MultidimArray<DOUBLE> &spectrum_ref,
int spectrum_type=AMPLITUDE_SPECTRUM,
bool leave_origin_intact=false);
/** Kullback-Leibner divergence */
DOUBLE getKullbackLeibnerDivergence(MultidimArray<Complex > &Fimg,
MultidimArray<Complex > &Fref, MultidimArray<DOUBLE> &sigma2,
MultidimArray<DOUBLE> &p_i, MultidimArray<DOUBLE> &q_i,
int highshell = -1, int lowshell = -1);
// Resize a map by windowing it's Fourier Transform
void resizeMap(MultidimArray<DOUBLE > &img, int newsize);
// Apply a B-factor to a map (given it's Fourier transform)
void applyBFactorToMap(MultidimArray<Complex > &FT, int ori_size, DOUBLE bfactor, DOUBLE angpix);
// Apply a B-factor to a map (given it's real-space array)
void applyBFactorToMap(MultidimArray<DOUBLE > &img, DOUBLE bfactor, DOUBLE angpix);
// Low-pass filter a map (given it's Fourier transform)
void lowPassFilterMap(MultidimArray<Complex > &FT, int ori_size,
DOUBLE low_pass, DOUBLE angpix, int filter_edge_width = 2, bool do_highpass_instead = false);
// Low-pass and high-pass filter a map (given it's real-space array)
void lowPassFilterMap(MultidimArray<DOUBLE > &img, DOUBLE low_pass, DOUBLE angpix, int filter_edge_width = 2);
void highPassFilterMap(MultidimArray<DOUBLE > &img, DOUBLE low_pass, DOUBLE angpix, int filter_edge_width = 2);
/*
* Beamtilt x and y are given in mradians
* Wavelength in Angstrom, Cs in mm
* Phase shifts caused by the beamtilt will be calculated and applied to Fimg
*/
void selfApplyBeamTilt(MultidimArray<Complex > &Fimg, DOUBLE beamtilt_x, DOUBLE beamtilt_y,
DOUBLE wavelength, DOUBLE Cs, DOUBLE angpix, int ori_size);
void applyBeamTilt(const MultidimArray<Complex > &Fin, MultidimArray<Complex > &Fout, DOUBLE beamtilt_x, DOUBLE beamtilt_y,
DOUBLE wavelength, DOUBLE Cs, DOUBLE angpix, int ori_size);
#endif
|