This file is indexed.

/usr/include/scythestat/rng.h is in libscythestat-dev 1.0.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
/* 
 * Scythe Statistical Library Copyright (C) 2000-2002 Andrew D. Martin
 * and Kevin M. Quinn; 2002-present Andrew D. Martin, Kevin M. Quinn,
 * and Daniel Pemstein.  All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify under the terms of the GNU General Public License as
 * published by Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.  See the text files
 * COPYING and LICENSE, distributed with this source code, for further
 * information.
 * --------------------------------------------------------------------
 *  scythestat/rng.h
 *
 * The code for many of the RNGs defined in this file and implemented
 * in rng.cc is based on that in the R project, version 1.6.0-1.7.1.
 * This code is available under the terms of the GNU GPL.  Original
 * copyright:
 * 
 * Copyright (C) 1998      Ross Ihaka
 * Copyright (C) 2000-2002 The R Development Core Team
 * Copyright (C) 2003      The R Foundation
 */

/*!
 * \file rng.h
 *
 * \brief The definition of the random number generator base class.
 *
 */

/* Doxygen doesn't deal well with the macros that we use to make
 * matrix versions of rngs easy to define.
 */

#ifndef SCYTHE_RNG_H
#define SCYTHE_RNG_H

#include <iostream>
#include <cmath>

#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif

#ifdef SCYTHE_COMPILE_DIRECT
#include "matrix.h"
#include "error.h"
#include "algorithm.h"
#include "distributions.h"
#include "ide.h"
#include "la.h"
#else
#include "scythestat/matrix.h"
#include "scythestat/error.h"
#include "scythestat/algorithm.h"
#include "scythestat/distributions.h"
#include "scythestat/ide.h"
#include "scythestat/la.h"
#endif

namespace scythe {

/* Shorthand for the matrix versions of the various distributions'
 * random number generators.
 */
  
#define SCYTHE_RNGMETH_MATRIX(NAME, RTYPE, ARGNAMES, ...)             \
  template <matrix_order O, matrix_style S>                           \
  Matrix<RTYPE, O, S>                                                 \
  NAME (unsigned int rows, unsigned int cols, __VA_ARGS__)            \
  {                                                                   \
    Matrix<RTYPE, O, Concrete> ret(rows, cols, false);                \
    typename Matrix<RTYPE,O,Concrete>::forward_iterator it;           \
    typename Matrix<RTYPE,O,Concrete>::forward_iterator last          \
      = ret.end_f();                                                  \
    for (it = ret.begin_f(); it != last; ++it)                        \
      *it = NAME (ARGNAMES);                                          \
    SCYTHE_VIEW_RETURN(RTYPE, O, S, ret)                              \
  }                                                                   \
                                                                      \
  Matrix<RTYPE, Col, Concrete>                                        \
  NAME (unsigned int rows, unsigned int cols, __VA_ARGS__)            \
  {                                                                   \
    return NAME <Col,Concrete> (rows, cols, ARGNAMES);                \
  }

   /*! \brief Random number generator.
    *
    * This class provides objects capable of generating random numbers
    * from a variety of probability distributions.  This
    * abstract class forms the foundation of random number generation in
    * Scythe.  Specific random number generators should extend this class
    * and implement the virtual void function runif(); this function
    * should take no arguments and return uniformly distributed random
    * numbers on the interval (0, 1).  The rng class provides no
    * interface for seed-setting or initialization, allowing for maximal
    * flexibility in underlying implementation.  This class does provide
    * implementations of functions that return random numbers from a wide
    * variety of commonly (and not-so-commonly) used distributions, by
    * manipulating the uniform variates returned by runif().  See
    * rng/mersenne.h and rng/lecuyer.h for the rng implementations
    * offered by Scythe.
    *
    * Each univariate distribution is represented by three overloaded
    * versions of the same method.  The first is a simple method
    * returning a single value.  The remaining method versions return
    * Matrix values and are equivalent to calling the single-valued
    * method multiple times to fill a Matrix object.  They each take
    * two arguments describing the number of rows and columns in the
    * returned Matrix object and as many subsequent arguments as is
    * necessary to describe the distribution.  As is the case
    * throughout the library, the Matrix-returning versions of the
    * method include both a general and default template.  We
    * explicitly document only the single-valued versions of the
    * univariate methods.  For matrix-valued distributions we provide
    * only a single method per distribution.
    *
    * \note Doxygen incorrectly parses the macros we use to
    * automatically generate the Matrix returning versions of the
    * various univariate methods in this class.  Whenever you see the
    * macro variable __VA_ARGS__ in the public member function list
    * below, simply substitute in the arguments in the explicitly
    * documented single-valued version of the method.
    *
    */
  template <class RNGTYPE>
  class rng
  {
    public:

      /* This declaration allows users to treat rng objects like
       * functors that generate random uniform numbers.  This can be
       * quite convenient.
       */
       /*! \brief Generate uniformly distributed random variates.
        *
        * This operator acts as an alias for runif() and generates
        * pseudo-random variates from the uniform distribution on the
        * interval (0, 1).  We include this operator to allow rng
        * objects to behave as function objects.
        */
      double operator() ()
      {
        return runif();
      }

      /* Returns random uniform numbers on (0, 1).  This function must
       * be implemented by extending classes */
       /*! \brief Generate uniformly distributed random variates.
        *
        * This method generates pseudo-random variates from the
        * uniform distribution on the interval (0, 1).
        *
        * This function is pure virtual and is implemented by
        * extending concrete classes, like scythe::mersenne and
        * scythe::lecuyer.
        */
      double runif ()
      {
        return as_derived().runif();
      }


      /* No point in declaring these virtual because we have to
       * override them anyway because C++ isn't too bright.  Also, it
       * is illegal to make template methods virtual
       */
      template <matrix_order O, matrix_style S>
      Matrix<double,O,S> runif(unsigned int rows, 
                               unsigned int cols) 
      {
        Matrix<double, O, S> ret(rows, cols, false);
        typename Matrix<double,O,S>::forward_iterator it;
        typename Matrix<double,O,S>::forward_iterator last=ret.end_f();
        for (it = ret.begin_f(); it != last; ++it)
          *it = runif();

        return ret;
      }

      Matrix<double,Col,Concrete> runif(unsigned int rows, 
                                        unsigned int cols)
      {
        return runif<Col,Concrete>(rows, cols);
      }

      /*! \brief Generate a beta distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * beta distribution described by the shape parameters \a a and
			 * \a b.
       *
       * \param alpha The first positive beta shape parameter.
       * \param beta the second positive beta shape parameter.
			 * 
			 * \see pbeta(double x, double a, double b)
			 * \see dbeta(double x, double a, double b)
			 * \see betafn(double a, double b)
			 * \see lnbetafn(double a, double b)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rbeta (double alpha, double beta)
      {
        double report;
        double xalpha, xbeta;
        
        // Check for allowable parameters
        SCYTHE_CHECK_10(alpha <= 0, scythe_invalid_arg, "alpha <= 0");
        SCYTHE_CHECK_10(beta <= 0, scythe_invalid_arg, "beta <= 0");
        
        xalpha = rchisq (2 * alpha);
        xbeta = rchisq (2 * beta);
        report = xalpha / (xalpha + xbeta);
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rbeta, double, SCYTHE_ARGSET(alpha, beta),
          double alpha, double beta);

      /*! \brief Generate a non-central hypergeometric disributed
			 * random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * non-centrial hypergeometric distribution described by the
       * number of positive outcomes \a m1, the two group size
       * parameters \a n1 and \a n2, and the odds ratio \a psi.
       *
       * \param m1 The number of positive outcomes in both groups.
       * \param n1 The size of group one.
       * \param n2 The size of group two.
       * \param psi The odds ratio
       * \param delta The precision.
       *
       * \throw scythe_convergence_error (Level 0)
       */
      double 
      rnchypgeom(double m1, double n1, double n2, double psi,
                 double delta)
      {
        // Calculate mode of mass function
        double a = psi - 1;
        double b = -1 * ((n1+m1+2)*psi + n2 - m1);
        double c = psi * (n1+1) * (m1+1);
        double q = -0.5 * ( b + sgn(b) * 
            std::sqrt(std::pow(b,2) - 4*a*c));
        double root1 = c/q;
        double root2 = q/a;
        double el = std::max(0.0, m1-n2);
        double u = std::min(n1,m1);
        double mode = std::floor(root1);
        int exactcheck = 0;
        if (u<mode || mode<el) {
          mode = std::floor(root2);
          exactcheck = 1;
        }
     

        int size = static_cast<int>(u+1);

        double *fvec = new double[size];
        fvec[static_cast<int>(mode)] = 1.0;
        double s;
        // compute the mass function at y
        if (delta <= 0 || exactcheck==1){  //exact evaluation 
          // sum from mode to u
          double f = 1.0;
          s = 1.0;
          for (double i=(mode+1); i<=u; ++i){
            double r = ((n1-i+1)*(m1-i+1))/(i*(n2-m1+i)) * psi;
            f = f*r;
            s += f;
            fvec[static_cast<int>(i)] = f;
          }
         
          // sum from mode to el
          f = 1.0;
          for (double i=(mode-1); i>=el; --i){
            double r = ((n1-i)*(m1-i))/((i+1)*(n2-m1+i+1)) * psi;
            f = f/r;
            s += f;
            fvec[static_cast<int>(i)] = f;
          }
        } else { // approximation
          double epsilon = delta/10.0;
          // sum from mode to ustar
          double f = 1.0;
          s = 1.0;
          double i = mode+1;
          double r;
          do {
            if (i>u) break;
            r = ((n1-i+1)*(m1-i+1))/(i*(n2-m1+i)) * psi;
            f = f*r;
            s += f;
            fvec[static_cast<int>(i)] = f;
            ++i;
          } while(f>=epsilon || r>=5.0/6.0);
         
          // sum from mode to elstar
          f = 1.0;
          i = mode-1;
          do {
            if (i<el) break;
            r = ((n1-i)*(m1-i))/((i+1)*(n2-m1+i+1)) * psi;
            f = f/r;
            s += f;
            fvec[static_cast<int>(i)] = f;
            --i;
          } while(f>=epsilon || r <=6.0/5.0);         
        }

        double udraw = runif();
        double psum = fvec[static_cast<int>(mode)]/s;
        if (udraw<=psum)
          return mode;
        double lower = mode-1;
        double upper = mode+1;

        do{
          double fl;
          double fu;
          if (lower >= el)
            fl = fvec[static_cast<int>(lower)];
          else 
            fl = 0.0;

          if (upper <= u)
            fu = fvec[static_cast<int>(upper)];
          else
            fu = 0.0;

          if (fl > fu) {
            psum += fl/s;
            if (udraw<=psum)
              return lower;
            --lower;
          } else {
            psum += fu/s;
            if (udraw<=psum)
              return upper;
            ++upper;
          }
        } while(udraw>psum);
       
        delete [] fvec;
        SCYTHE_THROW(scythe_convergence_error,
          "Algorithm did not converge");
      }

      SCYTHE_RNGMETH_MATRIX(rnchypgeom, double,
          SCYTHE_ARGSET(m1, n1, n2, psi, delta), double m1, double n1,
          double n2, double psi, double delta);

      /*! \brief Generate a Bernoulli distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * Bernoulli distribution with probability of success \a p.
       *
       * \param p The probability of success on a trial.
			 * 
       * \throw scythe_invalid_arg (Level 1)
       */
      unsigned int
      rbern (double p)
      {
        unsigned int report;
        double unif;
          
        // Check for allowable paramters
        SCYTHE_CHECK_10(p < 0 || p > 1, scythe_invalid_arg,
            "p parameter not in[0,1]");
        
        unif = runif ();
        if (unif < p)
          report = 1;
        else
          report = 0;
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rbern, unsigned int, p, double p);
      
      /*! \brief Generate a binomial distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * binomial distribution with \a n trials and \p probability of
			 * success on each trial.
       *
       * \param n The number of trials.
       * \param p The probability of success on each trial.
			 * 
			 * \see pbinom(double x, unsigned int n, double p)
			 * \see dbinom(double x, unsigned int n, double p)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      unsigned int
      rbinom (unsigned int n, double p)
      {
        unsigned int report;
        unsigned int count = 0;
        double hold;
          
        // Check for allowable parameters
        SCYTHE_CHECK_10(n == 0, scythe_invalid_arg, "n == 0");
        SCYTHE_CHECK_10(p < 0 || p > 1, scythe_invalid_arg, 
            "p not in [0,1]");
          
        // Loop and count successes
        for (unsigned int i = 0; i < n; i++) {
          hold = runif ();
          if (hold < p)
            ++count;
        }
        report = count;
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rbinom, unsigned int, SCYTHE_ARGSET(n, p),
          unsigned int n, double p);

      /*! \brief Generate a \f$\chi^2\f$ distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * \f$\chi^2\f$distribution with \a df degress of freedom.
       *
       * \param df The degrees of freedom.
			 * 
			 * \see pchisq(double x, double df)
			 * \see dchisq(double x, double df)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rchisq (double df)
      {
        double report;
          
        // Check for allowable paramter
        SCYTHE_CHECK_10(df <= 0, scythe_invalid_arg,
            "Degrees of freedom <= 0");
      
        // Return Gamma(nu/2, 1/2) variate
        report = rgamma (df / 2, .5);
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rchisq, double, df, double df);

      /*! \brief Generate an exponentially distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * exponential distribution described by the inverse scale
			 * parameter \a invscale.
       *
       * \param invscale The inverse scale parameter.
			 * 
			 * \see pexp(double x, double scale)
			 * \see dexp(double x, double scale)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rexp (double invscale)
      {
        double report;
        
        // Check for allowable parameter
        SCYTHE_CHECK_10(invscale <= 0, scythe_invalid_arg,
            "Inverse scale parameter <= 0");
        
        report = -std::log (runif ()) / invscale;
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rexp, double, invscale, double invscale);
    
      /*! \brief Generate an F distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * F distribution with degress of freedom \a df1 and \a df2.
       *
       * \param df1 The positive degrees of freedom for the
			 * \f$chi^2\f$ variate in the nominator of the F statistic.
       * \param df2 The positive degrees of freedom for the
			 * \f$chi^2\f$ variate in the denominator of the F statistic.
			 *
			 * \see pf(double x, double df1, double df2)
			 * \see df(double x, double df1, double df2)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rf (double df1, double df2)
      {
        SCYTHE_CHECK_10(df1 <= 0 || df2 <= 0, scythe_invalid_arg,
            "n1 or n2 <= 0");

        return ((rchisq(df1) / df1) / (rchisq(df2) / df2));
      }

      SCYTHE_RNGMETH_MATRIX(rf, double, SCYTHE_ARGSET(df1, df2),
          double df1, double df2);

      /*! \brief Generate a gamma distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * gamma distribution with a given \a shape and \a scale.
       *
       * \param shape The strictly positive shape of the distribution.
			 * \param rate The inverse of the strictly positive scale of the distribution.  That is, 1 / scale.
			 * 
			 * \see pgamma(double x, double shape, double scale)
			 * \see dgamma(double x, double shape, double scale)
			 * \see gammafn(double x)
			 * \see lngammafn(double x)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rgamma (double shape, double rate)
      {
        double report;

        // Check for allowable parameters
        SCYTHE_CHECK_10(shape <= 0, scythe_invalid_arg, "shape <= 0");
        SCYTHE_CHECK_10(rate <= 0, scythe_invalid_arg, "rate <= 0");

        if (shape > 1)
          report = rgamma1 (shape) / rate;
        else if (shape == 1)
          report = -std::log (runif ()) / rate;
        else if (shape < 1)
          report = rgamma1 (shape + 1) 
            * std::pow (runif (), 1 / shape) / rate;

        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rgamma, double, SCYTHE_ARGSET(shape, rate),
          double shape, double rate);

      /*! \brief Generate a logistically distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * logistic distribution described by the given \a location and
			 * \a scale variables.
       *
       * \param location The location of the distribution.
			 * \param scale The scale of the distribution.
			 * 
			 * \see plogis(double x, double location, double scale)
			 * \see dlogis(double x, double location, double scale)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rlogis (double location, double scale)
      {
        double report;
        double unif;
          
        // Check for allowable paramters
        SCYTHE_CHECK_10(scale <= 0, scythe_invalid_arg, "scale <= 0");
        
        unif = runif ();
        report = location + scale * std::log (unif / (1 - unif));
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rlogis, double, 
          SCYTHE_ARGSET(location, scale),
          double location, double scale);

      /*! \brief Generate a log-normal distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * log-normal distribution with given logged mean and standard
			 * deviation.
       *
       * \param logmean The logged mean of the distribtion.
			 * \param logsd The strictly positive logged standard deviation
			 * of the distribution.
			 * 
			 * \see plnorm(double x, double logmean, double logsd)
			 * \see dlnorm(double x, double logmean, double logsd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rlnorm (double logmean, double logsd)
      {
        SCYTHE_CHECK_10(logsd < 0.0, scythe_invalid_arg,
            "standard deviation < 0");

        return std::exp(rnorm(logmean, logsd));
      }

      SCYTHE_RNGMETH_MATRIX(rlnorm, double, 
          SCYTHE_ARGSET(logmean, logsd),
          double logmean, double logsd);

			/*! \brief Generate a negative binomial distributed random
			 * variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * negative binomial distribution with given dispersion
			 * parameter and probability of success on each trial.
       *
       * \param n The strictly positive target number of successful
			 * trials (dispersion parameters).
			 * \param p The probability of success on each trial.
			 * 
			 * \see pnbinom(unsigned int x, double n, double p)
			 * \see dnbinom(unsigned int x, double n, double p)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      unsigned int
      rnbinom (double n, double p)
      {
        SCYTHE_CHECK_10(n == 0 || p <= 0 || p > 1, scythe_invalid_arg,
            "n == 0, p <= 0, or p > 1");

        return rpois(rgamma(n, (1 - p) / p));
      }

      SCYTHE_RNGMETH_MATRIX(rnbinom, unsigned int,
          SCYTHE_ARGSET(n, p), double n, double p);

      /*! \brief Generate a normally distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a standard
			 * distribution.
       *
       * \param mean The mean of the distribution.
			 * \param sd The standard deviation of the distribution.
			 * 
			 * \see pnorm(double x, double mean, double sd)
			 * \see dnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rnorm (double mean = 0, double sd = 1)
      {
        SCYTHE_CHECK_10(sd <= 0, scythe_invalid_arg, 
            "Negative standard deviation");
        
        return (mean + rnorm1 () * sd);
      }

      SCYTHE_RNGMETH_MATRIX(rnorm, double, SCYTHE_ARGSET(mean, sd),
          double mean, double sd);

      /*! \brief Generate a Poisson distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * Poisson distribution with expected number of occurrences \a
			 * lambda.
       *
       * \param lambda The strictly positive expected number of
			 * occurrences.
			 * 
			 * \see ppois(double x, double lambda)
			 * \see dpois(double x, double lambda)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      unsigned int
      rpois(double lambda)
      {
        SCYTHE_CHECK_10(lambda <= 0, scythe_invalid_arg, "lambda <= 0");
        unsigned int n;
        
        if (lambda < 33) {
          double cutoff = std::exp(-lambda);
          n = -1;
          double t = 1.0;
          do {
            ++n;
            t *= runif();
          } while (t > cutoff);    
        } else {
          bool accept = false;
          double c = 0.767 - 3.36/lambda;
          double beta = M_PI/std::sqrt(3*lambda);
          double alpha = lambda*beta;
          double k = std::log(c) - lambda - std::log(beta);
            
          while (! accept){
            double u1 = runif();
            double x = (alpha - std::log((1-u1)/u1))/beta;
            while (x <= -0.5){
              u1 = runif();
              x = (alpha - std::log((1-u1)/u1))/beta;
            } 
            n = static_cast<int>(x + 0.5);
            double u2 = runif();
            double lhs = alpha - beta*x +
              std::log(u2/std::pow(1+std::exp(alpha-beta*x),2));
            double rhs = k + n*std::log(lambda) - lnfactorial(n);
            if (lhs <= rhs)
              accept = true;
          }
        }
        
        return n;
      }

      SCYTHE_RNGMETH_MATRIX(rpois, unsigned int, lambda, double lambda);

      /* There is a naming issue here, with respect to the p- and d-
       * functions in distributions.  This is really analagous to rt1-
       * and dt1- XXX Clear up.  Also, we should probably have a
       * random number generator for both versions of the student t.
       */

      /*! \brief Generate a Student t distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * Student's t distribution with given mean \a mu, variance \a
			 * sigma2, and degrees of freedom \a nu
       *
       * \param mu The mean of the distribution.
			 * \param sigma2 The variance of the distribution.
			 * \param nu The degrees of freedom of the distribution.
			 * 
			 * \see dt1(double x, double mu, double sigma2, double nu)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rt (double mu, double sigma2, double nu)
      {
        double report;
        double x, z;
          
        // Check for allowable paramters
        SCYTHE_CHECK_10(sigma2 <= 0, scythe_invalid_arg,
            "Variance parameter sigma2 <= 0");
        SCYTHE_CHECK_10(nu <= 0, scythe_invalid_arg,
            "D.O.F parameter nu <= 0");
        
        z = rnorm1 ();
        x = rchisq (nu);
        report = mu + std::sqrt (sigma2) * z 
          * std::sqrt (nu) / std::sqrt (x);
        
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rt1, double, SCYTHE_ARGSET(mu, sigma2, nu),
          double mu, double sigma2, double nu);

      /*! \brief Generate a Weibull distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * Weibull distribution with given \a shape and \a scale.
       *
       * \param shape The strictly positive shape of the distribution.
			 * \param scale The strictly positive scale of the distribution.
			 * 
			 * \see pweibull(double x, double shape, double scale)
			 * \see dweibull(double x, double shape, double scale)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rweibull (double shape, double scale)
      {
        SCYTHE_CHECK_10(shape <= 0 || scale <= 0, scythe_invalid_arg,
            "shape or scale <= 0");

        return scale * std::pow(-std::log(runif()), 1.0 / shape);
      }

      SCYTHE_RNGMETH_MATRIX(rweibull, double,
          SCYTHE_ARGSET(shape, scale), double shape, double scale);

			/*! \brief Generate an inverse \f$\chi^2\f$ distributed random
			 * variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * inverse \f$\chi^2\f$ distribution with \a nu degress of
			 * freedom.
       *
       * \param nu The degrees of freedom.
			 *
			 * \see rchisq(double df)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      richisq (double nu)
      {
        double report;
          
        // Check for allowable parameter
        SCYTHE_CHECK_10(nu <= 0, scythe_invalid_arg,
            "Degrees of freedom <= 0");
          
        // Return Inverse-Gamma(nu/2, 1/2) variate
        report = rigamma (nu / 2, .5);
        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(richisq, double, nu, double nu);

      /*! \brief Generate an inverse gamma distributed random variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * inverse gamma distribution with given \a shape and \a scale.
       *
       * \param shape The strictly positive shape of the distribution.
			 * \param scale The strictly positive scale of the distribution.
			 * 
			 * \see rgamma(double alpha, double beta)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rigamma (double alpha, double beta)
      {
        double report;
        
        // Check for allowable parameters
        SCYTHE_CHECK_10(alpha <= 0, scythe_invalid_arg, "alpha <= 0");
        SCYTHE_CHECK_10(beta <= 0, scythe_invalid_arg, "beta <= 0");

        // Return reciprocal of gamma variate
        report = std::pow (rgamma (alpha, beta), -1);

        return (report);
      }

      SCYTHE_RNGMETH_MATRIX(rigamma, double, SCYTHE_ARGSET(alpha, beta),
          double alpha, double beta);

      /* Truncated Distributions */

			/*! \brief Generate a truncated normally distributed random
			 * variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated both above and below.  It uses the inverse CDF
			 * method.
       *
       * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param below The lower truncation point of the distribution.
			 * \param above The upper truncation point of the distribution.
			 * 
			 * \see rtnorm_combo(double mean, double variance, double below, double above)
			 * \see rtbnorm_slice(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_slice(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rtbnorm_combo(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_combo(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double 
      rtnorm(double mean, double variance, double below, double above)
      {  
        SCYTHE_CHECK_10(below >= above, scythe_invalid_arg,
            "Truncation bound not logically consistent");
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");
        
        double sd = std::sqrt(variance);
        double FA = 0.0;
        double FB = 0.0;
        if ((std::fabs((above-mean)/sd) < 8.2) 
            && (std::fabs((below-mean)/sd) < 8.2)){
          FA = pnorm1((above-mean)/sd, true, false);
          FB = pnorm1((below-mean)/sd, true, false);
        }
        if ((((above-mean)/sd) < 8.2)  && (((below-mean)/sd) <= -8.2) ){ 
          FA = pnorm1((above-mean)/sd, true, false);
          FB = 0.0;
        }
        if ( (((above-mean)/sd) >= 8.2)  && (((below-mean)/sd) > -8.2) ){ 
          FA = 1.0;
          FB = pnorm1((below-mean)/sd, true, false);
        } 
        if ( (((above-mean)/sd) >= 8.2) && (((below-mean)/sd) <= -8.2)){
          FA = 1.0;
          FB = 0.0;
        }
        double term = runif()*(FA-FB)+FB;
        if (term < 5.6e-17)
          term = 5.6e-17;
        if (term > (1 - 5.6e-17))
          term = 1 - 5.6e-17;
        double draw = mean + sd * qnorm1(term);
        if (draw > above)
          draw = above;
        if (draw < below)
          draw = below;
         
        return draw;
      }

      SCYTHE_RNGMETH_MATRIX(rtnorm, double, 
          SCYTHE_ARGSET(mean, variance, above, below), double mean,
          double variance, double above, double below);

			/*! \brief Generate a truncated normally distributed random
			 * variate.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated both above and below.  It uses a combination of
			 * rejection sampling (when \a below <= mean <= \a above)
			 * sampling method of Robert and Casella (1999), pp. 288-289
			 * (when \a meam < \a below or \a mean > \a above).
       *
       * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param below The lower truncation point of the distribution.
			 * \param above The upper truncation point of the distribution.
			 * 
			 * \see rtnorm(double mean, double variance, double below, double above)
			 * \see rtbnorm_slice(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_slice(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rtbnorm_combo(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_combo(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rtnorm_combo(double mean, double variance, double below, 
                   double above)
      {
        SCYTHE_CHECK_10(below >= above, scythe_invalid_arg,
            "Truncation bound not logically consistent");
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");
        
        double sd = std::sqrt(variance);
        if ((((above-mean)/sd > 0.5) && ((mean-below)/sd > 0.5))
            ||
            (((above-mean)/sd > 2.0) && ((below-mean)/sd < 0.25))
            ||
            (((mean-below)/sd > 2.0) && ((above-mean)/sd > -0.25))) { 
          double x = rnorm(mean, sd);
          while ((x > above) || (x < below))
            x = rnorm(mean,sd);
          return x;
        } else {
          // use the inverse cdf method
          double FA = 0.0;
          double FB = 0.0;
          if ((std::fabs((above-mean)/sd) < 8.2) 
              && (std::fabs((below-mean)/sd) < 8.2)){
            FA = pnorm1((above-mean)/sd, true, false);
            FB = pnorm1((below-mean)/sd, true, false);
          }
          if ((((above-mean)/sd) < 8.2)  && (((below-mean)/sd) <= -8.2) ){ 
            FA = pnorm1((above-mean)/sd, true, false);
            FB = 0.0;
          }
          if ( (((above-mean)/sd) >= 8.2)  && (((below-mean)/sd) > -8.2) ){ 
            FA = 1.0;
            FB = pnorm1((below-mean)/sd, true, false);
          } 
          if ( (((above-mean)/sd) >= 8.2) && (((below-mean)/sd) <= -8.2)){
            FA = 1.0;
            FB = 0.0;
          }
          double term = runif()*(FA-FB)+FB;
          if (term < 5.6e-17)
            term = 5.6e-17;
          if (term > (1 - 5.6e-17))
            term = 1 - 5.6e-17;
          double x = mean + sd * qnorm1(term);
          if (x > above)
            x = above;
          if (x < below)
            x = below;
          return x;
        }    
      }

      SCYTHE_RNGMETH_MATRIX(rtnorm_combo, double, 
          SCYTHE_ARGSET(mean, variance, above, below), double mean,
          double variance, double above, double below);

			/*! \brief Generate a normally distributed random variate,
			 * truncated below.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated below.  It uses the slice sampling method of
			 * Robert and Casella (1999), pp. 288-289.
       *
			 * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param below The lower truncation point of the distribution.
			 * \param iter The number of iterations to use.
			 * 
			 * \see rtnorm(double mean, double variance, double below, double above)
			 * \see rtnorm_combo(double mean, double variance, double below, double above)
			 * \see rtanorm_slice(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rtbnorm_combo(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_combo(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rtbnorm_slice (double mean, double variance, double below,
                     unsigned int iter = 10)
      {
        SCYTHE_CHECK_10(below < mean, scythe_invalid_arg,
            "Truncation point < mean");
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");
         
        double z = 0;
        double x = below + .00001;
         
        for (unsigned int i=0; i<iter; ++i){
          z = runif()*std::exp(-1*std::pow((x-mean),2)/(2*variance));
          x = runif()*
            ((mean + std::sqrt(-2*variance*std::log(z))) - below) + below;
        }

        if (! finite(x)) {
          SCYTHE_WARN("Mean extremely far from truncation point. "
              << "Returning truncation point");
          return below; 
        }

        return x;
      }

      SCYTHE_RNGMETH_MATRIX(rtbnorm_slice, double, 
          SCYTHE_ARGSET(mean, variance, below, iter), double mean, 
          double variance, double below, unsigned int iter = 10);

			/*! \brief Generate a normally distributed random variate,
			 * truncated above.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated above.  It uses the slice sampling method of Robert
			 * and Casella (1999), pp. 288-289.
       *
       * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param above The upper truncation point of the distribution.
			 * \param iter The number of iterations to use.
			 * 
			 * \see rtnorm(double mean, double variance, double below, double above)
			 * \see rtnorm_combo(double mean, double variance, double below, double above)
			 * \see rtbnorm_slice(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtbnorm_combo(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_combo(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rtanorm_slice (double mean, double variance, double above, 
          unsigned int iter = 10)
      {
        SCYTHE_CHECK_10(above > mean, scythe_invalid_arg,
            "Truncation point > mean");
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");
      
        double below = -1*above;
        double newmu = -1*mean;
        double z = 0;
        double x = below + .00001;
         
        for (unsigned int i=0; i<iter; ++i){
          z = runif()*std::exp(-1*std::pow((x-newmu),2)
              /(2*variance));
          x = runif()
            *( (newmu + std::sqrt(-2*variance*std::log(z))) - below) 
            + below;
        }
        if (! finite(x)) {
          SCYTHE_WARN("Mean extremely far from truncation point. "
              << "Returning truncation point");
          return above; 
        }
        
        return -1*x;
      }

      SCYTHE_RNGMETH_MATRIX(rtanorm_slice, double, 
          SCYTHE_ARGSET(mean, variance, above, iter), double mean, 
          double variance, double above, unsigned int iter = 10);

			/*! \brief Generate a normally distributed random
			 * variate, truncated below.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated below.  It uses a combination of
			 * rejection sampling (when \a mean >= \a below) and the slice
			 * sampling method of Robert and Casella (1999), pp. 288-289
			 * (when \a mean < \a below).
       *
       * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param below The lower truncation point of the distribution.
			 * \param iter The number of iterations to run the slice
			 * sampler.
			 * 
			 * \see rtnorm(double mean, double variance, double below, double above)
			 * \see rtnorm_combo(double mean, double variance, double below, double above)
			 * \see rtbnorm_slice(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_slice(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rtanorm_combo(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rtbnorm_combo (double mean, double variance, double below, 
          unsigned int iter = 10)
      {
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");
        
        double s = std::sqrt(variance);
        // do rejection sampling and return value
        //if (m >= below){
        if ((mean/s - below/s ) > -0.5){
          double x = rnorm(mean, s);
          while (x < below)
            x = rnorm(mean,s);
          return x; 
        } else if ((mean/s - below/s ) > -5.0 ){
          // use the inverse cdf method
          double above =  std::numeric_limits<double>::infinity();
          double x = rtnorm(mean, variance, below, above);
          return x;
        } else {
          // do slice sampling and return value
          double z = 0;
          double x = below + .00001;
          for (unsigned int i=0; i<iter; ++i){
            z = runif() * std::exp(-1 * std::pow((x - mean), 2)
                / (2 * variance));
            x = runif() 
              * ((mean + std::sqrt(-2 * variance * std::log(z))) 
                - below) + below;
          }
          if (! finite(x)) {
            SCYTHE_WARN("Mean extremely far from truncation point. "
                << "Returning truncation point");
            return below; 
          }
          return x;
        }
      }

      SCYTHE_RNGMETH_MATRIX(rtbnorm_combo, double, 
          SCYTHE_ARGSET(mean, variance, below, iter), double mean, 
          double variance, double below, unsigned int iter = 10);

			/*! \brief Generate a normally distributed random variate,
			 * truncated above.
       *
			 * This function returns a pseudo-random variate drawn from the
			 * normal distribution with given \a mean and \a variance,
			 * truncated above.  It uses a combination of rejection sampling
			 * (when \a mean <= \a above) and the slice sampling method of
			 * Robert and Casella (1999), pp. 288-289 (when \a mean > \a
			 * above).
       *
			 * \param mean The mean of the distribution.
			 * \param variance The variance of the distribution.
			 * \param above The upper truncation point of the distribution.
			 * \param iter The number of iterations to run the slice sampler.
			 * 
			 * \see rtnorm(double mean, double variance, double below, double above)
			 * \see rtnorm_combo(double mean, double variance, double below, double above)
			 * \see rtbnorm_slice(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rtanorm_slice(double mean, double variance, double above, unsigned int iter = 10)
			 * \see rtbnorm_combo(double mean, double variance, double below, unsigned int iter = 10)
			 * \see rnorm(double x, double mean, double sd)
			 *
       * \throw scythe_invalid_arg (Level 1)
       */
      double
      rtanorm_combo (double mean, double variance, double above, 
          const unsigned int iter = 10)
      {
        SCYTHE_CHECK_10(variance <= 0, scythe_invalid_arg,
            "Variance <= 0");

        double s = std::sqrt(variance);
        // do rejection sampling and return value
        if ((mean/s - above/s ) < 0.5){ 
          double x = rnorm(mean, s);
          while (x > above)
            x = rnorm(mean,s);
          return x;
        } else if ((mean/s - above/s ) < 5.0 ){
          // use the inverse cdf method
          double below =  -std::numeric_limits<double>::infinity();
          double x = rtnorm(mean, variance, below, above);
          return x;
        } else {
          // do slice sampling and return value
          double below = -1*above;
          double newmu = -1*mean;
          double z = 0;
          double x = below + .00001;
             
          for (unsigned int i=0; i<iter; ++i){
            z = runif() * std::exp(-1 * std::pow((x-newmu), 2)
                /(2 * variance));
            x = runif() 
              * ((newmu + std::sqrt(-2 * variance * std::log(z)))
                  - below) + below;
          }
          if (! finite(x)) {
            SCYTHE_WARN("Mean extremely far from truncation point. "
                << "Returning truncation point");
            return above; 
          }
          return -1*x;
        }
      }

      SCYTHE_RNGMETH_MATRIX(rtanorm_combo, double, 
          SCYTHE_ARGSET(mean, variance, above, iter), double mean, 
          double variance, double above, unsigned int iter = 10);

      /* Multivariate Distributions */
      
      /*! \brief Generate a Wishart distributed random variate Matrix.
       *
       * This function returns a pseudo-random matrix-valued variate
       * drawn from the Wishart disribution described by the scale
       * matrix \a Sigma, with \a v degrees of freedom.
       *
       * \param v The degrees of freedom of the distribution.
			 * \param Sigma The square scale matrix of the distribution.
			 *
       * \throw scythe_invalid_arg (Level 1)
       * \throw scythe_dimension_error (Level 1)
       */
      template <matrix_order O, matrix_style S>
      Matrix<double, O, Concrete>
      rwish(unsigned int v, const Matrix<double, O, S> &Sigma)
      {
        SCYTHE_CHECK_10(! Sigma.isSquare(), scythe_dimension_error,
            "Sigma not square");
        SCYTHE_CHECK_10(v < Sigma.rows(), scythe_invalid_arg, 
            "v < Sigma.rows()");
          
        Matrix<double,O,Concrete> 
          A(Sigma.rows(), Sigma.rows());
        Matrix<double,O,Concrete> C = cholesky<O,Concrete>(Sigma);
        Matrix<double,O,Concrete> alpha;
          
        for (unsigned int i = 0; i < v; ++i) {
          alpha = C * rnorm(Sigma.rows(), 1, 0, 1);
          A = A + (alpha * (t(alpha)));
        }

        return A;
      }

      /*! \brief Generate a Dirichlet distributed random variate Matrix.
       *
       * This function returns a pseudo-random matrix-valued variate
       * drawn from the Dirichlet disribution described by the vector
       * \a alpha.
       *
       * \param alpha A vector of non-negative reals.
			 *
       * \throw scythe_invalid_arg (Level 1)
       * \throw scythe_dimension_error (Level 1)
       */
      template <matrix_order O, matrix_style S>
      Matrix<double, O, Concrete>
      rdirich(const Matrix<double, O, S>& alpha) 
      { 
        // Check for allowable parameters
        SCYTHE_CHECK_10(std::min(alpha) <= 0, scythe_invalid_arg,
            "alpha has elements < 0");
        SCYTHE_CHECK_10(! alpha.isColVector(), scythe_dimension_error,
            "alpha not column vector");
     
        Matrix<double, O, Concrete> y(alpha.rows(), 1);
        double ysum = 0;

        // We would use std::transform here but rgamma is a function
        // and wouldn't get inlined.
        const_matrix_forward_iterator<double,O,O,S> ait;
        const_matrix_forward_iterator<double,O,O,S> alast
          = alpha.template end_f();
        typename Matrix<double,O,Concrete>::forward_iterator yit 
          = y.begin_f();
        for (ait = alpha.begin_f(); ait != alast; ++ait) {
          *yit = rgamma(*ait, 1);
          ysum += *yit;
          ++ait;
        }

        y /= ysum;

        return y;
      }

      /*! \brief Generate a multivariate normal distributed random
       * variate Matrix.
       *
       * This function returns a pseudo-random matrix-valued variate
       * drawn from the multivariate normal disribution with means \mu
       * and variance-covariance matrix \a sigma.
       *
       * \param mu A vector containing the distribution means.
       * \param sigma The distribution variance-covariance matrix.
			 *
       * \throw scythe_invalid_arg (Level 1)
       * \throw scythe_dimension_error (Level 1)
       */
      template <matrix_order PO1, matrix_style PS1,
                matrix_order PO2, matrix_style PS2>
      Matrix<double, PO1, Concrete>
      rmvnorm(const Matrix<double, PO1, PS1>& mu, 
              const Matrix<double, PO2, PS2>& sigma)
      {  
        unsigned int dim = mu.rows();
        SCYTHE_CHECK_10(! mu.isColVector(), scythe_dimension_error,
            "mu not column vector");
        SCYTHE_CHECK_10(! sigma.isSquare(), scythe_dimension_error,
            "sigma not square");
        SCYTHE_CHECK_10(sigma.rows() != dim, scythe_conformation_error,
            "mu and sigma not conformable");
        
        return(mu + cholesky(sigma) * rnorm(dim, 1, 0, 1));
      }

      /*! \brief Generate a multivariate Student t distributed random
       * variate Matrix.
       *
       * This function returns a pseudo-random matrix-valued variate
       * drawn from the multivariate Student t disribution with
       * and variance-covariance matrix \a sigma, and degrees of
       * freedom \a nu
       *
       * \param sigma The distribution variance-covariance matrix.
       * \param nu The strictly positive degrees of freedom.
			 *
       * \throw scythe_invalid_arg (Level 1)
       * \throw scythe_dimension_error (Level 1)
       */
      template <matrix_order O, matrix_style S>
      Matrix<double, O, Concrete>
      rmvt (const Matrix<double, O, S>& sigma, double nu)
      {
        Matrix<double, O, Concrete> result;
        SCYTHE_CHECK_10(nu <= 0, scythe_invalid_arg,
            "D.O.F parameter nu <= 0");

        result = 
          rmvnorm(Matrix<double, O>(sigma.rows(), 1, true, 0), sigma);
        result /= std::sqrt(rchisq(nu) / nu);
        return result;
      }

    protected:
      /* Default (and only) constructor */
      /*! \brief Default constructor
       *
       * Instantiate a random number generator
       */
      rng() 
        : rnorm_count_ (1) // Initialize the normal counter
      {}

      /* For Barton and Nackman trick. */
      RNGTYPE& as_derived()
      {
        return static_cast<RNGTYPE&>(*this);
      }


      /* Generate Standard Normal variates */

      /* These instance variables were static in the old
       * implementation.  Making them instance variables provides
       * thread safety, as long as two threads don't access the same
       * rng at the same time w/out precautions.  Fixes possible
       * previous issues with lecuyer.  See the similar approach in
       * rgamma1 below.
       */
      int rnorm_count_;
      double x2_;

      double
      rnorm1 ()
      {
        double nu1, nu2, rsquared, sqrt_term;
        if (rnorm_count_ == 1){ // odd numbered passses
          do {
            nu1 = -1 +2*runif();
            nu2 = -1 +2*runif();
            rsquared = ::pow(nu1,2) + ::pow(nu2,2);
          } while (rsquared >= 1 || rsquared == 0.0);
          sqrt_term = std::sqrt(-2*std::log(rsquared)/rsquared);
          x2_ = nu2*sqrt_term;
          rnorm_count_ = 2;
          return nu1*sqrt_term;
        } else { // even numbered passes
          rnorm_count_ = 1;
          return x2_;
        } 
      }

      /* Generate standard gamma variates */
      double accept_;

      double
      rgamma1 (double alpha)
      {
        int test;
        double u, v, w, x, y, z, b, c;

        // Check for allowable parameters
        SCYTHE_CHECK_10(alpha <= 1, scythe_invalid_arg, "alpha <= 1");

        // Implement Best's (1978) simulator
        b = alpha - 1;
        c = 3 * alpha - 0.75;
        test = 0;
        while (test == 0) {
          u = runif ();
          v = runif ();

          w = u * (1 - u);
          y = std::sqrt (c / w) * (u - .5);
          x = b + y;

          if (x > 0) {
            z = 64 * std::pow (v, 2) * std::pow (w, 3);
            if (z <= (1 - (2 * std::pow (y, 2) / x))) {
              test = 1;
              accept_ = x;
            } else if ((2 * (b * std::log (x / b) - y)) >= ::log (z)) {
              test = 1;
              accept_ = x;
            } else {
              test = 0;
            }
          }
        }
        
        return (accept_);
      }

  };

  
} // end namespace scythe    
#endif /* RNG_H */