This file is indexed.

/usr/include/scythestat/la.h is in libscythestat-dev 1.0.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/* 
 * Scythe Statistical Library Copyright (C) 2000-2002 Andrew D. Martin
 * and Kevin M. Quinn; 2002-present Andrew D. Martin, Kevin M. Quinn,
 * and Daniel Pemstein.  All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify under the terms of the GNU General Public License as
 * published by Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.  See the text files
 * COPYING and LICENSE, distributed with this source code, for further
 * information.
 * --------------------------------------------------------------------
 *  scythestat/la.h
 *
 */

/*!
 * \file la.h
 * \brief Definitions and implementations for functions that perform
 * common linear algebra manipulations on Scythe Matrix objects.
 *
 * This file provides a number of common linear algebraic functions
 * for use with the Matrix class.  These functions include common
 * operations such as transposition, a number of utility functions for
 * creating useful matrices like the identity matrix, and efficient
 * implementations for common operations like the cross-product.
 *
 * \note As is the case throughout the library, we provide both
 * general and default template definitions of the Matrix-returning
 * functions in this file, explicitly providing documentation for only
 * the general template versions.
 */

#ifndef SCYTHE_LA_H
#define SCYTHE_LA_H

#ifdef SCYTHE_COMPILE_DIRECT
#include "matrix.h"
#include "algorithm.h"
#include "error.h"
#ifdef SCYTHE_LAPACK
#include "lapack.h"
#endif
#else
#include "scythestat/matrix.h"
#include "scythestat/algorithm.h"
#include "scythestat/error.h"
#ifdef SCYTHE_LAPACK
#include "scythestat/lapack.h"
#endif
#endif

#include <numeric>
#include <algorithm>
#include <set>

namespace scythe {

  namespace {
    typedef unsigned int uint;
  }

  /* Matrix transposition */

  /*!\brief Transpose a Matrix.
   *
   * This function transposes \a M, returning a Matrix \a R where each
   * element of \a M, \f$M_ij\f$ is placed in position \f$R_ji\f$.
   * Naturally, the returned Matrix has M.cols() rows and M.rows()
   * columns.
   *
   * \param M The Matrix to transpose.
   *
   * \throw scythe_alloc_error (Level 1)
   *
   */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  t (const Matrix<T,PO,PS>& M)
  {
    uint rows = M.rows();
    uint cols = M.cols();
    Matrix<T,RO,Concrete> ret(cols, rows, false);
    if (PO == Col)
      copy<Col,Row>(M, ret);
    else
      copy<Row,Col>(M, ret);

    SCYTHE_VIEW_RETURN(T, RO, RS, ret)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  t (const Matrix<T,O,S>& M)
  {
    return t<O,Concrete>(M);
  }

  /* Ones matrix generation */
  
  /*! 
	 * \brief Create a matrix of ones.
	 *
	 * This function creates a matrix of ones, with the given dimensions
	 * \a rows and \a cols.
	 *
	 * \param rows The number of rows in the resulting Matrix.
	 * \param cols The number of columns in the resulting Matrix.
	 *
	 * \see eye (unsigned int k)
   *
   * \throw scythe_alloc_error (Level 1)
	 */
  template <typename T, matrix_order O, matrix_style S>
  Matrix<T,O,S>
  ones (unsigned int rows, unsigned int cols)
  {
    return Matrix<T,O,S> (rows, cols, true, (T) 1);
  }

  template <typename T, matrix_order O>
  Matrix<T, O, Concrete>
  ones (unsigned int rows, unsigned int cols)
  {
    return ones<T, O, Concrete>(rows, cols);
  }

  template <typename T>
  Matrix<T, Col, Concrete>
  ones (unsigned int rows, unsigned int cols)
  {
    return ones<T, Col, Concrete>(rows, cols);
  }

  inline Matrix<double, Col, Concrete>
  ones (unsigned int rows, unsigned int cols)
  {
    return ones<double, Col, Concrete>(rows, cols);
  }

  /* Identity  Matrix generation */

  // This functor contains the working parts of the eye algorithm.
  namespace {
    template <class T> struct eye_alg {
        T operator() (uint i, uint j) {
          if (i == j)
            return (T) 1.0;
          return (T) 0.0;
        }
    };
  }
  
  /*!\brief Create a \a k by \a k identity Matrix.
   *
   * This function creates a \a k by \a k Matrix with 1s along the
   * diagonal and 0s on the off-diagonal.  This template is overloaded
   * multiple times to provide default type, matrix_order, and
   * matrix_style.  The default call to eye returns a Concrete Matrix
   * containing double precision floating point numbers, in
   * column-major order.  The user can write explicit template calls
   * to generate matrices with other orders and/or styles.
   *
   * \param k The dimension of the identity Matrix.
   *
   * \see diag(const Matrix<T,O,S>& M)
   * \see ones(unsigned int rows, unsigned int cols)
   *
   * \throw scythe_alloc_error (Level 1)
   * 
   */
  template <typename T, matrix_order O, matrix_style S>
  Matrix<T,O,S>
  eye (unsigned int k)
  {
    Matrix<T,O,Concrete> ret(k, k, false);
    for_each_ij_set(ret, eye_alg<T>());
    SCYTHE_VIEW_RETURN(T, O, S, ret)
  }

  template <typename T, matrix_order O>
  Matrix<T, O, Concrete>
  eye (uint k)
  {
    return eye<T, O, Concrete>(k);
  }

  template <typename T>
  Matrix<T, Col, Concrete>
  eye (uint k)
  {
    return eye<T, Col, Concrete>(k);
  }

  inline Matrix<double, Col, Concrete>
  eye (uint k)
  {
    return eye<double, Col, Concrete>(k);
  }

  /* Create a k x 1 vector-additive sequence matrix */

  // The seqa algorithm
  namespace {
    template <typename T> struct seqa_alg {
      T cur_; T inc_;
      seqa_alg(T start, T inc) : cur_ (start), inc_ (inc)  {}
      T operator() () { T ret = cur_; cur_ += inc_; return ret; }
    };
  }
  
 /*! 
	* \brief Create a \a rows x 1 vector-additive sequence Matrix.
	*
	* This function creates a \a rows x 1 Matrix \f$v\f$, where 
  * \f$v_i = \mbox{start} + i \cdot \mbox{incr}\f$.
  *
  * This function is defined by a series of templates.  This template
  * is the most general, requiring the user to explicitly instantiate
  * the template in terms of element type, matrix_order and
  * matrix_style.  Further versions allow for explicit instantiation
  * based just on type and matrix_order (with matrix_style defaulting
  * to Concrete) and just on type (with matrix_style defaulting to
  * Col).  Finally, the default version of th function generates
  * column-major concrete Matrix of doubles.
	*
	* \param start Desired start value.
	* \param incr Amount to add in each step of the sequence.
	* \param rows Total number of rows in the Matrix.
  *
   * \throw scythe_alloc_error (Level 1)
	*/

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T,O,S>
  seqa (T start, T incr, uint rows)
  {
    Matrix<T,O,Concrete> ret(rows, 1, false);
    generate(ret.begin_f(), ret.end_f(), seqa_alg<T>(start, incr));
    SCYTHE_VIEW_RETURN(T, O, S, ret)
  }

  template <typename T, matrix_order O>
  Matrix<T, O, Concrete>
  seqa (T start, T incr, uint rows)
  {
    return seqa<T, O, Concrete>(start, incr, rows);
  }

  template <typename T>
  Matrix<T, Col, Concrete>
  seqa (T start, T incr, uint rows)
  {
    return seqa<T, Col, Concrete>(start, incr, rows);
  }

  inline Matrix<double, Col, Concrete>
  seqa (double start, double incr, uint rows)
  {
    return seqa<double, Col, Concrete>(start, incr, rows);
  }

  /* Uses the STL sort to sort a Matrix in ascending row-major order */
  
  /*! 
	 * \brief Sort a Matrix.
	 *
   * This function returns a copy of \a M, sorted in ascending order.
   * The sorting order is determined by the template parameter
   * SORT_ORDER or, by default, to matrix_order of \a M.
   *
	 * \param M The Matrix to sort.
   *
   * \see sortc
   * 
   * \throw scythe_alloc_error (Level 1)
	 */
  template <matrix_order SORT_ORDER,
            matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  sort (const Matrix<T, PO, PS>& M)
  {
    Matrix<T,RO,Concrete> ret = M;

    std::sort(ret.template begin<SORT_ORDER>(), 
              ret.template end<SORT_ORDER>());

    SCYTHE_VIEW_RETURN(T, RO, RS, ret)
  }

  template <matrix_order SORT_ORDER,
            typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  sort (const Matrix<T,O,S>& M)
  {
    return sort<SORT_ORDER, O, Concrete>(M);
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  sort (const Matrix<T,O,S>& M)
  {
    return sort<O, O, Concrete>(M);
  }

  /*!\brief Sort the columns of a Matrix.
   *
   * This function returns a copy of \a M, with each column sorted in
   * ascending order.
	 *
	 * \param M The Matrix to sort.
   * 
   * \see sort
   *
   * \throw scythe_alloc_error (Level 1)
	 */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  sortc (const Matrix<T, PO, PS>& M)
  {
    Matrix<T,RO,Concrete> ret = M;

    // TODO need to figure out a way to do fully optimized
    // vector iteration
    for (uint col = 0; col < ret.cols(); ++col) {
      Matrix<T,PO,View> column = ret(_, col);
      std::sort(column.begin(), column.end());
    }

    SCYTHE_VIEW_RETURN(T, RO, RS, ret)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  sortc(const Matrix<T,O,S>& M)
  {
    return sortc<O,Concrete>(M);
  }

  /* Column bind two matrices */
  
  /*! 
	 * \brief Column bind two matrices.
	 *
	 * This function column binds two matrices, \a A and \a B.
	 *
	 * \param A The left-hand Matrix.
	 * \param B The right-hand Matrix.
	 *
	 * \see rbind(const Matrix<T,PO1,PS1>& A, 
   *            const Matrix<T,PO2,PS2>& B) 
   *
   * \throw scythe_conformation_error (Level 1)
   * \throw scythe_alloc_error (Level 1)
	 */

  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,RO,RS>
  cbind (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B)
  {
    SCYTHE_CHECK_10(A.rows() != B.rows(), scythe_conformation_error,
        "Matrices have different numbers of rows");

    Matrix<T,RO,Concrete> ret(A.rows(), A.cols() + B.cols(), false);
    std::copy(B.template begin_f<Col>(), B.template end_f<Col>(),
              std::copy(A.template begin_f<Col>(), 
                        A.template end_f<Col>(), 
                        ret.template begin_f<Col>()));
    SCYTHE_VIEW_RETURN(T, RO, RS, ret)
  }


  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,PO1,Concrete>
  cbind (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B)
  {
    return cbind<PO1,Concrete>(A, B);
  }

  /* Row bind two matrices */
  
  /*! 
	 * \brief Row bind two matrices.
	 *
	 * This function row binds two matrices, \a A and \a B.
	 *
	 * \param A The upper Matrix.
	 * \param B The lower Matrix.
	 *
	 * \see cbind(const Matrix<T,PO1,PS1>& A, 
   *            const Matrix<T,PO2,PS2>& B) 
   *
   * \throw scythe_alloc_error (Level 1)
   * \throw scythe_conformation_error (Level 1)
	 */

  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,RO,RS>
  rbind (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B)
  {
    SCYTHE_CHECK_10(A.cols() != B.cols(), scythe_conformation_error,
        "Matrices have different numbers of columns");

    Matrix<T,RO,Concrete> ret(A.rows() + B.rows(), A.cols(), false);
    std::copy(B.template begin_f<Row>(), B.template end_f<Row>(),
              std::copy(A.template begin_f<Row>(), 
                        A.template end_f<Row>(), 
                        ret.template begin_f<Row>()));
    SCYTHE_VIEW_RETURN(T, RO, RS, ret)
  }

  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,PO1,Concrete>
  rbind (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B)
  {
    return rbind<PO1,Concrete>(A, B);
  }

  /* Calculates the order of each element in a Matrix */

  // Functor encapsulating the meat of the algorithm
  namespace {
    template <class T,matrix_order O,matrix_style S> struct order_alg {
      Matrix<T,O> M_;
      order_alg (const Matrix<T,O,S>& M) : M_ (M) {}
      uint operator() (T x) {
        Matrix<bool,O> diff = (M_ < x);
        return std::accumulate(diff.begin_f(), diff.end_f(), (uint) 0);
      }
    };
  }
    
  /*! 
	 * \brief Calculate the rank-order of each element in a Matrix.
	 *
	 * This function calculates the rank-order of each element in a
   * Matrix, returning a Matrix in which the \e i'th element
   * indicates the order position of the \e i'th element of \a M.
   * The returned Matrix contains unsigned integers.
	 * 
	 * \param M A column vector.
   *
   * \throw scythe_alloc_error (Level 1)
	 */

  /* NOTE This function used to only work on column vectors.  I see no
   * reason to maintain this restriction.
   */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<unsigned int, RO, RS>
  order (const Matrix<T, PO, PS>& M)
  {
    Matrix<uint, RO, Concrete> ranks(M.rows(), M.cols(), false);
    std::transform(M.begin_f(), M.end_f(), ranks.template begin_f<PO>(),
                   order_alg<T, PO, PS>(M));
    SCYTHE_VIEW_RETURN(uint, RO, RS, ranks)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<unsigned int, O, Concrete>
  order (const Matrix<T,O,S>& M)
  {
    return order<O,Concrete>(M);
  }
  
  /* Selects all the rows of Matrix A for which binary column vector e
   * has an element equal to 1
   */
   
  /*! 
	 * \brief Locate rows for which a binary column vector equals 1
	  
   * This function identifies all the rows of a Matrix \a M for which
   * the binary column vector \a e has an element equal to 1,
   * returning a Matrix 
	 
	 * \param M The Matrix of interest.
	 * \param e A boolean column vector.
	 *
	 * \see unique(const Matrix<T>& M)
   *
   * \throw scythe_conformation_error (Level 1)
   * \throw scythe_dimension_error (Level 1)
   * \throw scythe_alloc_error (Level 1)
	 */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,RO,RS>
  selif (const Matrix<T,PO1,PS1>& M, const Matrix<bool,PO2,PS2>& e)
  {
    SCYTHE_CHECK_10(M.rows() != e.rows(), scythe_conformation_error,
     "Data matrix and selection vector have different number of rows");
    SCYTHE_CHECK_10(! e.isColVector(), scythe_dimension_error,
        "Selection matrix is not a column vector");

    uint N = std::accumulate(e.begin_f(), e.end_f(), (uint) 0);
    Matrix<T,RO,Concrete> res(N, M.cols(), false);
    int cnt = 0;
    for (uint i = 0; i < e.size(); ++i) {
      if (e[i]) {
        Matrix<T,RO,View> Mvec = M(i, _);
        // TODO again, need optimized vector iteration
        std::copy(Mvec.begin_f(), Mvec.end_f(), 
            res(cnt++, _).begin_f());
      }
    }

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }
 
  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2>
  Matrix<T,PO1,Concrete>
  selif (const Matrix<T,PO1,PS1>& M, const Matrix<bool,PO2,PS2>& e)
  {
    return selif<PO1,Concrete>(M, e);
  }

  /* Find unique elements in a matrix and return a sorted row vector */
  /*! 
	 * \brief Find unique elements in a Matrix.
	 *
   * This function identifies all of the unique elements in a Matrix,
   * and returns them in a sorted row vector.
	 *
	 * \param M The Matrix to search.
	 *
	 * \see selif(const Matrix<T>& M, const Matrix<bool>& e)
   *
   * \throw scythe_alloc_error (Level 1)
	 */

  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  unique (const Matrix<T, PO, PS>& M)
  {
    std::set<T> u(M.begin_f(), M.end_f());
    Matrix<T,RO,Concrete> res(1, u.size(), false);
    std::copy(u.begin(), u.end(), res.begin_f());

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  unique (const Matrix<T,O,S>& M)
  {
    return unique<O,Concrete>(M);
  }

  /* NOTE I killed reshape.  It seems redundant with resize. DBP */


  /* Make vector out of unique elements of a symmetric Matrix.  
   */
   
  /*! 
	 * \brief Vectorize a symmetric Matrix.
	 * 
   * This function returns a column vector containing only those
   * elements necessary to reconstruct the symmetric Matrix, \a M.  In
   * practice, this means extracting one triangle of \a M and
   * returning it as a vector.
   *
   * Note that the symmetry check in this function (active at error
   * level 3) is quite costly.
   *
	 * \param M A symmetric Matrix.
	 *
   * \throw scythe_dimension_error (Level 3)
   * \throw scythe_alloc_error (Level 1)
   *
   * \see xpnd(const Matrix<T,PO,PS>& v)
	 */

  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  vech (const Matrix<T, PO, PS>& M)
  {
    SCYTHE_CHECK_20(! M.isSymmetric(), scythe_dimension_error,
        "Matrix not symmetric");

    Matrix<T,RO,Concrete> 
      res((uint) (0.5 * (M.size() - M.rows())) + M.rows(), 1, false);
    typename Matrix<T,RO,Concrete>::forward_iterator it = res.begin_f();

    /* We want to traverse M in storage order if possible so we take
     * the upper triangle of row-order matrices and the lower triangle
     * of column-order matrices.
     */
    if (M.storeorder() == Col) {
      for (uint i = 0; i < M.rows(); ++i) {
        Matrix<T,PO,View> strip = M(i, i, M.rows() - 1, i);
        it = std::copy(strip.begin_f(), strip.end_f(), it);
      }
    } else {
      for (uint j = 0; j < M.cols(); ++j) {
        Matrix<T,PO,View> strip = M(j, j, j, M.cols() - 1);
        it = std::copy(strip.begin_f(), strip.end_f(), it);
      }
    }

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  vech (const Matrix<T,O,S>& M)
  {
    return vech<O,Concrete>(M);
  }

  /*! Expand a vector into a symmetric Matrix.
   *
   * This function takes the vector \a v and returns a symmetric
   * Matrix containing the elements of \a v within each triangle.
   *
   * \param \a v The vector expand.
   *
   * \see vech(const Matrix<T,PO,PS>& M)
   *
   * \throw scythe_dimensions_error (Level 1)
   * \throw scythe_alloc_error (Level 1)
   */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  xpnd (const Matrix<T, PO, PS>& v)
  {
    double size_d = -.5 + .5 * ::sqrt(1 + 8 * v.size());
    SCYTHE_CHECK_10(std::fmod(size_d, 1.) != 0., 
        scythe_dimension_error, 
        "Input vector can't generate square matrix");

    uint size = (uint) size_d;
    Matrix<T,RO,Concrete> res(size, size, false);

    /* It doesn't matter if we travel in order here.
     * TODO Might want to use iterators.
     */
    uint cnt = 0;
    for (uint i = 0; i < size; ++i)
      for (uint j = i; j < size; ++j)
        res(i, j) = res(j, i) = v[cnt++];

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  xpnd (const Matrix<T,O,S>& v)
  {
    return xpnd<O,Concrete>(v);
  }

  /* Get the diagonal of a Matrix. */
  
  /*! 
	 * \brief Return the diagonal of a Matrix.
	 *
	 * This function returns the diagonal of a Matrix in a row vector.
	 *
	 * \param M The Matrix one wishes to extract the diagonal of.
	 *
	 * \see crossprod (const Matrix<T,PO,PS> &M)
   *
   * \throw scythe_alloc_error (Level 1)
	 */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  diag (const Matrix<T, PO, PS>& M)
  {
    Matrix<T,RO,Concrete> res(std::min(M.rows(), M.cols()), 1, false);
    
    /* We want to use iterators to maximize speed for both concretes
     * and views, but we always want to tranvers M in order to avoid
     * slowing down concretes.
     */
    uint incr = 1;
    if (PO == Col)
      incr += M.rows();
    else
      incr += M.cols();

    typename Matrix<T,PO,PS>::const_iterator pit;
    typename Matrix<T,RO,Concrete>::forward_iterator rit 
      = res.begin_f();
    for (pit = M.begin(); pit < M.end(); pit += incr)
      *rit++ = *pit;

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  diag (const Matrix<T,O,S>& M)
  {
    return diag<O,Concrete>(M);
  }

  /* Fast calculation of A*B+C. */

  namespace {
    // Algorithm when one matrix is 1x1
    template <matrix_order RO, typename T,
              matrix_order PO1, matrix_style PS1,
              matrix_order PO2, matrix_style PS2>
    void
    gaxpy_alg(Matrix<T,RO,Concrete>& res, const Matrix<T,PO1,PS1>& X,
              const Matrix<T,PO2,PS2>& B, T constant)
    {
      res = Matrix<T,RO,Concrete>(X.rows(), X.cols(), false);
      if (maj_col<RO,PO1,PO2>())
        std::transform(X.template begin_f<Col>(), 
                       X.template end_f<Col>(),
                       B.template begin_f<Col>(),
                       res.template begin_f<Col>(),
                       ax_plus_b<T>(constant));
      else
        std::transform(X.template begin_f<Row>(), 
                       X.template end_f<Row>(),
                       B.template begin_f<Row>(),
                       res.template begin_f<Row>(),
                       ax_plus_b<T>(constant));
    }
  }

  /*! Fast caclulation of \f$AB + C\f$.
   *
   * This function calculates \f$AB + C\f$ efficiently, traversing the
   * matrices in storage order where possible, and avoiding the use of
   * extra temporary matrix objects.
   *
   * Matrices conform when \a A, \a B, and \a C are chosen with
   * dimensions
   * \f$((m \times n), (1 \times 1), (m \times n))\f$, 
   * \f$((1 \times 1), (n \times k), (n \times k))\f$, or
   * \f$((m \times n), (n \times k), (m \times k))\f$.
   *
   * Scythe will use LAPACK/BLAS routines to compute \f$AB+C\f$
   * with column-major matrices of double-precision floating point
   * numbers if LAPACK/BLAS is available and you compile your program
   * with the SCYTHE_LAPACK flag enabled.
   *
   * \param A A \f$1 \times 1\f$ or \f$m \times n\f$ Matrix.
   * \param B A \f$1 \times 1\f$ or \f$n \times k\f$ Matrix.
   * \param C A \f$m \times n\f$ or \f$n \times k\f$ or
   *          \f$m \times k\f$ Matrix.
   *
   * \throw scythe_conformation_error (Level 0)
   * \throw scythe_alloc_error (Level 1)
   */

  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2,
            matrix_order PO3, matrix_style PS3>
  Matrix<T,RO,RS>
  gaxpy (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B,
         const Matrix<T,PO3,PS3>& C)
  {
    
    Matrix<T, RO, Concrete> res;

    if (A.isScalar() && B.rows() == C.rows() && B.cols() == C.cols()) {
      // Case 1: 1x1 * nXk + nXk
      gaxpy_alg(res, B, C, A[0]);
    } else if (B.isScalar() && A.rows() == C.rows() &&
               A.cols() == C.cols()) {
      // Case 2: m x n  *  1 x 1  +  m x n
      gaxpy_alg(res, A, C, B[0]);
    } else if (A.cols() == B.rows() && A.rows() == C.rows() &&
               B.cols() == C.cols()) {
      // Case 3: m x n  *  n x k  +  m x k

      res = Matrix<T,RO,Concrete> (A.rows(), B.cols(), false);

      /* These are identical to matrix mult, one optimized for
       * row-major and one for col-major.
       */
      
      T tmp;
      if (RO == Col) { // col-major optimized
       for (uint j = 0; j < B.cols(); ++j) {
         for (uint i = 0; i < A.rows(); ++i)
          res(i, j) = C(i, j);
         for (uint l = 0; l < A.cols(); ++l) {
           tmp = B(l, j);
           for (uint i = 0; i < A.rows(); ++i)
             res(i, j) += tmp * A(i, l);
         }
       }
      } else { // row-major optimized
       for (uint i = 0; i < A.rows(); ++i) {
         for (uint j = 0; j < B.cols(); ++j)
           res(i, j) = C(i, j);
         for (uint l = 0; l < B.rows(); ++l) {
           tmp = A(i, l);
           for (uint j = 0; j < B.cols(); ++j)
             res(i, j) += tmp * B(l,j);
         }
       }
      }

    } else {
      SCYTHE_THROW(scythe_conformation_error,
          "Expects (m x n  *  1 x 1  +  m x n)"
          << "or (1 x 1  *  n x k  +  n x k)"
          << "or (m x n  *  n x k  +  m x k)");
    }

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2,
            matrix_order PO3, matrix_style PS3>
  Matrix<T,PO1,Concrete>
  gaxpy (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& B,
         const Matrix<T,PO3,PS3>& C)
  {
    return gaxpy<PO1,Concrete>(A,B,C);
  }

  /*! Fast caclulation of \f$A'A\f$.
   *
   * This function calculates \f$A'A\f$ efficiently, traversing the
   * matrices in storage order where possible, and avoiding the use of
   * the temporary matrix objects.
   *
   * Scythe will use LAPACK/BLAS routines to compute the cross-product
   * of column-major matrices of double-precision floating point
   * numbers if LAPACK/BLAS is available and you compile your program
   * with the SCYTHE_LAPACK flag enabled.
   *
   * \param A The Matrix to return the cross product of.
   *
   * \see diag (const Matrix<T, PO, PS>& M)
   */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS>
  Matrix<T, RO, RS>
  crossprod (const Matrix<T, PO, PS>& A)
  {
    /* When rows > 1, we provide differing implementations of the
     * algorithm depending on A's ordering to maximize strided access.
     *
     * The non-vector version of the algorithm fills in a triangle and
     * then copies it over.
     */
    Matrix<T, RO, Concrete> res;
    T tmp;
    if (A.rows() == 1) {
      res = Matrix<T,RO,Concrete>(A.cols(), A.cols(), true);
      for (uint k = 0; k < A.rows(); ++k) {
        for (uint i = 0; i < A.cols(); ++i) {
          tmp = A(k, i);
          for (uint j = i; j < A.cols(); ++j) {
            res(j, i) =
              res(i, j) += tmp * A(k, j);
          }
        }
      }
    } else {
      if (PO == Row) { // row-major optimized
        /* TODO: This is a little slower than the col-major.  Improve.
         */
        res = Matrix<T,RO,Concrete>(A.cols(), A.cols(), true);
        for (uint k = 0; k < A.rows(); ++k) {
          for (uint i = 0; i < A.cols(); ++i) {
            tmp = A(k, i);
            for (uint j = i; j < A.cols(); ++j) {
                res(i, j) += tmp * A(k, j);
            }
          }
        }
        for (uint i = 0; i < A.cols(); ++i)
          for (uint j = i + 1; j < A.cols(); ++j)
            res(j, i) = res(i, j);
      } else { // col-major optimized
        res = Matrix<T,RO,Concrete>(A.cols(), A.cols(), false);
        for (uint j = 0; j < A.cols(); ++j) {
          for (uint i = j; i < A.cols(); ++i) {
            tmp = (T) 0;
            for (uint k = 0; k < A.rows(); ++k)
              tmp += A(k, i) * A(k, j);
            res(i, j) = tmp;
          }
        }
        for (uint i = 0; i < A.cols(); ++i)
          for (uint j = i + 1; j < A.cols(); ++j)
            res(i, j) = res(j, i);
      }
    }

    SCYTHE_VIEW_RETURN(T, RO, RS, res)
  }

  template <typename T, matrix_order O, matrix_style S>
  Matrix<T, O, Concrete>
  crossprod (const Matrix<T,O,S>& M)
  {
    return crossprod<O,Concrete>(M);
  }

#ifdef SCYTHE_LAPACK
  /* Template specializations of for col-major, concrete
   * matrices of doubles that are only available when a lapack library
   * is available.
   */

  template<>
  Matrix<>
  gaxpy<Col,Concrete,double,Col,Concrete,Col,Concrete,Col,Concrete>
  (const Matrix<>& A, const Matrix<>& B, const Matrix<>& C)
  {
    SCYTHE_DEBUG_MSG("Using lapack/blas for gaxpy");
    Matrix<> res;

    if (A.isScalar() && B.rows() == C.rows() && B.cols() == C.cols()) {
      // Case 1: 1x1 * nXk + nXk
      gaxpy_alg(res, B, C, A[0]);
    } else if (B.isScalar() && A.rows() == C.rows() &&
               A.cols() == C.cols()) {
      // Case 2: m x n  *  1 x 1  +  m x n
      gaxpy_alg(res, A, C, B[0]);
    } else if (A.cols() == B.rows() && A.rows() == C.rows() &&
               B.cols() == C.cols()) {
      res = C; // NOTE: this copy may eat up speed gains, but can't be
               //       avoided.
      
      // Case 3: m x n  *  n x k  +  m x k
      double* Apnt = A.getArray();
      double* Bpnt = B.getArray();
      double* respnt = res.getArray();
      const double one(1.0);
      int rows = (int) res.rows();
      int cols = (int) res.cols();
      int innerDim = A.cols();

      lapack::dgemm_("N", "N", &rows, &cols, &innerDim, &one, Apnt,
                     &rows, Bpnt, &innerDim, &one, respnt, &rows);

    }
      return res;
  }

  template<>
  Matrix<>
  crossprod(const Matrix<>& A)
  {
    SCYTHE_DEBUG_MSG("Using lapack/blas for crossprod");
    // Set up some constants
    const double zero = 0.0;
    const double one = 1.0;

    // Set up return value and arrays
    Matrix<> res(A.cols(), A.cols(), false);
    double* Apnt = A.getArray();
    double* respnt = res.getArray();
    int rows = (int) A.rows();
    int cols = (int) A.cols();

    lapack::dsyrk_("L", "T", &cols, &rows, &one, Apnt, &rows, &zero, respnt,
                   &cols);
    lapack::make_symmetric(respnt, cols);

    return res;
  }

#endif


} // end namespace scythe


#endif /* SCYTHE_LA_H */